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SOCS1 expression in cancer
cells: potential roles in
promoting antitumor immunity
Subburaj Ilangumaran*, Yirui Gui, Akhil Shukla
and Sheela Ramanathan

Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de
Sherbrooke, Sherbrooke, QC, Canada
Suppressor of cytokine signaling 1 (SOCS1) is a potent regulator immune cell

responses and a proven tumor suppressor. Inhibition of SOCS1 in T cells can

boost antitumor immunity, whereas its loss in tumor cells increases tumor

aggressivity. Investigations into the tumor suppression mechanisms so far

focused on tumor cell-intrinsic functions of SOCS1. However, it is possible that

SOCS1 expression in tumor cells also regulate antitumor immune responses in a

cell-extrinsic manner via direct and indirect mechanisms. Here, we discuss the

evidence supporting the latter, and its implications for antitumor immunity.
KEYWORDS

SOCS1, tumor suppressor, growth control, antigen presentation, tumor
immunogenicity, checkpoint inhibition
1 SOCS1-dependent checkpoints in innate and
adaptive immune responses

SOCS1 is a negative feedback regulator of cytokine-induced Janus kinase (JAK)-Signal

transducer and activation of transcription (STAT) signaling pathway and is the founding

member of the SOCS protein family that contains eight members, namely, SOCS1 to

SOCS7 and CISH (1–4). All SOCS family proteins have a central Src homology 2 (SH2)

domain and a conserved SOCS box at the carboxy terminus. The SH2 domain interacts

with phosphorylated JAKs and other phospho-tyrosine containing proteins, whereas the

SOCS box promotes ubiquitination of many SOCS1-binding proteins for subsequent

degradation by proteasomes (5, 6). Even though SOCS1 was discovered as an inhibitor

of IL-6 signaling, generation of SOCS1-deficient mice revealed its indispensable role in

attenuating IFNg signaling and consequent inflammatory responses (1–3, 7, 8). Reversal of

IFNg-driven perinatal lethality in SOCS1-deficient mice through ablation of the Rag2 gene

indicated that T lymphocytes are the major producer of IFNg in these mice (7). SOCS1-

dependent regulation of T cell activation is manifested predominantly in the CD8+ T cell

compartment than in the CD4+ compartment (9–12). CD8+ T cells isolated from SOCS1-

deficient mice display a memory-like phenotype and show increased sensitivity to the IL-2
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family cytokines, especially IL-15 (11–15). T regulatory cells, which

rely on IL-2 for survival and homeostasis, naturally downmodulate

SOCS1 expression through constitutive expression of miR-155 that

targets the Socs1 transcript (16).

Aberrant activation of CD8+ T cells and their exuberant

production of IFNg in SOCS1-deficient mice could arise from the

compound effect of (i) excess production of inflammatory cytokines

from macrophages and dendritic cells that activate T cells, and (ii)

increased cytokine-driven proliferation and consequent priming for

antigen stimulation. SOCS1 is essential to control Toll-like receptor

4 (TLR4) signaling induced by bacterial lipopolysaccharides (LPS),

and thus macrophages and dendritic cells from SOCS1 deficient

mice show increased production of inflammatory cytokines (17–

20). Some of the inflammatory cytokines such as IL-16 and IL-21

can synergize with cytokines that promote T cell homeostasis such

as IL-15 and IL-7 to induce antigen non-specific activation of naïve

CD8+ T cells that acquire increased sensitivity to autoantigens (14,

21). We have shown that CD8+ T cells from SOCS1 deficient mice

can elicit autoinflammatory disease upon recognition of cognate

autoantigens (21–23). SOCS1 deficiency in myeloid and lymphoid

cells has been shown to increase susceptibility to experimental

inflammatory and autoimmune diseases (24, 25). Moreover,

haploinsufficiency for the SOCS1 gene is associated with

inflammatory syndrome and autoimmunity in human (26, 27).

The SOCS1-dependent checkpoint in T cells has been exploited

to attenuate inflammatory diseases in experimental settings. A

SOCS1-mimetic peptide Tkip, which resembles the peptide

sequence surrounding the JAK-binding sequence of SOCS1, and

similar peptides has been shown to inhibit inflammatory diseases

such as experimental psoriasis and lung inflammation (28–35). In

these settings, the SOCS1-mimetic peptide likely operates on both

myeloid and T cells to attenuate their inflammatory responses.

SOCS1-mimetic peptides can also impact parenchymal cells, as

SOCS1 released from alveolar macrophages was reported to

attenuate activation of airway epithelial cells (36).

SOCS1 can also modulate antitumor immunity in different ways

depending on its expression level in antitumor lymphocytes and in

tumor cells. It restrains the effector functions of tumor reactive

CD8+ T cells as transduction of with Socs1-targeting microRNA

miR-155 into these cells enhances their cytokine responsiveness

resulting in improved efficiency to control tumors (37, 38). On the

other hand, many lines of evidence suggest that SOCS1 expression

in cancer cells can positively impact the development of antitumor

immune responses, for which we present evidence in the

following sections.
2 Cell-intrinsic tumor suppression
mechanisms of SOCS1

Following the seminal finding that the SOCS1 gene is repressed

in hepatocellular carcinoma by promoter CpG methylation, similar

epigenetic and miRNA-mediated SOCS1 loss has been reported in

many cancers including, neuroblastoma, myeloid leukemias and

colorectal, pancreatic, breast, prostate and ovarian cancers (24, 39–
Frontiers in Immunology 02
49). Genetic studies demonstrating the susceptibility of SOCS1-

deficient mice to develop radiation-induced leukemias and to

experimental induction of hepatocellular carcinoma and

colorectal cancer confirm that SOCS1 is a bona fide tumor

suppressor (50–54). The tumor suppressor function of SOCS1 can

be attributed to various mechanisms, which may operate in various

combinations in diverse cancers in a context-dependent manner.

These include attenuation of cytokine- and growth factor- induced

oncogenic signaling via JAK and receptor tyrosine kinases (RTK)

(55–58), potentiation of p53-mediated tumor suppressor functions

(59, 60), inhibition of the paradoxical oncogenic functions of tumor

suppressors such as cyclin-dependent kinase inhibitor 1A

(CDKN1A; commonly known as p21Cip1/WAF1) and NFE2 Like

BZIP Transcription Factor 2 (NEF2L2; commonly known as

Nuclear factor erythroid 2-related factor 2 or NRF2) (52, 53, 61,

62). Moreover, SOCS1 expressed in mesenchymal cells can inhibit

tumor promoting inflammatory cytokine signaling that establishes

a tumor-promoting microenvironment (51, 54, 63). The cell-

intrinsic tumor suppressor functions of SOCS1 were mostly

gleaned from studies using overexpressed SOCS1, as endogenous

SOCS1 is induced following exposure to cytokines, growth factors

and myriad of other stimuli, and its expression regulated at the

transcriptional and post-translational level. Among the potential

tumor suppressor mechanisms of SOCS1, only the regulation of the

oncogenic function of p21 is genetically proven (53), and all other

mechanisms remain to be tested.
3 Evidence for modulation of
antitumor immunity by SOCS1
expressed in tumor cells

The idea that SOCS1 expressed in tumor cells may influence the

induction of antitumor immune response came from one of our

unpublished observations. While studying the tumor suppressor

functions of SOCS1, we compared the murine hepatocellular

carcinoma cell line Hepa 1-6 expressing wildtype SOCS1 (Hepa-

SOCS1), an SH2 domain mutant of SOCS1 (R105K) that does not

inhibit IFNg signaling (Hepa-SOCS1R) or a control vector (Hepa-

Vector) (64) for their ability to form tumors. Consistent with the

ability of SOCS1 to inhibit growth factor-induced RTK signaling,

Hepa-SOCS1 cells showed appreciably reduced growth compared

to Hepa-Vector or Hepa-SOCS1R cells in vitro, and this growth

reduction was significant at higher cell densities (Figure 1A). Upon

subcutaneous implantation in immuno-deficient NOD.scid.gamma

(NSG) mice or immuno-competent C57BL/6 mice, Hepa-Vector

cells formed large tumors, while Hepa-SOCS1 cells grew poorly in

both hosts, consistent with the inhibition of mitogenic signals by

SOCS1. On the other hand, Hepa-SOCS1R cells showed retarded

growth in C57BL/6 mice but formed large tumors in NSG mice

(Figures 1B, C). The possibility that the SOCS1R105K mutant

might play a dominant negative role is unlikely because Hepa-

SOCS1R cells did not grow more robustly than Hepa-Vector cells.

Moreover, Hepa-SOCS1 and Hepa-SOCS1R tumors growing in

C57BL/6 mice displayed more prominent inflammatory immune
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FIGURE 1

SOCS1R105K mutant unravels the potential role of SOCS1 in promoting antitumor immunity. (A) 1 ×105 Hepa-Vector, Hepa-SOCS1 or Hepa-
SOCS1R105K cells were plated on 100 mm Petri dishes in triplicates and cultured by replenishing medium every 2 days. Cells were trypsinized on the
indicated days and counted. Representative data from one of the two experiments are shown (mean ± standard error of mean; *p <0.05, Student’s
t-test). (B, C) 5 ×106 Hepa-Vector, Hepa-SOCS1 or Hepa-SOCS1R105K cells were implanted subcutaneously in C57BL/6 (B) or NSG (C) mice (n=7-8)
and tumor growth monitored as detailed in (56) Reference. Mean ± standard error of mean; *p <0.05, **p <0.01, Student’s t-test. (D) Representative
hemoxylin and eosin-stained sections of tumors resected from NSG and C57BL/6 mice. In C57BL/6 hosts, all tumors had a central necrotic area and
a reactive rim composed of infiltrating immune cells (encircles with dotted lines) that were more pronounced in Hepa-SOCS1 and Hepa-
SOCS1R105K tumors than in Hepa-vector tumors. Data shown in A–C were generated from experiments approved by the Université de Sherbrooke
Ethics Committee for Animal Care and Use. (E, F) Proteomes of Hepa-Vector and Hepa-SOCS1 cells were studied by tandem mass spectrometry, as
detailed in (65) Reference. Proteins that were significantly upregulated in Hepa-SOCS1 cells (≥ 0.5 fold change and ≥1.3 -log10 p-Value; 551
proteins) were subjected to gene ontology analysis. Enrichment plot for biological pathways (emapplot, E) and cellular compartments (cnetplot, F)
were made using the SRplot (https://www.bioinformatics.com.cn/en) data analysis tool. Number of proteins within the biological pathways are
indicated in parenthesis. The mass spectrometry data used to generate Figures 1E, F are deposited to the ProteomeXchange Consortium via the
PRIDE partner repository (https://www.ebi.ac.uk/pride/archive/) with the dataset identifier PXD047908.
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cell infiltrations adjacent to necrotic areas than Hepa-Vector

tumors (Figure 1D). These data indicated that blocking the ability

of SOCS1 to inhibit mitogenic cytokine and growth factor signaling

using the R105K mutation has unmasked a hitherto unappreciated

potential of SOCS1 in promoting antitumor immunity. We

hypothesize that SOCS1 expressed in tumor cells could impact

antitumor immune responses through multiple mechanisms that

are discussed below.

4 Potential anti-tumor immune
functions of SOCS1 expressed in
tumor cells

4.1 Promoting tumor antigen processing
and presentation

Even though silencing SOCS1 in dendritic cells has been shown

to enhance antigen presentation and antitumor immunity (66),

SOCS1 may play an opposite role in cancer cells. Aside from

binding and inhibiting JAKs and RTKs, SOCS1 functions as a

substrate adaptor for protein ubiquitination that facilitates

degradation by proteasomes (5, 6, 67). SOCS1 is known to

interact with several signaling proteins via the central SH2

domain although other regions of SOCS1 may also be involved.

The carboxy terminal of SOCS1 harbors the SOCS box domain,

which is conserved among SOCS proteins and is composed of the

BC box and a Cullin box. Whereas the Cullin box interacts with

Cullin 5, the BC box interacts with elongin B and elongin C and

brings in the RING-finger-domain-only protein RBX2 to assemble
Frontiers in Immunology 04
the Cullin5-RING-ubiquitin ligase CRL5SOCS1 (67–69). Others and

we have shown that the ubiquitin-ligase function of SOCS1

promotes ubiquitination and proteasomal degradation of several

oncogenic signaling proteins (5, 20, 52, 56, 70–76). Indeed, the list

of signaling proteins regulated by SOCS1 is so diverse that the

SOCS1-dependent proteasomal degradation may have a

fundamental anti-tumor function that is coupled to inhibition of

the oncogenic signaling pathways (Figure 2A).

In addition to binding proteins and targeting them for

ubiquitination, SOCS1 has the potential to modulate both the

cellular ubiquitination system and the proteasome composition.

In a proteomic study using Hepa-vector and Hepa-SOCS1 cells, we

observed that SOCS1 increased the expression of certain E2 Ub

conjugation enzymes, which transfer the Ub moiety to the E3 ligase

for eventual transfer to the substrate protein (77, 78). SOCS1 also

caused a similar modification in the proteasome subunit

composition (77, 79). These findings raise the possibility that

SOCS1, induced by diverse growth stimuli, may also perform

additional tasks besides attenuating signal transduction. These

changes in ubiquitination and proteasome machinery, which may

influence cellular protein homeostasis, can alter the quality and

quantity of peptides generated by proteasomes (Figure 2B).

In normal and cancer cells, proteasomes play a crucial role in

normal protein turn over as well as in degrading misfolded proteins

(78, 80). This process generates peptides that are presented by MHC

class-I molecules to facilitate cancer immune surveillance by CD8+

T lymphocytes (81–83). In the cancer immunity cycle, the initial

activation naïve antitumor CD8+ T cells that recognize potential

cancer antigens occurs when dendritic cells that take up tumor cell

fragments process and present tumor antigens as MHC-I:peptide
FIGURE 2

Proposed roles of SOCS1 in enhancing antitumor immunity. The role of SOCS1 in promoting protein ubiquitination and proteasomal degradation has
been well documented (A). Stable SOCS1 expression in cancer cells alters proteosome composition (B). Both (A, B) can modulate the generation of
antigenic peptides for loading MHC-I. SOCS1 expression also modulates spliceosome and ribosome subunits (C), which could impact protein
translation and could potentially contribute to the generation of non-canonical MHC-I binding peptides. These events could increase cross-dressing
of dendritic cells by tumor cell derived MHC-I:peptide complexes and enhance activation of naïve antitumor CD8+ T cells and their differentiation
towards CTLs. The ability of SOCS1 in activating p53 and senescence induction could potentially modulate p53-driven expression of NK cell ligands
(D), which could impact NK-cell mediated tumor cell killing. As a critical regulator of IFNg, SOCS1 can inhibit adaptive immunosuppression mediated
by IFNg-induced PD-L1 expression in tumor cells (E). Reported data are indicated by solid arrows. Proposed functions that need to be experimentally
tested are indicated by dotted arrows. Figure created with Biorender.com.
frontiersin.org
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complex to naïve CD8+ T cells in tumor draining lymph nodes by a

process called antigen cross-presentation (84–89). However,

emerging evidence indicate that antigen presentation by ‘cross-

dressing’ is the main activation mechanism of tumor-reactive CD8+

T cells. This process involves the uptake of MHC:peptide complexes

from live tumor cells by professional antigen presenting cells via

trogocytosis (90–94). We propose that by promoting ubiquitin-

dependent proteasomal degradation, SOCS1 expression in tumor

cells can potentially increase antigen processing and presentation

and thereby increase the efficiency of the cross-dressing pathway

and promote antitumor immunity (Figure 2).
4.2 Generation of non-canonical
MHC-I peptides

The tumor immune surveillance concept postulates that the

immune system is constantly on the lookout for cancer cells by

recognizing abnormally expressed cellular proteins, which fall into

two main groups (95–98): (i) tumor-specific neoantigens, which

arise from mutations and give rise to antigenic peptides

encompassing the mutated protein sequence that were never

encountered by the immune system (99); (ii) tumor-associated

antigens, which arise from aberrant expression of embryonic

proteins due to the dedifferentiation process associated with

tumor progression, and thus can elicit immune responses (100).

With the advent of genome sequencing, identification of tumor

neoantigens arising from mutations in a tumor specimen has

become a manageable task, and this has led to the development

of tumor vaccines based on neo-antigenic peptides and CAR-T cells

reactive to them for cellular therapy (99, 101). These approaches

have demonstrated feasibility and success, but arguments

highlighting the limitations of this approach are also raised (102–

106). Firstly, in order to be presented to CD8+ T cells, the mutant

peptide must reside within an amino acid sequence that would

permit binding to MHC-I. Secondly, generation of MHC-I binding

peptides at steady state is coupled to protein biosynthesis and this

process is estimated to be limited in efficiency, i.e out of two million

peptides generated per second only 150 peptides get loaded onto

MHC-I, likely dictated by the ability to bind the peptide binding

grove of MHC-I (107). Third, it has been recognized for a long time

that MHC-I associated peptides can arise from non-canonical

protein sequences, including altered reading frames (defective

ribosomal products, DRiPs) and non-coding regions of the

messenger RNA and RNAs arising from intronic sequences (108–

111). Such peptides would not be present in the canonical,

annotated protein coding sequence databases used to identify

mutations, which represents only 2% of the genome. In fact, only

a small fraction of the MHC-I immunopeptidome is derived from

protein-coding sequences (112). Mass spectrometry analysis of

peptides eluted from MHC-I molecules of human cancers have

revealed that non-canonical MHC-I peptides are far more abundant

than mutated peptides and they originate from chromosomal

regions that are distinct from mutational hotspots and not shared

by embryonic cells (111, 113–115). Immunization with a candidate

non-canonical peptide has been shown to elicit protective
Frontiers in Immunology 05
antitumor immunity (116). Even though current approaches to

identify the non-canonical MHC-I peptides rely on mass

spectrometry-based detection of peptides eluted from MHC-I

molecules, approaches involving generation of databases

containing transcriptomes of the entire genome and predicted

proteomes of six reading frames (three on each DNA strand) are

being employed in a proteogenomic approach to predict potential

non-canonical MHC-I peptides (117, 118).

We have observed that Hepa-SOCS1 cells displayed marked

alterations in the constituents of spliceosome, a multiprotein

complex involved in processing RNA transcripts to mediate

splicing, remove intronic sequences and generate mRNA for

translation (77). In a recent study using shotgun proteomics

employing data-independent acquisition, we observed that

SOCS1-expressing Hepa cells showed upregulation of several

hundred proteins (65). Pathway analysis of significantly

upregulated proteins revealed that these proteins are enriched for

the biological processes related to RNA splicing, mRNA processing,

non-coding RNA (ncRNA) processing, rRNA processing and

ribonucleoprotein complex biogenesis (Figure 1E), and showed

significant enrichment within the cellular compartments of

spliceosome, U2-spliceosome, catalytic step 2 spliceosome,

nuclear speck and chromosomal region (Figure 1F), suggesting a

profound impact of SOCS1 on pre-mRNA processing that could

generate alternate splice forms. In addition, SOCS1-expressing

Hepa cells displayed significant upregulation of protein subunits

of ribosome and ribonucleoprotein complex (Figures 1E, F),

suggesting potential impact of SOCS1 on protein translation as

well. Moreover, non-canonical MHC-I peptides can arise from

fusion of unrelated peptides during proteasomal processing (119,

120). Whether the marked alterations in the composition of

proteasome subunits in SOCS1 expressing cells impact the

generation of proteasome-spliced peptides that bind MHC-I

needs to be tested. These postulated alterations in RNA

processing, their translation to polypeptides and proteasomal

degradation promoted by SOCS1 could promote the generation of

non-canonical antigenic peptides (Figure 2C), which in turn would

impact the MHC-I peptidome, potentially contributing to tumor

immune surveillance. As SOCS1 expression at steady state is very

low and is highly induced by mitogenic cytokines, growth factors

and oncogenic growth signaling (6, 8), SOCS1 is very well poised to

play a key role tumor immune surveillance. This could be an

important factor determining the widespread repression of the

SOCS1 gene in diverse tumors.
4.3 Immune ligand expression by p53

Another potential influence of SOCS1 in modulating antitumor

immune responses could occur via activating p53. In a cellular

senescence model, oncogene-induced SOCS1 promotes p53

activation to induce senescence associated genes (59, 121). The p53

tumor suppressor plays multiple roles in mediating its functions.

Depending on the extent of DNA damage, p53 facilitates DNA

damage repair, or induce senescence or apoptosis to control tumor

growth (122). The p53-induced senescence is also associated with the
frontiersin.org
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induction of natural killer (NK) cell activation ligands (RAE1, MULT1/

ULBP1, H60A), chemokines and cytokines (CSF1, CCL2, CXCL1, IL-

15), which can impact antitumor immune responses (123–126). In

addition to CD8+ T cells, which play a key role in tumor immune

surveillance, NK cells also play important roles in tumor control and

tumor immune surveillance (127–130). As SOCS1 also harbors a

nuclear localization signal and is required for activating p53-

dependent senescence (59, 121, 131), it is not unlikely that SOCS1

may promote the induction of p53-dependent immune function-

related genes and contribute to immune cell-mediated tumor control

by inducing NK cell ligands and chemokines (Figure 2D).
4.4 Inhibition of immune checkpoint
ligand expression

Activated, cytotoxic CD8+ T cells generated in draining lymph

nodes emigrate, enter circulation, infiltrate tumors, engage tumor

cells expressing cognate tumor antigenic peptide and release their

cytotoxic granules to kill tumors (84, 132). At the same time these

cytotoxic T lymphocytes also release effector cytokines, including

IFNg. IFNg is a potent stimulator of the checkpoint ligand PD-L1,

which engages PD1 on activated T cells and delivers an inhibitory

signal to dampen their effector functions (133–135). Indeed, this

adaptive immunosuppression mediated by IFNg-induced PD-L1

expression is an important obstacle to efficient immune cell

mediated tumor killing as it can inhibit cytotoxic CD8+ T and

NK cells (136–139), although PD-L1 expression in tumors is

considered a predictive biomarker for the effectiveness of immune

checkpoint inhibitor therapy (140, 141). Given that SOCS1 is a non-

redundant inhibitor of IFNg signaling (7, 8), SOCS1 expression in

cancer cells would dampen PD-L1-mediated checkpoint inhibition.

Indeed, Naka and colleagues have shown that intra-tumoral

delivery of SOCS1 by adenoviral vectors resulted in reduced PD-

L1 expression that was correlated increased CD8+ T cell activation

and improved tumor growth control (142). Thus, relieving the

blockade on IFNg signaling that upregulates the checkpoint ligand

(Figure 2E) could be another reason why cancer cells choose to

repress SOCS1 expression by diverse mechanisms.
5 Restoring SOCS1 expression
in cancers

The cell-intrinsic tumor suppressor functions of SOCS1 and its

potential contribution to antitumor immune responses raised the

possibility of restoring SOCS1 expression to control tumor growth.

The SOCS1 mimetic peptide Tkip has been shown to inhibit prostate

cancer growth in vitro (55), indicating the potential utility of SOCS1-

mediated inhibition in tumor growth control. However, it will be a

challenging task to introduce SOCS1 mimetic peptides into all cancer

cells. Moreover, such peptide mimetics that inhibit JAK kinases are

unlikely to mediate the complex functions of SOCS1 in mediating

protein degradation, activating p53, or induing the expression of

several genes involved in RNA splicing and translation discussed
Frontiers in Immunology 06
above. SOCS1 gene therapy using adenoviral vectors in experimental

models has been reported to reduce tumor growth by inhibiting

oncogenic signaling and improving CD8+ T cell responses (142). As

SOCS1 expression is highly regulated (6), stable constitutive

expression of SOCS1 may lead to unintended consequences. As the

SOCS1 gene repression mainly occurs via CpG methylation in diverse

cancers, demethylating agents such as 5-azacytidine and decitabine

could be potentially useful to restore regulated SOCS1 expression (41,

143). Even though demethylating agents do have off-target effects, 5-

aza is an already approved anticancer drug (144, 145). SOCS1

inhibition by miR155 also occurs commonly in several cancers (46,

146, 147). Even thoughmiR-155 sponges andmiR-155 targeting oligos

can be used to restore SOCS1 expression in vitro settings (148, 149),

miR-155 targets many signaling molecules (150) and the effectiveness

of such approaches in vivo could be challenging. Mouse cancer models

with Socs1 gene repression remain scanty. Development of such

models, also expressing surrogate tumor antigens, would help test

the effectiveness of restoring endogenous SOCS1 expression and

testing its impact on antitumor immune responses.
6 Discussion

The role of SOCS1 as a tumor suppressor has been well

established and some of the underlying mechanisms include

attenuation of mitogenic cytokine and growth factor signaling via

the JAK-STAT and RTK pathways, inhibition of oncogenic

signaling proteins by promoting their ubiquitination and

proteasomal degradation, prevention of the oncogenic potential of

tumor suppressors such as p21 and inhibition of NRF2-mediated

tumor cell adaptation to elevated oxidative stress associated with

neoplastic growth. Here, we have presented evidence that support

potential cell-extrinsic role of SOCS1 in facilitating tumor immune

surveillance and immune cell mediated tumor growth control via

promoting tumor antigen processing and presentation, generation

of non-canonical MHC-I peptides, expression of immune cell

ligands and inhibition of immune checkpoint ligand expression

(Figure 2). Validating these hypotheses will provide a compelling

argument for the use of epigenetic modifying drugs to reverse

SOCS1 gene repression to restore cell-intrinsic tumor suppressor

functions as well as cell-extrinsic impact on antitumor immunity.
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