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Exploring causal correlations
between inflammatory cytokines
and knee osteoarthritis: a two-
sample Mendelian randomization
Jiayu Zhang, Kexuan Li and Xiuyue Qiu*

Nursing School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
Objectives: Knee osteoarthritis (KOA) and certain inflammatory cytokines (such

as interleukin 1 [IL-1] and tumor necrosis factor alpha [TNF-a]) are related;

however, the causal relationship remains unclear. Here, we aimed to assess the

causal relationship between 41 inflammatory cytokines and KOA using Mendelian

randomization (MR).

Methods: Two-sample bidirectional MR was performed using genetic variation

data for 41 inflammatory cytokines that were obtained from European Genome-

Wide Association Study (GWAS) data (n=8293). KOA-related genetic association

data were also obtained from European GWAS data (n=40,3124). Inverse variance

weighting (IVW), MR, heterogeneity, sensitivity, and multiple validation analyses

were performed.

Results: Granulocyte colony-stimulating factor (G-CSF) or colony-stimulating

factor 3 (CSF-3) levels were negatively associated with the risk of developing KOA

(OR: 0.93, 95%CI:0.89–0.99, P=0.015). Additionally, macrophage inflammatory

protein-1 alpha (MIP-1A/CCL3) was a consequence of KOA (OR: 0.72, 95%

CI:0.54–0.97, P=0.032). No causal relationship was evident between other

inflammatory cytokines and KOA development.

Conclusion: This study suggests that certain inflammatory cytokines may be

associated with KOA etiology. G-CSF exerts an upstream influence on KOA

development, whereas MIP-1A (CCL-3) acts as a downstream factor.
KEYWORDS

knee osteoarthritis, inflammatory cytokines, Mendelian randomization, disease
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1 Introduction

Knee osteoarthritis (KOA) is a chronic degenerative disease that

profoundly affects the joints and associated tissues (1). The

pathological features of KOA encompass degenerative changes in

the articular cartilage, secondary osteophyte formation,

subchondral bone sclerosis, and synovial inflammation (2, 3).

Epidemiological surveys have revealed that the prevalence of

osteoarthritis (OA) is as high as 29% in the middle-aged

population (4). Furthermore, the prevalence of primary KOA is

as high as 46.3% in people aged > 40 years in China (5). The number

of patients with KOA increases with an aging population (6). The

primary clinical manifestations of KOA include pain, limited

mobility, and joint deformity (7), which can affect joint stability

and may lead to disability in severe cases (8). Approximately 100

million people worldwide are disabled due to KOA. Moreover, KOA

accounts for 2.2% of the global disease burden and is the fourth

most disabling disease worldwide (9, 10). Beyond its physical toll,

KOA further affects the mental well-being of afflicted individuals

and profoundly diminishes their overall quality of life (11).

Simultaneously, the economic ramifications impose a substantial

burden on patients, their families, and society (12). The annual

healthcare costs associated with arthritis exceed $ 300 billion (13).

Given the staggering incidence and disability associated with KOA,

identifying modifiable risk factors is imperative for developing

strategies to control the disease and alleviate its societal burden.

Cytokines are small-molecule proteins with a wide range of

biological activities that are synthesized and secreted by immune

and certain non-immune cells in response to various stimuli (14).

Cytokines have various functions, including immunomodulation,

cell growth, and tissue repair (15). Cytokines can be categorized into

interleukins, chemokines, and growth factors (16). The exact

etiology and pathogenesis of KOA remain unclear. However, it is

now generally accepted that inflammation is involved in the

development of the disease (17), and it has been suggested that

KOA is triggered by multiple complex factors mediated by

inflammatory cytokines and their associated signaling pathways

(18, 19). Inflammatory cytokines are closely associated with

functional alterations in the synovium, cartilage, and subchondral

bone and can impair the synthetic pathways required to repair the

integrity of degenerating chondrocytes (20). The association

between inflammation and KOA has been demonstrated in

animal model studies (21). Furthermore, certain inflammatory

cytokines, such as IL-1 and tumor necrosis factor (TNF-ɑ), can
be detected during early lesions of KOA, a finding that suggests that

inflammatory cytokines are associated with KOA (22–24). The

expression levels of inflammatory cytokines in joint fluids

influence KOA to some extent (25). However, relevant studies

have mainly focused on the effects of IL-1 and TNF-a on KOA

(26–28), and few studies regarding the association between other

inflammatory cytokines and KOA exist. In addition, owing to the

limitations of the traditional study design and the inability of the

current study to completely exclude confounding factors, the causal

relationship between inflammatory cytokines and KOA remains

unclear and should be confirmed by additional studies.
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Mendelian randomization (MR) uses genetic variants associated

with modifiable exposures (or risk factors) to assess their possible

causal relationship with outcomes (28–31). Single nucleotide

polymorphisms (SNPs) are commonly used as IVs to assess

potential causal associations with outcomes (32, 33). Because

genetic variants are randomly assigned at the time of conception,

potential sources of error are eliminated, and a clear causal chain is

established (34). This minimizes potential bias due to confounding

factors and reverse causation, thus increasing the reliability of the

results (35). Current MR in KOA mostly focuses on MR between

two diseases or influencing factors, such as OA with cardiovascular

disease and osteoporosis (36, 37). However, there is a notable gap

between the studies addressing the potential causal relationship

between KOA and inflammatory cytokine levels. To address this

gap, we aimed to assess the potential causal association between

inflammatory cytokines and KOA using two-sample bidirectional

MR analysis. We first extracted validated genetic IVs for 41

inflammatory cytokines from the genome-wide association study

(GWAS) data and analyzed their association with KOA. The

direction of causality was further explored using reverse exposure

and outcomes. Our study findings potentially provide new strategies

for KOA prevention.
2 Materials and methods

2.1 MR assumptions

MR was used to analyze the relationship between inflammatory

cytokines and KOA. Figure 1 shows the two-sample bidirectional

MR study design. There are three core assumptions of MR analysis:

relevance, independence, and exclusion. (1) Relevance: the variables

selected as genetic instruments are closely associated with

exposures; (2) independence: genetic variation is not associated

with confounding factors; and (3) exclusion restrictions: genetic

variation affects outcomes only through exposures instead of other

pathways (32).
FIGURE 1

Schematic representation of the study design in this bidirectional
Mendelian randomization (MR) analysis.
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2.2 Data source

The two datasets used in the MR analysis were derived from

publicly available GWAS summary data. The KOA data for this

study were obtained from the UK Biobank and Arthritis Research

UK Osteoarthritis Genetics (arcOGEN). This study included 24,955

patients and 378,169 controls of European ancestry (38) (https://

was.mrcieu.ac.uk/datasets/ebi-a-GCST007090/). The UK Biobank

recruited participants aged 40–69 between 2006–2010. ArcOGEN is

a collection of patients of European ancestry with KOA. Diagnosis

of KOA was based on clinical signs of the disease and the need for

arthroplasty or imaging evidence (Kelgren-Lawrence≥2) to

determine the diagnosis. For 41 inflammatory cytokines, data

were obtained from a meta-analysis combining the results of the

Finnish Young Adult Cardiovascular Risk Study (YFS) and the

FINRISK survey between 1980–2011, which included 8,293 Finnish

indiv iduals (39) (https : / /data .br is .ac .uk/data/dataset/

3g3i5smgghp0s2uvm1doflkx9x). The mean age of the participants

in the YFS an FINRISK studies were 37 and 60 years, respectively.
2.3 Instrumental variable selection

First, we set P<5×10-8 as the genome-wide significance

threshold to select SNPs that were strongly associated with KOA

and inflammatory cytokines. Because very few SNPs were identified

for some of the cytokines upon exposure, a higher cutoff value

(P<5×10-6) to ensure that there were enough SNPs for further MR

analysis (40, 41). Secondly, to avoid linkage disequilibrium,

instrumental variables were removed to ensure mutual

independence of these instrumental variables (r2 = 0.001,

kb=10,000). Third, the F statistic was used to determine the IV

exposure correlations. The F value of the SNP was calculated to

determine the presence of a weak IV bias. If F>10, the correlation is

considered strong enough to avoid weak IV bias.
2.4 Statistical analysis

In this study, we explored the potential causal relationship

between inflammatory cytokines and KOA using inflammatory

cytokines and KOA as exposure and outcome variables,

respectively. Analysis was performed using R4.3.2 software and

the R package “Two sample MR”. Causality assessments were

conducted using diverse methods including inverse variance

weighting (IVW), MR-Egger, weighted median, weighted modal,

and simple modal analyses. The IVWmethod served as the primary

approach for the MR analysis, and Cochran’s Q value was

computed for both the IVW and MR-Egger estimates to gauge

heterogeneity. Horizontal pleiotropy was evaluated using the MR-

Egger intercept test (42) and anomalous SNPs were identified using

MR-PRESSO (43). The stability of the results was examined using

the leave-one-out method, wherein each SNP was systematically

excluded to assess its impact on supporting a causal association

(44). In cases where IVW analysis yielded a significant result

(P<0.05) and no evidence of horizontal pleiotropy or
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heterogeneity was found, the result could be considered positive,

even if other methods did not yield a significant result, as long as the

direction of the beta remained consistent (42). In cases where

horizontal pleiotropy was present but no heterogeneity was

detected, the MR-Egger method was used. In cases where

heterogeneity was observed, but multidirectionality was not

present, the analysis was performed using the IVW method.
3 Results

To ensure an adequate number of SNPs for further MR analysis, a

significance threshold of P<5×10-6 was selected when screening for

SNPs related to each inflammatory cytokine and KOA. The F-statistics

for the SNPs of the 41 inflammatory cytokines were 20.77–782.26. The

F-statistic for all instrumental variables was >10, indicating no weak

instrumental variable bias (Supplementary Tables 1-3).

To determine the primary analytical tool, hypothesis checks

were performed for all 41 inflammatory cytokines. The IVW

method was used as the primary analytical method for all

cytokines, except IL-1RA, for which there was no evidence of

heterogeneity or weak interference. For IL-1RA, MR-Egger was

chosen as the primary method and the reason for this was because

the P-values of the Q-tests for both IVW and MR-Egger were <0.05

(P=0.032, P=0.040).
3.1 Influence of 41 inflammatory cytokines
on KOA

The main results of the MR analysis using 41 inflammatory

cytokines as exposures and KOA as the outcome are shown in

Tables 1 and Supplementary Table 1. The IVW results showed that

genetically predicted elevated levels of Granulocyte colony-

stimulating factor (G-CSF) were negatively correlated with the

risk of developing KOA (OR:0.93, 95%CI:0.89–0.99, P=0.015).

There was no evidence of potential horizontal pleiotropy

(P=0.173) or heterogeneity (P=0.597) (Supplementary Table 2).

MR-PRESSO analyses did not identify any SNP abnormalities in

the G-CSF. The leave-one-out method demonstrates the stability of

the results (Supplementary Figure 1). The beta values of the MR-

Egger, simple model, weighted median, and weighted model

analyses are consistent with the direction of the results.

Figures 2A, C shows a scatter plot and funnel plot of the causal

relationship between G-CSF and the occurrence of KOA. There is

no evidence suggesting that other circulating inflammatory

cytokines are associated with KOA.
3.2 Influence of KOA on 41
inflammatory cytokines

The main results of the MR analysis when KOA was used as the

exposure and the 41 inflammatory cytokines were used as outcomes

are shown in Tables 2 and Supplementary Table 4. Six significant

SNPs were extracted as instrumental variables for KOA, and the F-
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TABLE 1 Causality of 41 circulating inflammatory cytokines on KOA.

N EXPOSURES nSNP OR (95% CI)
P

IVW Het MR-EGGER MR-PRESSO

1 B-NGF 4 1.03 (0.95,1.12) 0.503 0.286 0.634 0.39

2 CTACK 13 1.00 (0.96,1.03) 0.921 0.477 0.441 0.41

3 EOTAXIN 16 1.02 (0.97,1.08) 0.391 0.129 0.096 0.14

4 FGF-BASIC 7 0.99 (0.92,1.07) 0.775 0.612 0.505 0.75

5 G-CSF 9 0.93 (0.89,0.99) 0.015 0.597 0.763 0.68

6 GROA 11 1.00 (0.97,1.03) 0.840 0.467 0.706 0.55

7 HGF 9 0.98 (0.92,1.05) 0.643 0.602 0.736 0.67

8 IFN-G 12 0.98 (0.92,1.04) 0.508 0.346 0.311 0.43

9 IL-1B 3 0.95 (0.85,1.07) 0.416 0.171 0.142 /

10 IL-1RA 10 0.96 (0.89,1.04) 0.299 0.032 0.040 0.02

11 IL-2 8 0.98 (0.91,1.04) 0.472 0.064 0.105 0.14

12 IL-2RA 8 0.97 (0.93,1.02) 0.194 0.175 0.320 0.33

13 IL-4 14 0.98 (0.92,1.03) 0.417 0.291 0.278 0.47

14 IL-5 8 1.03 (0.98,1.09) 0.227 0.829 0.792 0.88

15 IL-6 11 1.01 (0.95,1.08) 0.649 0.404 0.342 0.36

16 IL-7 13 1.02 (0.98,1.06) 0.455 0.090 0.063 0.12

17 IL-8 8 0.98 (0.93,1.04) 0.521 0.071 0.167 0.15

18 IL-9 6 1.03 (0.97,1.09) 0.329 0.828 0.708 0.86

19 IL-10 15 1.03 (0.98,1.08) 0.294 0.182 0.243 0.23

20 IL-12-P70 14 1.03 (0.99,1.07) 0.163 0.308 0.244 0.37

21 IL-13 13 1.00 (0.97,1.04) 0.874 0.264 0.254 0.25

22 IL-16 9 1.01 (0.97,1.05) 0.728 0.119 0.144 0.19

23 IL-17 8 0.96 (0.90,1.02) 0.203 0.489 0.878 0.44

24 IL-18 13 1.01 (0.98,1.05) 0.473 0.096 0.097 0.15

25 IP-10 11 1.00 (0.95,1.04) 0.856 0.751 0.800 0.78

26 M-CSF 11 1.01 (0.98,1.05) 0.375 0.632 0.592 0.64

27 MCP-1-MCAF 14 0.97 (0.91,1.04) 0.399 0.054 0.051 0.08

28 MCP-3 6 1.01 (0.97,1.04) 0.786 0.586 0.465 0.61

29 MIF 10 1.01 (0.97,1.06) 0.580 0.685 0.621 0.68

30 MIG 13 0.98 (0.95,1.02) 0.403 0.744 0.880 0.79

31 MIP-1A 6 1.04 (0.97,1.11) 0.290 0.894 0.822 0.93

32 MIP-1B 20 1.02 (1.00,1.05) 0.108 0.466 0.402 0.56

33 PDGF-BB 14 0.97 (0.93,1.01) 0.151 0.727 0.658 0.82

34 RANTES 10 1.04 (0.99,1.09) 0.141 0.639 0.554 0.64

35 SCF 11 0.99 (0.93,1.06) 0.718 0.251 0.190 0.30

36 SCGF-B 18 1.01 (0.97,1.04) 0.753 0.224 0.187 0.31

37 SDF-1A 9 0.99 (0.93,1.05) 0.651 0.992 0.983 0.99

38 TNF-A 4 0.96 (0.91,1.02) 0.185 0.991 0.968 0.99

(Continued)
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statistics for SNPs of KOA were 32.15–96.87(Supplementary

Tables 4-6). As no heterogeneity or weak instruments were

observed, the IVW method was used for the primary evaluation

of SNP in KOA. The IVW results showed that genetically predicted

increases in KOA occurrence were negatively associated with MIP-

1A levels (OR: 0.72, 95%CI:0.54–0.97, P=0.032). MR-Egger analysis

did not reveal any potential horizontal pleiotropy (P=0.862) or

heterogeneity (P=0.880) of SNPs for exposure factors. MR-PRESSO
Frontiers in Immunology 05
analyses did not reveal outliers in the SNPs for the exposure factors

(Supplementary Table 5). Leave-one-out analysis demonstrated the

stability of the results (Supplementary Figure 2). The directions of

the beta of the MR-Egger, simple model, weighted median, and

weighted model analysis results were consistent. Scatter and funnel

plots of the causality of MIP-1A in KOA are shown in Figures 2B,

D. There is no evidence suggesting that KOA development is

associated with other circulating inflammatory cytokines.
TABLE 1 Continued

N EXPOSURES nSNP OR (95% CI)
P

IVW Het MR-EGGER MR-PRESSO

39 TNF-B 5 0.99 (0.95,1.03) 0.580 0.137 0.152 0.25

40 TRAIL 16 1.02 (0.99,1.05) 0.297 0.225 0.250 0.20

41 VEGF 15 1.03 (0.99,1.07) 0.123 0.076 0.054 0.16
CI, confidence interval; OR, odds ratio; SNP, single nucleotide polymorphism.
Table 1 summarizes the results with 41 inflammatory cytokines as exposure and KOA as outcome.
B

C

D

A

FIGURE 2

Scatter and funnel plots of Mendelian randomization (MR) analyses for granulocyte colony-stimulating factor (G-CSF) and macrophage inflammatory
protein-1 alpha (MIP-1A) in patients with knee osteoarthritis (KOA). (A) The exposure is G-CSF and outcome is KOA. (B) The exposure is KOA and
outcome is MIP-1A. (C, D) Funnel plots show the inverse variance weighted MR estimate of each cytokine single-nucleotide polymorphism (SNP)
with KOA versus 1/standard error (1/SEIV).
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TABLE 2 Causality of KOA and 41 circulating inflammatory cytokines.

N EXPOSURES nSNP Beta (95% CI)
P

IVW Het MR-EGGER MR-PRESSO

1 B-NGF 6 0.77 (0.57,1.03) 0.08 0.567 0.432 0.61

2 CTACK 6 0.91 (0.66, 1.25) 0.55 0.319 0.355 0.32

3 EOTAXIN 6 1.07 (0.88,1.30) 0.51 0.810 0.760 0.85

4 FGF-BASIC 6 0.98 (0.80,1.20) 0.85 0.782 0.705 0.76

5 G-CSF 6 1.01 (0.83,1.24) 0.90 0.949 0.922 0.92

6 GROA 6 1.06 (0.79, 1.43) 0.71 0.523 0.771 0.52

7 HGF 6 1.01 (0.82,1.23) 0.96 0.381 0.260 0.44

8 IFN-G 6 1.08 (0.87,1.34) 0.49 0.333 0.270 0.39

9 IL-1B 6 1.01 (0.74,1.37) 0.95 0.991 0.990 1

10 IL-1RA 6 0.85 (0.63,1.14) 0.28 0.752 0.616 0.81

11 IL-2 6 0.91 (0.68,1.23) 0.54 0.663 0.522 0.74

12 IL-2RA 6 0.97 (0.66,1.43) 0.88 0.111 0.062 0.15

13 IL-4 6 1.16 (0.95,1.41) 0.15 0.720 0.581 0.68

14 IL-5 6 0.73 (0.49, 1.09) 0.12 0.133 0.095 0.2

15 IL-6 6 1.05 (0.87,1.28) 0.60 0.569 0.458 0.58

16 IL-7 6 0.79 (0.58,1.06) 0.12 0.609 0.464 0.68

17 IL-8 6 0.97 (0.72,1.31) 0.86 0.957 0.952 0.92

18 IL-9 6 0.98 (0.73,1.32) 0.90 0.882 0.798 0.9

19 IL-10 6 0.85 (0.69,1.04) 0.11 0.532 0.766 0.44

20 IL-12-P70 6 0.89 (0.73,1.08) 0.23 0.493 0.433 0.51

21 IL-13 6 0.79 (0.57,1.10) 0.17 0.274 0.189 0.32

22 IL-16 6 0.98 (0.73,1.32) 0.90 0.786 0.678 0.8

23 IL-17 3 1.05 (0.76, 1.45) 0.76 0.850 0.796 /

24 IL-18 6 1.33 (0.95,1.86) 0.10 0.259 0.213 0.34

25 IP-10 6 0.95 (0.71,1.26) 0.70 0.623 0.601 0.64

26 M-CSF 6 0.94 (0.64, 1.37) 0.75 0.330 0.234 0.41

27 MCP-1-MCAF 6 1.01 (0.80,1.28) 0.90 0.219 0.151 0.31

28 MCP-3 6 1.44 (0.85, 2.45) 0.18 0.481 0.344 0.56

29 MIF 6 0.93 (0.67,1.30) 0.68 0.285 0.193 0.38

30 MIG 6 0.89 (0.67,1.20) 0.45 0.994 0.994 1

31 MIP-1A 6 0.72 (0.54,0.97) 0.03 0.880 0.785 0.95

32 MIP-1B 6 1.06 (0.87,1.28) 0.59 0.539 0.596 0.51

33 PDGF-BB 6 1.05 (0.86,1.28) 0.63 0.682 0.971 0.58

34 RANTES 6 1.08 (0.76,1.52) 0.68 0.269 0.171 0.37

35 SCF 6 1.02 (0.82,1.27) 0.83 0.288 0.219 0.26

36 SCGF-B 6 0.83 (0.62,1.10) 0.20 0.796 0.926 0.76

37 SDF-1A 6 0.97 (0.79,1.19) 0.78 0.403 0.280 0.45

38 TNF-A 6 1.07 (0.80,1.45) 0.64 0.662 0.518 0.7

(Continued)
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4 Discussion

This study used a two-sample MR analysis to explore the

potential causal relationship between inflammatory cytokines and

KOA. First, we identified causal relationships between 41

inflammatory cytokines and KOA and found that lower levels of

G-CSF were associated with a high risk of developing KOA,

suggesting that G-CSF may be a potential upstream cause of

KOA. In addition, when KOA is used as an exposure variable in

MR, it may lead to lower MIP-1A levels via pathogenic pathways;

therefore, MIP-1A may be located downstream of disease

progression. In summary, our analysis suggests that G-CSF is

involved in KOA pathogenesis. MIP-1A has a protective effect

against KOA, as evidenced by the reduction in MIP-1A levels

when KOA was considered an exposure factor.

Our findings suggested that reduced G-CSF levels were associated

with an increased risk of KOA. G-CSF (also known as CSF-3) is a

hematopoietic growth factor produced primarily by macrophages,

vascular endothelial cells, fibroblasts, and bone marrowmesenchymal

stromal cells (45). G-CSF is widely found in the body and the

circulatory system (46) and is involved in chronic inflammatory

autoimmune diseases such as rheumatoid arthritis (RA) (47). RA

contributes directly to joint deterioration by mediating the release of a

variety of cells, including macrophages and lymphocytes, as well as

inflammatory factors: TNF-a, IL-1 and matrix metalloproteinases

(48), which in turn manifests as joint deformities and dysfunction.

This finding implies that G-CSF may have similar effects in patients

with KOA. G-CSF primarily acts on hematopoietic progenitor cells to

promote proliferation and differentiation, and stimulates granulocyte

maturation and release (49–51). Reduced levels of G-CSF lead to

decreased chemotaxis of granulocytes to damaged tissues (52),

leading to decreased granulocyte numbers and activity (53, 54),

thereby affecting immune cell function (55) and leading to reduced

repair capacity of tissues, such as articular cartilage. Damage to

articular cartilage and subchondral bone is an underlying

pathological process of OA (56). G-CSF affects the survival and

function of chondrocytes in the joint fluid (57), and reduced levels

alter the state of these cells, affecting the stability of joint tissues (58),

ultimately leading to KOA.

MIP-1A (also known as CCL3), belongs to the chemokine CC

subfamily. MIP-1A is produced by a variety of cell types, including

monocytes, fibroblasts, vascular endothelial cells, and smooth

muscle cells (59), has chemotactic effects on monocytes, T cells, B

cells (60, 61), and is involved in the pathogenesis of several

inflammatory diseases such as RA and asthma (62–64). In
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patients with RA, MIP-1A triggers signaling pathways by binding

to receptors on the surface of chondrocytes, leading to altered

activation of intracellular molecules and inhibition of proteoglycan

synthesis, ultimately affecting chondrocyte function (65, 66). In

patients with RA, decreased MIP-1A expression correlates with

disease severity, and there is a trend toward decreased MIP-1A

expression with decreased macrophage infiltration (67). RA and

KOA are both inflammatory diseases (68); therefore, it is

hypothesized that MIP-1A may have a similar effect on KOA. A

study on the synovial fluid also reported that MIP-1A levels

decreased with OA progression (69).

Lowering MIP-1A levels may exert a protective effect against

KOA through multiple pathways, including influencing immune

cell activity, slowing inflammatory responses, and maintaining

articular cartilage stability. First, lowering MIP-1A levels

decreases immune cell activity (70). MIP-1A reduces the

destructive effects of macrophages on joint tissues by attenuating

their activation, thereby protecting joint structures, maintaining

joint tissues (71), and slowing the progression of arthritis. Secondly,

as an important chemokine (72), reduced levels of MIP-1A may

lead to reduced immune cell chemotaxis in the affected joint region

(73). This in turn slows the inflammatory response (74), thereby

reducing inflammation and attenuating joint tissue degradation.

Finally, MIP-1A affects chondrocyte function (75), leading to

limited cellular synthesis of proteoglycans, which reduces

proteoglycan synthesis and exacerbates articular cartilage damage

(76). Therefore, a reduction in MIP-1A levels promotes

proteoglycan synthesis, which reduces the risk of articular

cartilage damage and protects joints.

Here, we found that MIP-1A levels were decreased in patients

with KOA, whereas the study by Guo et al. (77) reported that MIP-

1A levels were increased in patients with KOA, leading to a

discrepancy, which may be due to the difference in the sample

sizes of the studies, as well as the racial differences between the

European and Asian populations. Therefore, future studies should

explore the potential mechanism of the negative correlation

between KOA and MIP-1A to reveal the specific role of MIP-1A

in the pathogenesis of KOA, which will provide new perspectives on

the treatment strategy of KOA and provides new ideas for

discovering new ways to treat KOA.

The previous studies investigated the potential causal relationship

between cytokines and OA, suggesting a correlation between

CX3CL1, MCP4, and CCL25 and OA (78). Another study noted a

causal relationship between the inflammatory cytokines MCSF and

vascular endothelial growth factor (VEGF) and OA (79), but these
TABLE 2 Continued

N EXPOSURES nSNP Beta (95% CI)
P

IVW Het MR-EGGER MR-PRESSO

39 TNF-B 6 1.03 (0.66, 1.61) 0.90 0.947 0.926 0.97

40 TRAIL 6 0.97 (0.79,1.18) 0.74 0.659 0.535 0.66

41 VEGF 6 1.16 (0.91,1.48) 0.23 0.249 0.267 0.26
CI, confidence interval; SNP, single nucleotide polymorphism.
Table 2 summarizes the results with KOA as the exposure and 41 inflammatory cytokines as the outcome.
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results were not validated in our analysis. Potential explanations

include differences in study focus, with previous research

encompassing various types of OA, while our study specifically

examined KOA. Variation in the selection of inflammatory

cytokines across studies, each with distinct biological functions and

expression patterns, may also contribute to differing results.

Additionally, the heterogeneity of study populations could impact

cytokine expression levels and patterns, influencing study outcomes.

Notably, our study had a large sample size and assessed numerous

cytokines. Furthermore, we identified previously unexplored causal

relationships, such as the association between G-CSF and MIP-1A

with KOA. These novel findings warrant further validation in future

research to ascertain the potential of G-CSF and MIP-1A as

biomarkers for KOA prevention and treatment.

This study has several limitations. First, our survey data were

derived from two large-scale GWAS datasets, which make this study

less statistically valid. However, owing to the lack of data, we were

unable to perform subgroup analyses of the variables to refine the

results of this study. Therefore, they must be validated in future large-

sample clinical trials. Second, the GWAS data used in this study were

derived from individuals of European origin, and there may be racial

bias. Thus, the generalizability of our findings to other populations

should be validated using local data. Third, a significance threshold

with a P<5×10-6 was used in the exposed GWAS data because the

number of genome-wide significant SNP at a threshold of P<5×10-8

was too small to support this study. Fourth, the scope of this study

was limited to examining the correlation between the 41

inflammatory cytokines and KOA. Given the diversity of

inflammatory cytokines, future studies should be extended to the

latest 91 inflammatory cytokines to deepen our understanding of the

causal relationships between inflammatory cytokines and KOA.
5 Conclusion

The results of this study suggest a causal relationship between

inflammation and KOA. G-CSF (CSF-3) may be an upstream factor

in KOA, whereas MIP-1A (CCL3) may be a downstream effect of

KOA. However, further studies are required to determine whether

these cytokines can be used to predict or prevent KOA.
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