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Inflammation is an important immune response of the body. It is a physiological

process of self-repair and defense against pathogens taken up by biological

tissues when stimulated by damage factors such as trauma and infection.

Inflammation is the main cause of high morbidity and mortality in most

diseases and is the physiological basis of the disease. Targeted therapeutic

strategies can achieve efficient toxicity clearance at the inflammatory site,

reduce complications, and reduce mortality. Sphingosine-1-phosphate (S1P), a

lipid signaling molecule, is involved in immune cell transport by binding to S1P

receptors (S1PRs). It plays a key role in innate and adaptive immune responses

and is closely related to inflammation. In homeostasis, lymphocytes follow an S1P

concentration gradient from the tissues into circulation. One widely accepted

mechanism is that during the inflammatory immune response, the S1P gradient is

altered, and lymphocytes are blocked from entering the circulation and are,

therefore, unable to reach the inflammatory site. However, the full mechanism of

its involvement in inflammation is not fully understood. This review focuses on

bacterial and viral infections, autoimmune diseases, and immunological aspects

of the Sphks/S1P/S1PRs signaling pathway, highlighting their role in promoting

intradial-adaptive immune interactions. How S1P signaling is regulated in

inflammation and how S1P shapes immune responses through immune cells

are explained in detail. We teased apart the immune cell composition of S1P

signaling and the critical role of S1P pathwaymodulators in the host inflammatory

immune system. By understanding the role of S1P in the pathogenesis of

inflammatory diseases, we linked the genomic studies of S1P-targeted drugs in

inflammatory diseases to provide a basis for targeted drug development.
KEYWORDS

S1P, immune cells, SphKs, inflammation, signal pathway
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1362459/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1362459/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1362459/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1362459&domain=pdf&date_stamp=2024-02-28
mailto:liuxiaofeng3913@163.com
mailto:zhuhq4553@163.com
https://doi.org/10.3389/fimmu.2024.1362459
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1362459
https://www.frontiersin.org/journals/immunology


Sun et al. 10.3389/fimmu.2024.1362459
1 Introduction

Inflammation is the body’s direct response to tissue and cell

damage by pathogens, harmful stimuli (such as chemicals), or

physical damage (1). As a defense mechanism, inflammation can

quickly resist the invasion of foreign pathogens through an acute

inflammatory response, and the organs and tissues of the body can

be repaired. However, excessive inflammatory stimulation will

cause imbalance of immune response (2). With an in-depth

exploration of the mechanism of diseases, researchers have

gradually realized that inflammation is linked to almost all

human diseases and is crucial for maintaining homeostasis (3).

Immune cells play important roles in inflammation occurrence and

resolution. On the one hand, inflammation locally recruits many

immune cells (such as neutrophils, macrophages, etc.) (4, 5), and

immune cells are activated to release inflammatory factors (such as

TNF-a, IL-6, IL-1b, etc.), leading to inflammation aggravation (6,

7). On the other hand, the resolution of the inflammatory response

requires immune cells to release anti-inflammatory factors (such as

IL-10, etc.) (8, 9). With the use of inflammatory cytokine blockers,

the rapid progress of immune-targeted therapy drugs has been

promoted. The targeted scope includes cytokines and their

receptors, inflammatory cell transport, cell regulatory ligand

receptors, and cell depletion strategies (10–12), which provide

new directions for inflammation treatment.

Endogenous bioactive lipids are generally involved in the

biological processes of human health and diseases and have been

extensively studied in inflammation. They are involved in cell

membrane formation and development, immune cell trafficking,

and inflammatory cascade reactions (13). Sphingosine-1-phosphate

(S1P) is a biologically active lysophosphatide that exerts a wide

range of biological effects by binding to five different G protein-

coupled receptors (GPCRs), regulating cell survival and migration,

immune cell recruitment, angiogenesis, and lymphangiogenesis

(14). S1P formation and degradation are tightly regulated in cells

and are activated by sphingosine kinases (SphKs), followed by

dephosphorylation by phosphatases (SPPs) or degradation by S1P

lyases (SPL) (15, 16). Clinical studies have found that S1P levels are

closely correlated with the severity of infection (17), and S1P plays

various roles in immune responses. Therefore, it is important to

understand how S1P participates in inflammatory responses (18).

In this review, we focus on the effects of S1P on innate and adaptive

immunity, discuss its effects on inflammation, and highlight

recommendations to guide this area of research.
2 S1P signaling in inflammation

With the development of metabolomics, researchers have

gradually realized that inflammation originates from various

diseases, such as autoimmune diseases, cancer, sepsis, and

diabetes, by exploring disease physiology and have found that

inflammation increases susceptibility to diseases (19, 20).

Recently, an in-depth exploration of the anti-inflammatory effect

of sphingolipids has revealed that S1P in sphingolipids is closely

associated with inflammatory signal transduction, such as TNF-a
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and TLRs (21). In S1P knockout mice, endothelial cell destruction

and mortality were significantly increased after inflammatory

stimulation, which could be reversed by restoring S1P levels by

plasma infusion, indicating that S1P limited vascular leakage to

maintain normal vascular integrity. SphKs are also required to

prevent the lethal response of inflammatory mediators induced by

vascular leakage (22). In a study on sepsis and systemic

inflammatory response syndrome (SIRS) , the plasma

concentration of apolipoprotein M (apoM) was decreased in

patients with sepsis and SIRS than in controls. The degree of the

decrease was related to the severity of sepsis. It is speculated that a

decrease in apoM may aggravate vascular leakage during infection

(23). S1P has been shown to be a potential serum sphingolipid

biomarker in sepsis, neuroinflammation, uterine inflammation,

pneumonia, Wilson’s disease, hemolysis, cardiac and renal

insufficiency, angiogenesis, etc. (24–26), and S1P is closely related

to inflammatory markers, and generally S1P reduces the level of

inflammatory markers. It has shown its role in endothelial

protection and inflammation reduction (27, 28). In a single-center

multi-case observational study, the serum S1P level of the healthy

control group was (1156 ± 17 nmol/l), and the average serum S1P

level of sepsis patients (580 ± 24 nmol/l) was significantly lower

than that of the control group (29). This result is consistent with the

results of other researchers (30, 31). S1P levels are closely related to

a variety of diseases, current studies have shown that plasma S1P

levels are decreased in various inflammation-related diseases (such

as atherosclerosis, viral infection, sepsis), but in other diseases, such

as type 2 diabetes mellitus, obesity, acute ischemic stroke,

Alzheimer’s disease, multiple sclerosis, angina pectoris, heart

failure, etc. Plasma S1P levels increased (31–33).

Sphingosine kinases type 1 and type 2 (Sphk1/2) are required to

produce the immunomodulator S1P. Initially, researchers examined

the inflammatory response in Sphk1 and Sphk2 gene knockout mice

and were unable to elucidate the inflammatory effect of S1P;

therefore, it was unclear whether S1P was pro-inflammatory or

anti-inflammatory (14). With the continuous development of

chemical and genetic tools, more mature knockout or

overexpression mouse models of genes (Sphks and S1PRs)

regulating S1P levels have been constructed, and regulating S1P

and S1PRs biology has gradually progressed to clinical treatment of

diseases (34, 35). In clinical observational studies, S1P levels were

found to be significantly reduced in the serum of patients with

sepsis and were inversely correlated with disease severity. Because

S1P is a potent regulator of endothelial integrity, low S1P levels may

lead to capillary leakage, impaired tissue perfusion, and organ

failure in sepsis (29). During sepsis, inhibiting Sphks and S1P

production can restore the secretion of thymic T cells and may

improve sepsis prognosis (36). Subsequent studies have depicted

that plasma S1P levels can predict mortality in sepsis and that

platelet Sphk activity is positively correlated with plasma S1P

concentrations in patients with sepsis (37). During inflammation,

infiltrating immune cells and pro-inflammatory cytokine

production increase endothelial permeability, and S1P signaling

strengthens endothelial adhesion junctions to limit the

progressively amplified inflammatory response (38). By regulating

the expression of Sphk1 and S1P, kaempferol can inhibit the NF-kb
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pathway, reduce the expression of the inflammatory mediators NO

and PGE2, alleviate the inflammatory response of LPS-induced

sepsis, and stabilize the pulmonary vascular endothelial barrier (39).

As the role of S1P in sepsis has been gradually widely studied, it has

been proved that HDL-S1P in patients with sepsis has protective

endothelial function and therapeutic potential through in vivo and

in vitro experiments and observation (40). Among them, high-

density lipoprotein (HDL) is the main carrier of S1P in plasma,

while apoM binds to HDL through its retained signal peptide and is

the carrier of HDL-S1P. In plasma, 60% of S1P is normally bound to

apoM and the remaining 40% to albumin (41).
3 Role of Sphk1 and Sphk2
in inflammation

While exploring the role of S1P, we found that S1P exerts pro-

inflammatory or anti-inflammatory effects depending on its

upstream and downstream pathways. For example, Sphk1 and

Sphk2 have completely opposite effects on sphingolipid

metabolism (42). Sphk1 is localized in the cytoplasm and is

transferred to the plasma membrane or secreted into the

extracellular matrix after activation. However, Sphk2 is expressed

in the endoplasmic reticulum, mitochondria, and nucleus (43).

Sphk1 is a cytoplasmic enzyme that translocates to the cell

membrane in response to various cellular stimuli, including

immune attacks. This translocation is thought to promote S1P

export into the extracellular space, where it binds and activates S1P

receptors (S1PRs) in an autocrine or paracrine manner (44). Sphk1

is a pro-inflammatory factor, and inhibition of Sphk1 can inhibit

the activation of NLRP3 inflammasome and the release of IL-1b in

macrophages and improve the survival rate and pulmonary vascular

leakage of cecal ligation and puncture (CLP)-induced sepsis mice

(45). Moreover, Sphk1–/– mice alleviated acetaminophen-induced

endoplasmic reticulum (ER) stress and mitochondrial permeability

changes and significantly reduced liver injury and inflammatory

responses. In addition, Sphk1 deficiency reduced the level of histone

deacetylase and promoted the acetylation of p65 and STAT1,

thereby weakening the transcription of inflammatory genes (46).

Sphk1-s1p signaling can activate the classical inflammatory

pathway of NF-kB through the pro-inflammatory cytokine TNF-

a (47). For example, recent studies have found that baicalin inhibits

inflammation, oxidative stress, and apoptosis by inhibiting the

Sphk1/S1P/NF-kB signaling pathway (48). Sphk1 is also a

therapeutic target for various autoimmune diseases and

gastrointestinal cancer (49, 50).

However, less research has been conducted on Sphk2 than Sphk1.

The severity of colitis is increased by elevated COX-2 levels in Sphk2–/

– mice, and Sphk2 depletion enhances Sphk1 expression. By

upregulating the Sphk1/S1P/S1PR1 axis and activating the NF-kB
and STAT3 pathways in acute colitis, experimental data suggest that

Sphk2 exerts anti-inflammatory effects (51). Sphk2 deficiency is

associated with structural abnormalities and Th17 responses and

does not exacerbate colonic inflammation caused by subchronic
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stress (52). It has been found that S1P produced by CD11b

macrophages through Sphk2 can inhibit the Type 1 interferon gene

stimulating factor (STING) signaling in alveolar macrophages,

thereby alleviating acute lung injury (53). Interestingly, Sphk2

inhibitors have been found to have anti-inflammatory effects in

autoimmune encephalomyelitis (54), and Opaganib (ABC294640)

is a specific Sphk2 inhibitor that competitively binds to prevent S1P

phosphorylation to its active form, thus effectively reducing

intracellular S1P levels and restricting the inflammatory signaling

pathway (55). Recently, in experimental studies on acute lung injury,

Sphk2 was found to promote LPS-induced M1 macrophage

polarization, oxidative stress, and NLRP3 inflammasome activation

in vitro by regulating P53 acetylation. Sphk2 upregulation increases

nuclear S1P levels. The Sphk2 inhibitor opaganib improved LPS-

induced lung oxidative damage and inflammation (56). In addition,

increased S1P levels in the blood of Sphk2–/–mice were demonstrated

to be due to the inability of Sphk2-dependent cells to degrade S1P in

the blood, particularly in the liver, resulting in S1P accumulation in

circulation (57, 58). Taken together, these results suggest that

different manifestations of these phenomena are linked to different

stimulation conditions and protein subcellular localization.

Surprisingly, Sphk1–/– and Sphk2–/– mice displayed a trend toward

reduced disease, improved survival of septic mice, and reduced

release of pro-inflammatory cytokines, although Sphk1–/– mice

showed a 50% reduction in S1P in plasma. However, Sphk2–/–

mice depict a 2- to 3-fold increase in plasma S1P levels (59). IL-12

is a key immunomodulatory cytokine that promotes Th1

differentiation and cell-mediated immune responses, and Sphk2 is

involved in IL-12 signaling by binding to the cytoplasmic region of

IL-12b1 (60). Therefore, designing highly efficient and selective

inhibitors using Sphk1/2 structure suggests a potential direction for

treating autoimmune or inflammatory diseases.
4 Role of S1P in immune
cell trafficking

4.1 S1P is involved in immune
cell trafficking

Initially, in 2002, researchers Mandala et al. demonstrated

that S1P receptor inhibitor FTY720 could isolate T cells in lymph

nodes (LN) instead of spleen cells, thus becoming a new

immunosuppressive drug for transplant rejection through

immunosuppression (61). Brinkmann et al. found that FTY720

induced lymphopenia by acting on S1PRs, excluding S1PR2, which

was caused by a reversible redistribution of lymphocytes from the

circulation to secondary lymphoid tissues, the mechanism of which

is unknown (62). Besides, some studies have uncovered that Sphk1

and S1PR2 regulate the migration and degranulation of mast cells,

and mast cells can secrete S1P, which is important in reducing

inflammation and immediate allergic reactions (63). Subsequently,

most studies on the effects of S1P on immunity mainly focused on

the rapid and transient changes in lymphocyte migration and
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transport, as well as mast cell migration and chemical mediator

secretion. Differential expression of S1PR subtypes was also

explored, and it was confirmed that lymphocytes played an

important role in S1P migration. Inhibiting lymphocyte recycling

by activating S1PRs may provide new therapeutic prospects for

immunosuppressive and inflammatory diseases (64–67).

Subsequently, S1P and its receptors were found to be required for

thymocyte migration from the thymus, trafficking of lymphocytes

in secondary lymphoid organs, and migration of B cells to splenic

follicles, demonstrating that S1PR1 is the major S1P receptor that

regulates T cell trafficking and that S1PR1 promotes T cell

trafficking at multiple stages of T cell development and response

(68, 69). S1P regulates the migration of lymphocytes in LN by

inhibiting the entry of chemokines into lymphocytes and the

chemotactic stimulation of LN into efferent lymphocytes with

higher concentrations of S1P (70). S1P binds to S1PR1 in

perivascular cells and promotes the production of pro-

inflammatory cytokines and chemokines in the injured state,

leading to immune cell infiltration and fibrosis (71). S1P acts as

both an intracellular messenger and an extracellular mediator in

immunity, and the control of thymocyte migration, lymphocyte

migration in secondary lymphoid organs, and chemotaxis of

lymphocytes in non-immune tissues by S1P mainly depends on

the cellular expression level of S1PR1 and the magnitude of the S1P

concentration gradient (68, 72) (Figure 1, By Figdraw).
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4.2 S1P gradient

S1P functions efficiently because its distribution is tightly

controlled. The S1P gradient between the LN and lymph regulates

the exit of immune cells from tissues. Many studies have

demonstrated that the flow of T-cells between LN and lymph is

in accordance with the S1P concentration gradient (from low to

high concentration). T-cells travel from lymph to blood and finally

to inflamed tissues, and S1P mainly follows the S1P gradient

through S1PR1 (73). Lymphocytes exit the tissue and enter

circulation following the S1P gradient through five G protein-

coupled receptors. During the immune response, both S1P

gradient and expression of S1P receptors are dynamically

regulated (74). The interaction of S1P synthesis and degradation

enzymes with S1P production creates a concentration gradient

fundamental to S1P biology. High concentrations of S1P in the

blood and lymph stabilize the vasculature while attracting immune

cells into circulation, and understanding how S1P simultaneously

directs multiple cell movements between tissues and circulation as

well as within tissues is necessary for developing S1P-related specific

targeted drugs (35). Comprehensive lipidomic analysis displayed

that plasma S1P levels in Mfsd2b knockout mice decreased by 42%–

54% compared with WT levels, indicating that Mfsd2b actively

exports S1P and insufficient reduction of plasma S1P in knockout

mice caused vascular leakage. Mfsd2b is essential for S1P export
FIGURE 1

The two Sphks play different roles. Sphk1, which exists in the cytoplasm, is activated and produces S1P, which can directly act on macrophages,
cause the production of interleukin 1-b, the release of NLRP3 inflammasome and the activation of pro-inflammatory signaling pathway (NF-kB
pathway), aggravating inflammatory response. At the same time, under the action of SPHK1 in the cytoplasm, S1P increases the level of S1P in the
blood circulation, oxidative stress leads to increased permeability, causes vascular endothelial leakage, and is characterized by pro-inflammatory
effect. While Sphk2, which exists in the nucleus, is activated and produces S1P, which directly acts on intestinal epithelial cells, inhibits the activation
of pro-inflammatory signaling pathway (NF-kB pathway), and reduces inflammatory response. SPHK2 can reduce the level of S1P in the blood
circulation, act on CD11b macrophages, inhibit the STING signaling pathway to reduce acute lung injury. In addition, up-regulation of Sphk2 can
increase the level of S1P in the nucleus, leading to M1 differentiation of macrophages and the increase of NLRP3 inflammasome. Therefore, SPHK2
has both pro-inflammatory and anti-inflammatory effects.
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from erythrocytes and platelets (75). The redistribution of

lymphocytes from the spleen to the LN and the loss of circulating

lymphocytes in Spinster homologue 2 (Spns2)-deficient mice are

consistent with plasma S1P-guided normal spleen export and

lymphatic S1P-guided LN export blocked, and endothelial cells

require Spns2 to supply lymphatic S1P and support lymphocyte

circulation (76). In addition, using the S1P reporter, it was found

that cells have a higher concentration of S1P in the medullary cord

than in the T-cell zone and that the S1P transporter Spns2 on

lymphatic endothelial cells produces this gradient (77).

The complex metabolism of S1P is important for the formation

of the S1P concentration gradient, and the metabolic map of active

sphingolipids (ceramide, sphingosine, and S1P) shows the

relationship between upstream and downstream pathways of S1P

and each sphingolipids (Figure 2, By Figdraw). Ceramidase and

SPHKs are key enzymes in S1P synthesis, and it has been shown

that these key enzymes are the basis for the modulation of S1P

proinflammatory activity. Injection of acid ceramidase alleviates

liver ischemia-reperfusion (IR) injury. And increased after

pretreatment with acid ceramidase (78). STING is a major

regulator of innate immunity and is involved in a variety of

inflammatory diseases. After activating STING, blocking

ceramidase and SPHK I/II can significantly reduce IL-6 (79).

Moreover, inhibition of ceramidase and SPHK I/II by S1P

significantly reduced TLR9-induced TNF-a release (80). SPHKs

inhibitor could completely eliminate the release of TNF-a and IL-6

by S1P-stimulated Peripheral blood mononuclear cell (PBMC)

derived from lung cancer (81).Yugesh Kharel et al. revealed that

mice lacking Sphk2 or S1P degrading enzymes were used to reveal

an S1P gradient mechanism whereby S1P is dephosphorylated on

the surface of hepatocytes, and the resulting Sph is phosphorylated

and chelated by Sphks and then degraded by intracellular SPL (58).

S1P concentration is maintained in a gradient by the activity of S1P

degrading enzymes, which is essential for lymphocyte exit (82).

Analysis of ceramide synthase 2 (Cers2)-deficient mice revealed

that Cers2 restricts S1P levels in the thymus and blood to maintain a

functional S1P gradient that mediates thymocyte migration into
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circulation (83). Moreover, SPL deletion in dendritic cells (DC)

disrupted the S1P gradient, proving that SPL in DC regulates

thymic exit (84). These experiments illustrate the complexity of

S1P metabolism and the sensitivity of the thymic outlet to the

disruption of the S1P gradient, which is also regulated by enzymes

involved in the synthesis, export, and degradation of S1P. However,

there are few studies on the distribution of S1P in diseases or how

changes in S1P levels affect immune response. S1P is usually derived

from red blood cells and endothelial cells (85). Recent studies have

shown that hematopoietic cells and inflammatory monocytes (iMo)

are important sources of S1P in LN during the immune response,

and S1P levels increase during the immune response. iMo requires

the early activation marker CD69 to provide this S1P, which acts as

a “stand your feet” signal to maintain immune cells at the site of

inflammation by regulating S1P receptors and gradients, prolonging

the residence time of T cells in LN (86). The S1P gradient between

tissues and the circulatory system plays a key role in regulating the

trafficking of immune cells such as autoreactive B and T

lymphocytes. S1P receptor modulators may be a safe and effective

alternative mechanism to reduce inflammation in immune-

mediated diseases by reducing the exit of lymphocytes from the

lymph nodes to the blood (74).
5 immune role of S1P in inflammation

5.1 innate immunity

S1P can regulate the innate immune system to fight pathogens,

and for many S1P-regulated immune cells, the diversity of their

cellular functions can be explained by the expression repertoire of

S1PRs in various immune cells (Figure 3, By Figdraw). The innate

immune system is the first line of host defense against foreign

stimuli. The innate immune cells (macrophages, natural killer cells,

neutrophils, DC cells, etc.) are activated by danger signals.

Pathogen-associated pattern recognition receptors (PRRS) activate

ligands and stimulate the secretion of effector molecules (cytokines
FIGURE 2

S1P is synthesized from serine and palmitoyl-CoA by a de novo pathway or from the ubiquitous membrane lipid sphingolipia (SMD). Sphingosine is
produced by hydrolysis of ceramides, which can be recycled by acylation, a process known as the “rescue pathway” that can lead to ccramide
regeneration. In the cell membrane and cytoplasm, sphinganine is converted to S1P by sphinganine kinases (SphKs). Finally, SIP is cleaved by SIP
cleaver (SPL) or dephosphorylated to hexadecaneal and phosphothanolamine.
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and antimicrobial peptides), thereby inducing inflammatory

responses and eliminating pathogens (87). Spns2 is a major

transporter of S1P, and Fang et al. demonstrated in a rat sepsis

model that Spns2 regulates inflammation through the lactic-

mitochondrial reactive oxygen species (ROS) axis and is a key

mediator of macrophage metabolic reprogramming during sepsis

(88). Moreover, attenuated Spns2/S1P signaling impairs the ability

of macrophages to maintain antimicrobial responses, leading to

significant innate immune suppression in the later stages of

infection. Consequently, enhancing Spns2/S1P signaling helps

balance the inflammatory imbalance and immune response

during sepsis (89). Studies on glial cells have disclosed that

excessive S1P can lead to neuroinflammation, NF-kB activation,

and macrophage infiltration into the central nervous system, and

S1P inhibition has become an effective target in multiple sclerosis

(90). Immune cell-driven inflammation is a key determinant of

nonalcoholic steatohepatitis (NASH) progression. Mauer et al.

demonstrated that inhibiting pro-inflammatory monocyte

chemotaxis using the S1P antagonist FTY720 ameliorated NASH-

induced liver injury, inflammation, and fibrosis (91). Recently,

using etrasimod, an antagonist of S1PR1, S1PR4, and S1PR5, the

team found that etrasimod reduced the accumulation of activated

macrophages in the liver, as well as the infiltration of inflammatory

cells (T, B, and NK cells). Ultimately, it reduces liver injury and

inflammation (92). Natural killer (NK) cells are an important

component of the innate immune system and can quickly attack

target cells. Studies have found that the expression of SPNS2 and

S1PR5 in NK cells is required to achieve homeostasis and the rapid
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production of interferon-g (77). NK cells are located in the

periphery of LN, and S1PR5 expression is upregulated during NK

cell maturation, while the number of NK cells in BM and LN of

S1PR5-deficient mice is doubled, and the effect of S1PR5 on NK

cells (but not T and B cells) efflux from BM and LN is specific (93).

In addition, many neutrophil infiltration and neutrophil

extracellular trap (NET) formation have been confirmed to be

linked to chronic inflammation. In vitro experiments have

demonstrated that S1P significantly activates neutrophils,

prolongs the half-life of neutrophils, and delays neutrophil

apoptosis (94). In mice and patients with chronic hepatitis, Sphk1

or S1P levels are positively correlated with the expression of

neutrophil markers, and S1P significantly promotes the migration

and cytoskeleton remodeling of bone marrow neutrophils through

S1PR1 or S1PR2 and plays a key role in neutrophil recruitment (95).

S1P-activated neutrophils (A-Neu) suppressed pro-

inflammatory cytokines (C-C chemokine motif ligand 4, tumor

necrosis factor, and nitric oxide synthase 2) in the liver by

suppressing the pro-inflammatory macrophage response. Tumor

necrosis factor and nitric oxide synthase expression reduced liver

inflammation, while the absence of activated neutrophils (N-Neu)

did not (96). During development, natural killer (NK) cells leave the

BM and reach the bloodstream. CXCR4 retains NK cells in the BM,

while sphingosine-1-phosphate receptor 5 (S1P5) promotes their

exit from the organ. During NK cell differentiation, CXCR4

expression decreases while S1P5 expression increases, thus

facilitating the expulsion of mature NK cells from the BM (97).

Previous studies have depicted that S1P may regulate the transport
FIGURE 3

The distribution of S1P is strictly controlled and involved in innate and adaptive immunity. S1P is distributed in low concentration in organ tissues,
and in the blood circulation, S1P presents the characteristics of high-level distribution. In the innate immune response, S1P plays a role through the
receptors on various immune cells, such as in TLRS, activating the NF-KB signaling pathway, promoting the release of a variety of pro-inflammatory
factors, inhibiting immune responses in macrophages, and reducing migration and apoptosis in neutrophils. In the adaptive immune response, under
the action of APC, T cells are differentiated and produce anti-inflammatory effects. In addition, S1P inhibits LPS-induced B cell inflammatory
responses and promotes B cell migration and transport.
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of DC. In mature DC, S1P inhibits the secretion of tumor necrosis

factor-a and IL-12 but enhances the secretion of IL-10, which is

ultimately conducive to Th2 lymphocyte-induced immunity (98).

Recent studies have disclosed that S1PR4 is required for the

activation of plasmacytoid dendritic cells (pDC) and that S1PR4

agonists block the activation of human plasmacytoid dendritic cells

(pDC), thereby reducing TLR-induced IFN-a secretion, which may

be useful for treating pathogenic IFN-a diseases (99, 100). FTY720

application also showed that S1P is involved in the activation of

pDC and the expression of type 1 IFN to change pDC function

(101). A series of intense struggles ended with dead immune cells

and tissue cells, and some immune cells, such as neutrophils, began

programmed death and apoptosis in the immune context, heralding

the end of the disease struggle and the beginning of regeneration.

The innate immune response can also be further shaped by

other receptor systems, such as cytokine receptors, some of which

are closely linked to S1P-involved inflammatory responses,

including Toll-like receptor (TLR) signaling, TNF receptor

(TNFR)-dependent NF-kB activation, protease-activated receptor

1 (PAR1) signaling, FcϵRI in mast cells, and other receptors.

Activation of TLRs causes the release of pro-inflammatory

cytokines, such as tumor necrosis factor (TNF-a) interleukins IL-
1 and IL-6, resulting in a strong inflammatory response, leading to

sepsis and septic shock (102). It was initially found that S1P

selectively attenuates TLR2 signaling, such as transcriptional

activity driven by NF-kB signaling, and negative crosstalk

between S1PRs and TLR2 signaling may be associated with the

atherosclerosis protective effect of S1P (103). The SPHKs/S1P/

S1PRs axis regulates many cellular processes, including

proliferation, invasion, metastasis, and angiogenesis. Sphk1

expression is upregulated in peripheral blood monocytes of

patients with sepsis (45), and studies have found that Sphk1

promotes inflammation and proliferation of glioblastoma through

the NF-kB/IL-6/STAT3 signaling pathway (104). Recent studies

have demonstrated that relieving ER stress by inhibiting Sphk1/S1P

and TLR4/NF-kB signaling and reducing pro-inflammatory

cytokine levels can significantly reduce lung inflammation caused

by LPS infection (105). These results suggest that Sphk1 plays a key

role in TLR signaling and identifies Sphk1 as a key target for

treating the inflammatory cascade (45, 106). Coagulation triggered

by PAR1 signaling cytokines during inflammation is a hallmark of

systemic inflammatory response in bacterial sepsis. The pro-

inflammatory signal of PAR1 destroys the integrity of the

endothelial barrier, while S1P has been shown to have an effective

barrier protective effect, and activated protein C protects the

endothelial barrier through PAR1-dependent S1PR1 cross-

activation (107). S1P regulates PAR1-mediated human platelet

activation in a concentration-dependent biphasic manner, with

the S1PR1 receptor having an activating effect, while the

activation of S1PR4 and S1PR5 receptor has an inhibitory

effect (108).

Dendritic cells promote systemic coagulation, and studies

have found that the loss of PAR1-S1PR3 signaling in DC

sequesters DC and inflammation into the draining LN and

weakens IL-1b dissemination to the lungs, participating in

systemic inflammation and coagulation processes in the innate
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immune response (109). Mast cells cross-link Sphk to produce

S1P through the high-affinity receptor IgE Fc receptor (FcϵRI). This
process plays an important role in mast cell function and may be

involved in the movement of mast cells to inflammatory sites (110).

FcϵRI signaling is necessary for allergic inflammation because FcϵRI
activates SPHKs and increases S1P levels (111). Once S1P is

secreted, it can bind to S1P receptors (S1PRs). Moreover, studies

have found that FcϵRI/S1P signaling can mediate allergic reactions

through the interaction between mast cells (MC) and

macrophages (111).
5.2 Specific immunity

Specific immunity is an immune function acquired by

stimulating internal and external environmental factors, which

only plays a role against a specific pathogen and requires the

participation of highly differentiated tissues and cells. The

maintenance of tissue and cell homeostasis and the establishment

of adaptive immunity after the inflammatory process are key events

(112). Signaling through S1P-S1PRs is involved in various aspects of

inflammatory cell functions. Unique features of S1PRs are

expressed by T and B lymphocytes and endothelial cells. The first

is the sensing phase, in which a central feature of the immune

response is the precise spatiotemporal distribution of T cells and

antigen-presenting cells (APCs) in specific microenvironments

within secondary lymphoid organs (SLOs). Initially, researchers

observed that S1PR agonists affect the entry and exit of T-cells into

and out of LN, and direct contact between APC and T cells leads to

naive T-cell initiation under the action of chemokines. Molecular

studies on how T cells and APC contact and migrate within the SLO

are still being explored (113). Both S1PR1-S1PR5 are involved in

regulating APC function and metabolism (114, 115). Although the

circulation of APC is mainly not regulated by the S1P system,

FTY720 can affect the migration of APC to LN and tissues by

regulating inflammatory chemokines (113, 116, 117). Subsequently,

increasing evidence has highlighted that S1P is closely linked to the

metabolism and immunity of APC, and FTY720 acts as an

immunomodulatory agent to reduce the pro-inflammatory ability

of APC, a process that is a key factor in DC-dependent T-cell

activation and programming (118). The second reaction stage is

antigen-binding B-cell antigen receptor (BCR) or MHC-mediated

antigen presentation to activate the T-cell receptor (TCR), which

activates multiple signaling cascades in B and T cells, respectively

(119). Most CD4 + T cells develop from the thymus into

conventional T cells or naive T cells. Upon antigen stimulation,

naive T cells differentiate into CD4 helper cells, CD8 cytotoxic

effector cells, and memory cells. Th17 and iTreg cells, which

mediate direct killing and various immune regulatory functions

and exert specific effector functions (120, 121). CD4 helper T cells

are central regulators of adaptive immune responses, which can

promote immune activation and induce tolerance and are essential

for immune defense (119). The differentiation of TH1 cells and anti-

inflammatory Foxp3 (+) Treg cells is mutually regulated by S1PR1,

which inhibits the production of extrathymic and natural Treg cells

while driving TH1 development and disrupting immune
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homeostasis (122). S1PR1 blocks the differentiation of thymic Treg

precursors and induces selective activation of the Akt-mTOR kinase

pathway to impede Treg cell development and immune tolerance

(123). S1PR1 through S1P analog experiments showed that three

analogs directly inhibited Th1 cell differentiation in vitro and

increased Treg differentiation of naive CD17 + T cells. In

addition, all three S1P analogs inhibited IL-1-mediated activation

of STAT3, NF-kB, and AKT (124). One study demonstrated that

S1PR1-mediated TH17 polarization depends on sustained S1PR1

signaling in bone marrow cells, exacerbating the severity of

neuroinflammation independent of intrinsic T-cell effects (125).

In the effector stage, effector T cells, antibodies, and lymphokines

exert immune effects. Lymphatic endothelial cells (LECs) present

peripheral tissue antigens to induce T cell tolerance, and LECs are

the major source of S1P, which promotes naive T cell survival and

effector T cell ejection from LN (126). S1P can selectively enhance

the migration of human and mouse CD4 + T cells in LECs, and

S1PRs play different roles in the migration process. For example,

S1PR1 and S1PR4 differentially regulate T-cell motility and vascular

cell adhesion molecule-1 (VCAM-1) binding. S1PR2 regulates LEC

layer structure, permeability, and expression of VE-cadherin,

occludin, and zonulin-1 through the ERK pathway and promotes

transcellular migration of T cells (127). B-cell migration within LNs

is important for adaptive immune responses, and the S1P gradient

has been found to be the driver of B-cell trafficking, which mediates

B-cell egress in LN through SPL expression (128). Moreover, in

isolated B cells, S1PR1 agonists inhibited neutrophil accumulation

in mice with endotoxin-induced hypersensitivity pneumonia and

reduced TNF production by B cells and their ability to trigger T cell

cooperation in vitro (129).
6 S1P receptor modulators in
inflammatory diseases

6.1 Genomic studies

Proteomics analysis can effectively assess the changes in the

proteome that occur during sepsis. Multiple genomic studies have

disclosed the role of lipids in pathogen toxin clearance and

regulation of the inflammatory response. Furthermore, S1P

apolipoproteins decrease, and lipid changes are associated with

sepsis and systemic inflammation (130–132). In genome-wide

association studies, the most significant effect on sphingolipid

levels was the reduction in circulating S1P levels. LPS treatment

reduced neutrophil survival in a time-dependent manner, whereas

S1P treatment inhibited the effects of LPS and enhanced neutrophil

survival in mice. All suggest that circulating S1P can regulate

neutrophil survival and recruitment after LPS-induced airway

inflammation (133). Multi-omics analysis has characterized the

ceramide/sphingomyelin pathway as a therapeutic target for

Alzheimer’s disease, and mouse experiments have depicted that

long-term exposure to fingolimod alleviates synaptic plasticity and

cognitive impairment in mice, and modulators of S1P metabolism

have become possible candidates for Alzheimer’s disease treatment

(134). In human umbilical vein endothelial cells, viral genome
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analysis revealed that HSV-1 viral genome replication depends on

sphingosine kinase activity and S1PRs (S1PR1,3-5) signaling, which

involves the activation of PI3K and Rac-1. Targeting S1P-related

signaling may be a successful strategy for establishing new anti-

HSV-1 therapies (135). Severe trauma can trigger systemic

inflammatory response, leading to infection, sepsis, or multi-

organ failure. Based on the genome-wide screening of ten

representative patients with severe trauma or known immune

response mechanisms, transcriptome researchers have found that

SPHK1 expression on the first day of admission indicates mortality

and has become a marker (106). Furthermore, the critical role of

S1P/SPHK2 signaling in promoting Pseudomonas aeruginosa

pneumonia was demonstrated in SPHK2–/– mice and differential

gene expression analysis, with SPHK2 promoting inflammation and

inhibiting other anti-inflammatory and host defense genes (136).
6.2 Targeted therapeutic strategies of S1P
receptor modulators

Currently, therapeutic molecules targeting S1PRs can be divided

into two categories: lipid S1P mimetics, such as non-selective FTY720

(fingolimod), or non-lipid molecules, such as the clinical drugs

siponimod (S1PR1, 5), ozanimod, and CBP-307 (S1PR1, 4, and 5)

(137). Fingolimod, a first-generation S1PR modulator, has been

approved by the FDA for treating multiple sclerosis, but the drug has

poor target selectivity and widely acts on S1PR1-5; accordingly, the side

effects are relatively large, mainly due to the drug binding to S1P

receptors rather than S1PR1 (138–140). The second-generation S1PRs

modulators, ozanimod, estrasimod, and CBP-307, have been optimized

for receptor isoform selectivity and have very low affinity for S1PR3.

Therefore, side effects such as pro-inflammatory and pulmonary

fibrosis are avoided to a certain extent (26, 141).

FTY720 has been approved and is currently used for MS treatment.

Modulating S1PRs by FTY720 in mouse and human astrocytes inhibits

pathogenic astrocyte activation and chronic progressive central nervous

system inflammation. Moreover, it is effective for secondary progressive

MS (SPMS) (124, 142). FTY720 regulates gene expression in

inflammation and amyloid-b metabolism and improves exploratory

and anxiety-like behaviors in obese mice. It has a positive effect on

reducing inflammation-driven neurodegeneration (143). Consequently,

therapies focusing on the S1P pathway can also be used to treat

autoimmune diseases rather than MS. Siponimod and ozanimod have

also been employed in treating recurrent MS or ulcerative colitis

recently, and these drugs slow down the inflammatory progression of

the disease through immunomodulatory effects (144, 145). Siponimod

regulates microglial cytokine gene expression, significantly reduces LPS-

induced TNF-a and IL-1b, and is involved in regulating the

immunological characteristics of microglia triggered by pro-

inflammatory stimulation (146). Ozanimod can reduce the secondary

inflammatory response induced by cerebral hemorrhage by regulating

the AIM2 inflammasome mediated by the SIRT2/NF-kB/AIM3

pathway, indicating that ozanimod may become a targeted therapy to

improve the prognosis of cerebral hemorrhage (147). S1PR modulators

have become a hot topic in treating inflammatory bowel disease. S1PR

modulators can treat IBD by inhibiting S1P-S1PR1 signal transduction,
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thereby inhibiting lymphocyte infiltration into the inflamed intestinal

lamina propria. CBP-307 is a highly potent and selective S1PR1

modulator currently being evaluated in a global phase 2 clinical study

of moderate-to-severe ulcerative colitis and Crohn’s disease (148). In the

latest phase 3 drug trial, etrasimod (S1PR1, 4, and 5) was used as an S1P

receptor modulator for treating immune-mediated diseases, including

ulcerative colitis, confirming the efficacy of etrasimod as induction and

maintenance therapy in adult patients withmoderately to severely active

ulcerative colitis (149).

In sepsis, miR-145 improves the contractile response of vascular

endothelial cells mainly by activating the phosphorylation of Sphk2/

S1PR1/myosin light chain 20 pathway. However, miR-132 can

effectively improve the barrier function of vascular endothelial

cells by activating Sphk2/S1PR2/ZO-1 and the vascular

endothelium-cadherin pathway (150). In gynecological diseases,

including endometriosis, adenomyosis, and uterine fibroids,

which are characterized by inflammation and fibrosis, the Sphks-

S1P-S1PRs pathway plays a role in increasing endometriotic cell

growth. S1P promotes fibrosis in cells such as macrophages,

fibroblasts, and skeletal muscle precursors, mainly by binding to

pro-inflammatory cytokines such as TNF-a. In turn, it stimulates

the synthesis of interleukin-1b and TGF-b in cells (151). The

disruption of S1P pathway is the basis of systemic chronic

metabolic inflammatory diseases, including diabetes and

gastrointestinal cancer, which provides sufficient evidence for

using S1P pathway modulators in treating pathological

inflammation (152). Considering these findings, the modulation

of S1P signaling may represent an innovative and promising

therapeutic target for inflammatory diseases.
7 The future and outlook

Bioactive sphingolipid metabolite S1P is one of the key

sphingolipids involved in innate and adaptive immune responses

and is closely related to the activation, differentiation, and

trafficking of immune cells. S1P and S1PRs have been identified

as key players in the maintenance of immune homeostasis and

pathophysiological processes in inflammatory diseases. As the basis

of most diseases, inflammation increases the risk of many chronic

disease states. Since the broad expressions of S1P and S1PRs are

universally expressed in different tissues, S1P signaling can be pro-

inflammatory or anti-inflammatory, depending on the context and

tissue of origin. According to the current research results, most

researchers point out that S1P is involved in the body’s immune

defense as a protective factor. In the future research, the exploration

of the biological function of S1P is still a hot topic, and the

application and transformation of S1P is also the ultimate

research goal. At present, it is generally believed that S1P affects

the inflammatory immune response by binding to S1PR1 on

lymphocytes and regulating the migration of T and B cells from

peripheral lymphoid tissues. Accumulating experimental evidence

suggests that S1P is a key molecule controlling different

physiological processes and is essential for normal and

pathological conditions, including inflammation, autoimmune
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diseases, and fibrosis such as fibrosis of organs, MS,

cardiovascular diseases, and cancer. So far, clinical trials of drugs

for autoimmune diseases have shown promising results, and the

preliminary related research of S1PRs as prevention of chronic

inflammatory diseases is very extensive, which is of great guiding

significance for developing inflammatory immune modulators, and

S1PRs will have broad prospects in the future market.
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