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Single-cell RNA-seq reveals
T cell exhaustion and immune
response landscape
in osteosarcoma
Qizhi Fan1†, Yiyan Wang1†, Jun Cheng1, Boyu Pan2,
Xiaofang Zang1*, Renfeng Liu1* and Youwen Deng1*

1Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China,
2Department of Orthopedics, Third Hospital of Changsha, Changsha, China
Background: T cell exhaustion in the tumor microenvironment has been

demonstrated as a substantial contributor to tumor immunosuppression and

progression. However, the correlation between T cell exhaustion and

osteosarcoma (OS) remains unclear.

Methods: In our present study, single-cell RNA-seq data for OS from the GEO

database was analysed to identify CD8+ T cells and discern CD8+ T cell subsets

objectively. Subgroup differentiation trajectory was then used to pinpoint genes

altered in response to T cell exhaustion. Subsequently, six machine learning

algorithms were applied to develop a prognostic model linked with T cell

exhaustion. This model was subsequently validated in the TARGETs and Meta

cohorts. Finally, we examined disparities in immune cell infiltration, immune

checkpoints, immune-related pathways, and the efficacy of immunotherapy

between high and low TEX score groups.

Results: The findings unveiled differential exhaustion in CD8+ T cells within the

OS microenvironment. Three genes related to T cell exhaustion (RAD23A,

SAC3D1, PSIP1) were identified and employed to formulate a T cell exhaustion

model. This model exhibited robust predictive capabilities for OS prognosis, with

patients in the low TEX score group demonstrating a more favorable prognosis,

increased immune cell infiltration, and heightened responsiveness to treatment

compared to those in the high TEX score group.

Conclusion: In summary, our research elucidates the role of T cell exhaustion in

the immunotherapy and progression of OS, the prognostic model constructed

based on T cell exhaustion-related genes holds promise as a potential method

for prognostication in the management and treatment of OS patients.
KEYWORDS

osteosarcoma, T cell exhaustion, tumor immune microenvironment, prognosis,
immunotherapy
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1 Introduction

Osteosarcoma (OS) is the most prevalent aggressive bone tumor

occurring in children and adolescents, constituting the majority of

all bone tumor cases (1). The conventional approach to OS entails a

blend of surgery and rigorous multi-agent chemotherapy. However,

the prognosis for OS patients remains exceedingly grim, primarily

attributed to delayed diagnosis and early-stage distant metastasis

(2). Therefore, it is crucial to explore innovative and efficacious

therapies aimed at enhancing the prognosis of OS patients.

Immunotherapy holds significant promise in the treatment of

malignant tumors in humans, numerous recent studies have

highlighted its considerable potential in tumor therapy, with

preclinical trials providing robust support (3). Immune checkpoint

inhibitors (ICIs) exhibit considerable potential for immunotherapy in

OS. They can navigate the genomic complexity of OS, leading to

enhanced overall outcomes (4). Although immunotherapy for OS has

demonstrated promising therapeutic effects in some studies, it has yet

to substantially improve patient prognosis (5, 6). In clinical trials of

OS, the response to ICIs has not been favorable and trial results are

not yet satisfactory (7). This may be attributed to the immune

microenvironment in OS, which suppresses T cell function (8).

Immune cells constitute the cellular foundation of immunotherapy,

of which CD8+ T cells serving as a pivotal component of cancer

immunotherapy (9). Activated CD8+ T cells mature into cytotoxic T

lymphocytes (CTLs) and represent a key component of the immune

system’s antitumor response, CTLs are associated with increased

survival rates in various types of cancer and play a crucial role in

immune surveillance, targeting and eliminating cancer cells (10). The

optimal approach for achieving tumor eradication will likely entail a

combination of therapies that promote immune activation and T cell

initiation, counteract immunosuppressive signals in the tumor

microenvironment, and sustain the presence of T cells in

cancerous tissue.

T cell exhaustion entails a progressive, hierarchical, and

negatively regulatory process affecting T cells within the tumor

microenvironment (11). Classical inhibitors targeting PD-1 and

CTLA-4 largely exert their anti-tumor effects by mitigating

functional exhaustion (12). However, the precise underlying

mechanisms of these inhibitors necessitate further investigation.

The recent advancement of biomarkers unveiled potential

molecular regulatory targets for CD8+ T cells in the intricate

tumor heterogeneity of OS. Moreover, the potential correlation

between alterations in exhaustion expression profiles and immune

checkpoints has presented avenues for research (13).

In this study, we aim to delve into potential molecular regulatory

targets and core regulatory genes associated with T cell exhaustion in

the intricate tumor heterogeneity of OS. We developed a multi-

biomarker model based on genes linked to T cell exhaustion, which

functions in evaluating the tumor microenvironment, predicting

immunotherapy response, and forecasting the prognosis of diverse

OS patients. It has great potential to play a vital role in guiding clinical

practice in the future.
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2 Methods

2.1 Obtaining the raw data

The single-cell sequencing data (GSE162454), along with

microarray data (GSE16091 and GSE21257) pertaining to OS,

were acquired from the GEO database (http://www.ncbi.

nlm.nih.gov/geo). Additionally, data from 84 distinct OS patients’

samples were retrieved from the TARGETs database. All datasets

were accompanied by clinical and prognostic information, which

was employed for subsequent analyses.
2.2 Data processing of single-cell
RNA sequence

Data analysis and quality assessment were conducted using the

R package “Seurat” (version 4.3.0; http://satijalab.org/seurat/). Cells

with expression of fewer than 250 genes or with a percentage of

mitochondrial genes exceeding 20% of the total expressed genes

were excluded from the analysis. Additionally, cells with unique

molecular identifiers (UMI) resulting in log10(UMI) > 0.80 were

also removed. Subsequently, potential doublets were identified and

eliminated using the R package “DoubletDecon” (version 1.1.6;

http://EDePasquale/DoubletDecon).
2.3 Data integration and
dimensionality reduction

The feature counts for each cell underwent a transformation,

involving division by the total counts for that cell, followed by

multiplication by 10,000. Subsequently, the results were

logarithmically transformed and then normalized by adding 1,

thus preventing the computation of the logarithm of 0. Before

proceeding with the normalization of the expression matrix, the top

2000 highly variable genes (HVGs) were identified, centered, and

scaled. Subsequent to this, a principal component analysis (PCA)

was conducted based on these HVGs. Following that, the R package

“Harmony” (https://github.com/immunogenomics/Harmony) was

employed to integrate the cellular data from six samples and

mitigate any potential batch effects.
2.4 Cell-clustering and annotation

The clustering analysis relied on the embedding of the Harmony

algorithm, executed through the “FindNeighbors” and “FindClusters”

functions within the “Seurat” package. The resulting clusters were

visualized on a two-dimensional plot generated via the UMAP

method. For subcluster analysis, akin procedures were applied,

encompassing variable gene identification, dimensionality

reduction, Harmony for cell integration, and cluster identification
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for the distinct clusters derived from the overall analysis. The

annotation of clusters was performed using established cellular

markers drawn from the literature. Detailed information regarding

the cellular markers can be found in the Supplementary Tables.
2.5 Identification and analysis of CD8+ T
cell subtypes

CD8+ T cells were isolated and subsequently re-clustered using

the “Seurat” package in R. Single-cell pseudotime trajectories were

constructed employing the “Monocle2” package in R. Following

this, a weighted correlation network analysis (WGCNA) was

conducted to identify the core gene sets within CD8+ T cellular

clusters using the “hdWGCNA” package in R. To explore

intercellular communication between all cell clusters, the R

package “Cellchat” was utilized. The levels of immune checkpoint

molecules between clusters were assessed based on the immune

checkpoint expression profile. Differential functional status

regarding Gene Ontology (GO) and KEGG pathways for each

CD8+ T cell cluster were analyzed using the “ClusterProfiler” R

package. Additionally, the GSEA pathways obtained from MSigDB

(gsea-msigdb.org) were evaluated using the “fgsea” R package.

Furthermore, differences in HALLMARK pathways between the

clusters were determined through gene set variation analysis

(GSVA) using the “GSVA” R package.
2.6 Construction and validation of the T
cell exhaustion signature

The CD8+ T cell exhaustion genes with prognostic potential in

the TARGETs dataset were identified through Univariate Cox

regression analysis (P<0.05). Subsequently, a combination of six

machine learning algorithms was employed, which included the

least absolute shrinkage and selection operator (LASSO) Cox

regression algorithm (14), Boruta feature selection algorithm (15),

survival support vector machine (survival-SVM) based on 10-fold

cross-validation (16), Boosting in Cox regression (Cox-boost) (17),

Extreme Gradient Boosting(XG-boost) (18), and generalized boosted

regression modeling (GBM) (19), to further refine the valuable T cell

exhaustion signature. In constructing the model, the output of the

biomarkers from the machine learning models was intersected,

followed by the utilization of multiple Cox regression to calculate

the weight of each gene. The TEX-score formula is as follows:

TEX − Score = X1(coefficient of multi

− COX of gene1) ∗Y1(expression

− level of gene1) + X2 ∗Y2 + X3 ∗Y3

Based on the median value of the TEX-score, patients in the OS

TARGETs cohort and the meta-cohort (formed by combining data

from GSE21257 and GSE16091 using the R package “Combat”)

were stratified into high and low TEX-score groups. Subsequently,

Kaplan-Meier survival analysis and receiver operator characteristic
Frontiers in Immunology 03
curves (ROC) between these two groups were conducted using the

“survminer”, “survival”, “rms”, and “timeROC” R packages.
2.7 Clinical characteristic and
nomogram establishment

Uni-Cox and multi-Cox regression analyses were employed to

assess the correlation and independence of the TEX-score in

conjunction with clinical parameters in the meta-cohort. In order

to delineate disparities between patient subgroups, a nomogram was

developed. This nomogram is capable of accurately forecasting an

individual’s probability of encountering an event in a clinical

setting, incorporating independent clinical prognostic factors like

age, gender, metastasis, and TEX-score. The performance of the

nomogram in prognostic prediction was subsequently evaluated

using calibration and ROC curves, validating its predictive

capability for prognosis (20).
2.8 Evaluation of immune-related
characteristics for the TEX-signature

The immune cell components in each sample were computed

using the Tumor Immune Estimation Resource (TIMER), single

sample gene set enrichment analysi s (ssGSEA), and

Microenvironment Cell Populations-counter (MCP-counter)

algorithm (21). Additionally, the “ESTIMATE” package was

utilized to estimate both stromal and immune scores, enabling

the quantification of the Tumor Microenvironment (TME) in

malignant tumors (22). The cancer immune cycle, encompassing

seven distinct steps (TIP, hrbmu.edu.cn), as well as various immune

indicators calculated by the “easier” package, were used to gauge the

immune capacity of the TME (23). Furthermore, an examination

was conducted into the expression levels of co-stimulatory, co-

inhibitory, and HLA molecules. Parameters including T cell-

inflamed gene expression profile (GEP), cytotoxic activity (CYT),

and IFN-g were computed in accordance with previously

established methodologies (21, 24, 25). TME signatures,

independently developed by Kobayashi, were gathered and

computed utilizing Gene Set Variation Analysis (GSVA) (26).
2.9 Prediction of immunotherapy

The immunotherapy data was sourced from several datasets,

namely GSE91061 (melanoma), GSE126044 (lung adenocarcinoma),

Nathon (melanoma), and Mel-ucla (2016, metastatic-melanoma),

which were utilized to forecast the response to immunotherapy (27,

28). Additionally, GSE79671 (glioblastoma) and GSE61676 (non-

small cell lung cancer) were employed to assess the effectiveness of

antivascular drugs within high and low TEX-score groups (29, 30).

The TEX-score was calculated independently for each dataset.

Subsequently, drug screening was conducted for patients with

differing TEX-scores using the “oncopredict” package.
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2.10 Quantitative real-time polymerase
chain reaction

Ethical approval was obtained from the Medical Ethics

Committee for tissue specimens acquired from the Third Xiangya

Hospital of Central South University (Approval No. fast-23816).

These specimens were stored at a temperature of -80°C. A total of

three pairs of samples were collected from OS patients who

underwent tumor resection, including tumor tissue and

paratumor tissue. Total RNA from tissues was isolated using the

TRIzol reagent by Thermo Fisher Scientific, based inWaltham, MA,

USA. The cDNA was synthesized from 2mg of RNA utilizing the

RevertAid™ First Strand cDNA Synthesis Kit (Thermo Fisher

Scientific). Quantitative real-time polymerase chain reaction

(qRT-PCR) was performed using SYBR Green Master Mix

(Q111-02, Vazyme). The quantification of relative gene

expression levels was conducted using the 2-△△CT method. The

primer sequences are shown in Supplementary Table 1.
2.11 Western blot analysis
and Immunofluorescence

Protein samples were collected using RIPA buffer (Beyotime,

China) and the protein concentration was determined using a

bicinchoninic acid (BCA) assay kit (Chinese Biotechnology

Company). A total of 20 mg of protein was separated by 12%

SDS-PAGE and transferred onto PVDF membranes (Bio-Rad).

After blocking with 5% non-fat milk at room temperature for one

hour, the membranes were incubated overnight with antibodies

diluted in antibody solutions against RAD23A (Immunoway),

SAC3D1 (Immunoway), GAPDH (Immunoway), and PSIP1

(Proteintech). Following washing, the membranes were then

incubated with ananti-rabbit IgG solution at room temperature

for one hour, followed by additional washing and visualization. For

histological analysis, the specimens were fixed in 4%

paraformaldehyde after removal, and the fixed tissues were

embedded in paraffin for sectioning and subsequent staining. The

antibodies used for immunofluorescence staining were as follows:

anti-human CD8 (Abcam); anti-human RAD23A (Immunoway);

anti-human SAC3D1(Immunoway), anti-human PSIP1

(Proteintech), Alexa 546-conjugated anti-rabbit IgG (Invitrogen).

Cell nuclei were counterstained with DAPI (Sigma Aldrich).

Imaging was performed using a Zeiss Axio Observer Z1 LSM 710

BiG confocal microscope (Carl Zeiss), and fluorescence images were

captured using Zen 2012 software (Carl Zeiss). Images were

pseudocolored for overlay, cropping, resizing, and enhancing

contrast and brightness using Photoshop and Illustrator (Adobe

Systems) or ImageJ (NIH).
2.12 Statistical analysis

The statistical analyses were performed using R (version 4.2.2)

and RStudio. A prognostic model for OS was developed employing
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Combined LASSO regression, Boruta, survival-SVM, Cox-boost,

XG-boost, and GBM. For survival analysis and assessing the

diagnostic value of the TEX-signature, Kaplan-Meier curves and

the Area Under the Curve (AUC) of the Receiver Operating

Characteristic (ROC) were employed, respectively. In cases of

normally distributed variables, significant quantitative differences

between and among groups were determined using a two-tailed t-

test or one-way ANOVA, as applicable. Conversely, for non-

normally distributed variables, significant quantitative differences

were assessed using a Wilcoxon test. A statistical P-value<0.05 was

considered to be statistically significant.
3 Results

3.1 Single-cell analysis explored cell
subtypes in OS

After controlling data quality and curating single-cell sequencing

data from 6 OS patients, a total of 31,398 cells were screened and

visualized through uniform manifold approximation and projection

(Supplementary Figures S1 and 2A). The optimal number of cell

populations was determined using the Seurat package, resulting in the

differentiation of all cells into 13 distinct clusters (Figure 1A). Using

the differential expression of genes between these 13 major clusters,

combined with corrections for cell-specific cell markers for all

subpopulations, an annotated classification of each cellular

subpopulation within the osteosarcoma tumor microenvironment

was performed. This included both immune (such as myeloid cells,

NK/T cells, and B cells) and non-immune cells (such as osteoblastic

OS cells, endothelial cells, OCs, and CAFs) (Figure 1B, C and

Supplementary Figures 2B-H). After a comprehensive examination

of the landscape and dynamics of immune cells, all groups of immune

cells were re-grouped and annotated (Figures 1D, E). The NK/T cells

underwent a similar process, while CD8+ T cells were specifically

singled out for subsequent research (Figures 1F-H). Additionally, we

observed a low expression level of CD4 within the T cell

subpopulation (Figure 1H).
3.2 Analysis of CD8+ T cell site
differentiation, cell population
communication, and functional enrichment

The pseudo-time series analysis revealed the differentiation

status among distinct clusters of CD8+ T cells and the

rearrangement of cell types within the Tumor Microenvironment

(TME) of OS (Figures 2A, B). Subsequently, we delved into the

communication network among cell populations and found that

CD8+ T cell cluster one exhibited a more active interaction status

and weight compared to CD8+ T cell cluster two (Figure 2C).

Classical inflammatory activation pathways such as TNF, OSM, and

IFN-II signaling pathways displayed heightened activity in CD8+ T

cell cluster one and Myeloid cells. Similarly, we investigated the

signaling pattern and weight of cytokine families like IL-1, IL-2, IL-
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4, and IL-6 pathways, along with signaling pathways including

TGF-beta, CCL, CD40, complement, and TRAIL in clusters

(Figure 2D, E and Supplementary Figure 3A). In summary, CD8+

T cell cluster one demonstrated more pronounced advantages than

cluster two across most inflammatory and immune activation

pathways. Further visualization of the ligand interaction signal

intensity revealed that the ligand interaction between CD8+ T cell

cluster two and others was relatively attenuated in comparison to

CD8+ T cell cluster one (Figure 2F). Furthermore, gene enrichment

analysis was conducted between the two subtypes of CD8+ T cells to

validate our hypothesis. The GSVA results of KEGG terms

demonstrated a strong association of cluster one with cytokine,

JAK-STAT, and T cell receptor signaling pathways (Figure 2G).

Additionally, KEGG analysis was carried out by evaluating the up-

and down-regulated differentially expressed genes in subgroup one

of CD8+ T cells. It revealed that major pathways in cytotoxicity
Frontiers in Immunology 05
mediated by NK cells, necroptosis, TNF, and NOD signaling were

positively enriched (Figure 2H). As for GO terms, a plethora of

immune processes exhibited significant enrichment in cluster one,

including inflammatory response, lymphocyte migration,

proliferation and activation, as well as T cell differentiation and

activation regulation (Figure 2I). Furthermore, the hallmark

pathways of GSEA in cluster one indicated that molecules and

pathways associated with immune function were highly activated

(Figure 2J). In contrast, cluster two exhibited greater enrichment in

metabolism-related pathways and lacked immune activation in GO,

KEGG, and GSEA analyses (Figure 2H, Supplementary Figures 3B, C).

Finally, the overall expression status of co-stimulatory and co-

inhibitory molecules was compared between the two clusters

(Figure 2K). Combining these findings with our previous results,

we propose a process of functional exhaustion in the differentiation

of CD8+ T cells between the two subsets.
A

B
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C

FIGURE 1

Different cell clustering in single cell sequencing data of osteosarcoma. (A) Identification 13 types of cells in single cell sequencing data. (B) Co-
heatmap of marker genes for different cell types. (C) The 7 cell types were identified by marker genes. (D, E) Extraction, recombination and
annotation of immune cells. (F-H) Screening of CD8+ T cell and NK/NKT cell cluster. OS: Osteoblastic-OS cell, EC: Endothelial cell, OC: Osteoclast,
CAF: Fibroblasts, MC: Myeloid cell, NK/T: NK/NKT/T cell.
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3.3 Exploring the genetic changes
associated with exhaustion phenotype

We delved into the core gene-level alterations within the

differentiation trajectory of CD8+ T cell subpopulations and

found that there were noteworthy disparities in core genes

between different clusters (Figures 3A, B). We utilized the hd-

WGCNA algorithm to compute the gene expression profiles of the

two CD8+ T cell subsets, and then categorized the core genes

between these subsets into distinct gene modules to identify the

core gene sets. Finally, we verified the correlation between genes and

modules in the network. By setting b to 14, we achieved an R-

squared value of 0.85, which established a scale-free network

(Figure 3C). The genes were segregated into respective modules

via hierarchical clustering, and a gene similarity heatmap was

generated based on the topological overlap matrix (Figures 3D-F).

The core genes were predominantly concentrated in the turquoise

module, with a remarkably high correlation of 96% (Figure 3G).
Frontiers in Immunology 06
Further analysis revealed a strong correlation between genes within

the block and the block (Figure 3H).
3.4 Machine learning to build
TEX-signature

In our initial investigation into the biomarkers of T cell

exhaustion, which have prognostic significance for patients with

OS, we identified 668 genes that were commonly present in both

cohorts (Figure 4A). Following univariate analysis of these

exhausted core genes, feature selection was performed using six

machine learning algorithms, including LASSO, XGboost, GBM,

Boruta, CoxBoost, and survival-SVM (Figure 4B, Supplementary

Figure 4A). The C-index values for all the algorithms exceeded 0.8,

indicating the strong performance of each model (Figure 4C).

Subsequently, we selected the intersection of the biomarkers

obtained from the machine learning model to construct a refined
A B

D

E

F G

IH

J K

C

FIGURE 2

Further analysis of CD8+ T cell. (A) Trajectory plots showing different clusters in CD8+ T cells. (B) Rearrangement of cell types in TIME (C) The
number and weights/strength of interactions in the cell-cell communication network. (D) Weight of classical inflammatory activation pathways. (E)
Signal pattern and weight of the cytokine family (F) Visualization of the signal intensity of ligand interaction. (G) GSVA analysis of CD8+ T cells. (H-J)
The outstanding enrichment of GO, KEGG, and GSEA terms in cluster 1. (K) Box plots comparing co-stimulatory and co-inhibitory molecules
between two clusters. CD8+T-C1: CD8+T cell cluster 1, CD8+T-C2: CD8+t cell cluster 2.
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model (Figure 4D). Three target genes, RAD23A, SAC3D1, and

PSIP1, were screened along with their corresponding coefficients

calculated through multivariate analysis (Figure 4E). Expression of

target genes between the two cell clusters was also visualized

(Figure 4F). Moreover, we defined the TEX-score as the sum of

the product of the expression values and the correlation coefficients

of these three genes separately. Comparisons of the prognostic

status of patients with high TEX-scores against those with low TEX-

scores revealed that in both the TARGETs cohort and the meta-

cohort, patients with high TEX-scores exhibited worse clinical

outcomes, while those with low TEX-scores demonstrated better

outcomes (Figures 4G, H). Additionally, the area under the ROC

curve demonstrated the excellent diagnostic efficacy and predictive

ability of the model at 1, 2, 3, 5, and 10 years in both the TARGETs

cohort and the meta-cohort (Figures 4I, J).
3.5 Construction of a nomogram and
clinical characteristic subgroup analysis

We developed a nomogram that incorporated age, gender,

metastasis, and TEX-scores for clinical prediction (Figure 5A,

Supplementary Figures 4B–E). The AUC values for 1-, 2-, 3-, 5-,

and 10-year Overall Survival (OS) for the nomogram were 0.96,

0.89, 0.82, 0.79, and 0.79, respectively, indicating that our model

exhibited strong and consistent predictive capability (Figure 5B).
Frontiers in Immunology 07
Furthermore, the calibration plots illustrated the level of agreement

between the predicted OS and the actual OS (Figure 5C). To further

underscore the predictive potential of the TEX-signature, we

conducted subgroup analyses based on available clinical features

in the TARGETs and GSE21257 databases. The signature

demonstrated accurate and robust performance across these

subgroups. According to Kaplan-Meier survival analysis, the low

TEX-score group consistently exhibited a superior prognosis

compared to the high TEX-score group within subgroups

stratified by OS type, gender, age, or metastasis (Figures 5D–L

and Supplementary Figures 4F–J). In addition, there is a tendency

for the TEX-score to decrease with age, suggesting to some extent

that they may be generalizable (Supplementary Figures 4K-L).
3.6 Immune characteristics related to the
TEX-signature

We investigated the association between TEX-signature and

immune cell infiltration as well as immunomodulators in both the

TARGETs cohort and the meta-cohort to evaluate the impact of

TEX-signature in OS. Patients with high TEX-scores displayed a

strong correlation with tumor purity, whereas the low TEX-score

group exhibited a more favorable immune microenvironment and

matrix score (Figure 6A and Supplementary Figure 5A). Moreover,

we discovered that the low TEX-score group had positive associations
A
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FIGURE 3

Exploring the genetic changes associated with exhaustion phenotype. (A) Volcano map of differentially expressed genes in CD8+ T cell clusters. (B)
Heat map of differentially expressed genes in CD8+ T cell clusters. (C) Scale independence and average connectivity. (D) Network heatmap plot of
all genes. (E) Cluster dendrogram. (F) Eigengene adjacency heatmap. (G) Heatmap of module–trait correlations. (H) Correlation between gene
significance and module membership.
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with immune cells such as CD8+ T cells, macrophages, natural killer

cells (NK cells), NK T cells, B cells, and central and effector memory T

cells, all of which play important roles in positive immune regulation

and immune-mediated killing utilizing multiple algorithms including

ESTIMATE, TIMER, MCP-counter, and ssGSEA (Figure 6A,

Supplementary Figures 5B–D). However, myeloid-derived

suppressor cells (MDSC) were also more enriched in the low TEX-

score group (Figure 6A and Supplementary Figures 5B-D).

Additionally, the TEX-score exhibited negative correlations with

most immune modulators, classified as antigen presentation, co-

stimulatory, co-inhibitory, receptor, and others in the TARGETs

cohort. The expression status of all immune checkpoint molecules

was also depicted (Figures 6B, C). Furthermore, we confirmed the

expression levels of co-stimulatory, co-inhibitory, and HLA

molecules in the meta-cohort (Supplementary Figures 5E, F).

Finally, we explored several immunotherapy indices in both the

TARGETs cohort and meta-cohort. High levels of GEP, CYT, and

IFN-g were significantly associated with a low TEX-score, all of which

are determinants of a potentially improved immunotherapy response

(Figures 6D-F and Supplementary Figures 5G-I). Interestingly, there

was no statistically significant difference in IFN in the TARGETs

cohort, although our validation in the meta-cohort indicated that the

results were still meaningful. Our results showed a clear intrinsic
Frontiers in Immunology 08
correlation between the immune microenvironment and TEX-scores,

with the low TEX-score patients having an “immune-heat response

phenotype” reflecting a better immunotherapeutic potential, whereas

the high TEX-score group showed an “immune-poor state”.
3.7 Potential biological process related to
TEX-signature

We examined the immunity cycle of cancer to elucidate the

relationship between immune processes and TEX-score across the

entire dataset, several steps of the immune cycle were found to be

more activated in the low TEX-score group in our study. They

included cancer antigen presentation, recruitment of T cells, CD8+

T cells, Th1 cells, NK cells, macrophages, B cells, infiltration of

immune cells into tumors, and killing of cancer cells (Figure 7A).

Moreover, we gathered various indices, including the T cell

inflammatory microenvironment signature (T-cell-inflamed), which

is based on the combined potential of IFN-g and T-cell-associated

inflammatory genes in predicting the response to PD-1 blockade, as

well as the immunological characteristics of Roh (Roh-IS) associated

with immune activation related to tumor rejection, and the

immunological characteristics of Davoli (Davoli-IS), defined by the
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FIGURE 4

Construction and validation of the TEX-Signature. (A) Venn diagram of exhausted genes and core genes of the turquoise module. (B) machine
learning for valuable models. (C) The C-index of various algorithms. (D) Venn plot showing the intersection of valuable TEX-genes based on six
machine learning algorithms. (E) coefficient of three target genes calculated by multivariate analysis (F) Density plots of gene expression intensity for
target genes. (G) Kaplan-Meier survival curve of OS between patients with a relative high score of TEX-Signature and a low score of TEX-Signature in
the TARGETs cohort. (H) Kaplan-Meier survival curve of OS between patients with a high score of TEX-Signature and a low score of TEX-Signature in
the meta-cohort. (I) Time-dependent ROC curve at 1, 2, 3, 5, and 10 years in the TARGETs cohort. (J) Time-dependent ROC curve at 1, 2, 3, 5, and
10 years in the meta-cohort.
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expression of cytotoxic CD8+ T cell, NK cell markers, and immuno-

expanded label (Ayers-expIS), which is produced by genes highly

associated with IFN-g signature genes. All of these scores were highly
significant in the low TEX-score group (Figure 7B). The immune

resistance program (resF-down, resF-up, and resF) represents the

efficacy of immune resistance in the tumor microenvironment, with

patients in the high TEX-score group exhibiting stronger immune

resistance (resF, resF-up), while lower levels of immune resistance

(resF-down) were present in the low TEX-score group (Figure 7B).

Furthermore, we examined the signatures developed by Kobayashi in

the TARGETs cohort, where a low TEX-score was associated with

higher levels of recognition of tumor cells, innate immunity, T cells,

IFN-g response, Tregs, and MDSCs, while proliferation levels were

positively correlated with TEX-scores (Figure 7C). Additionally, we

found that transcription factors associated with inflammation and

tumor suppression, such as USF1, USF2, RFX5, TP53, ETS1, SPI1,

GATA, and STAT1, were highly expressed in the low TEX-score

group. Factors that play a bidirectional role in proliferation and

immunity, including NF-kB, STAT5B, and STAT6, were also highly

expressed in the low TEX-score group. Other major potential tumor

growth factors, such as POU2F2, RUNX1, ERG, REL, and JUN, were

also relatively increased in the low TEX-score group. Except for
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FOXO1, KLF4, and SMAD4, the highly expressed transcription

factors promoted OS proliferation, metastasis, and drug resistance

in the high TEX-score group, including the E2F family, MYC,

TFDP1, ZEB1, TFAP2C, LEF1, FOSL1, TCF7L2, TWIST1, GLI2,

and FOXO3 (Figure 7D).
3.8 Function enrichment and metabolism
of TEX-signature

We examined the similarities and differences between TEX-score

subgroups at the level of specific biological functions and pathways.

The GO analysis of biological processes primarily encompassed

positive reactions of leukocytes, such as immune migration,

adhesion, activation, and phagocytosis in the low TEX-score group.

This specifically included the activation and differentiation of CD8+ T

cells, B cells, and myeloid cell-mediated immunity (Figure 8A). The

cellular components identified in the GO analysis were associated with

membrane and filopodium components. Molecular functions included

IgG binding, immunoglobulin binding, immune receptor activity, and

serine-type peptidase activity (Figure 8B). The GO analysis results for

the high TEX-score group were also notable. There was enrichment
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FIGURE 5

Construction of a nomogram and subgroup analysis. (A) Nomogram based on gender, age, metastasis and the TEX-score. (B) ROC curves for
predicting 1-, 2-, 3-, 5- and 10-year survival in the TARGETs database. (C) The calibration plot for the probability of 1-, 2-, 3- and 5- year overall
survival of OS patients. (D-H) Kaplan–Meier survival analysis for OS patients with diverse clinical characteristics of osteosarcoma type (D), gender (E,
F), age (G, H) in TARGETs cohort. (I) Boxplot of TEX scores between metastatic and non-metastatic patients in the GSE21257 dataset (J-L) Kaplan-
Meier survival analysis of metastatic and non-metastatic patients in the TARGETs (J) and the GSE21257 dataset (K-L).
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related to ion channels, both voltage-dependent and independent in

biological processes. Terms like transporter complex and channel

complex were enriched for cellular components. Bone

morphogenesis and ossification were significantly enriched in terms

of molecular functions (Supplementary Figure 6A). Additionally, we

conducted a KEGG analysis that showed a significant enrichment in

the low TEX-score group. We visually compared the enrichment status

of the corresponding pathways in the two subgroups. Pathways

including the Toll-like receptor, T cell receptor, NOD-like receptor,

leukocyte trans-endothelial migration, Fc-g receptor-mediated

phagocytosis, cytokine-cytokine receptor interaction, chemokine

signaling pathway, and B cell receptor, all of which were involved in

immune processes, were significantly associated with the low TEX-

score group (Figure 8C). Furthermore, numerous Hallmark signaling
Frontiers in Immunology 10
pathways of GSVA correlated with the low TEX-score, included

complement, IL6-JAK-STAT3, and IL2-STAT5 signaling pathway,

inflammatory response, IFN-a and IFN-g response, and TNFa-NF-
kB signaling pathway. As for the high TEX-score group, the results

were consistent with what we obtained previously (Figure 8D).
3.9 Predictive efficacy of TEX-signature
for therapy

To further investigate the potential value of the TEX-signature in

therapy response, we proceeded to validate its efficacy in multiple

published therapy datasets. The predictive capacity of the TEX-

signature was well-evidenced by Disease Control Rate (DCR) in the
A B D
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C

FIGURE 6

Immune-related characteristics of TEX-signature in TARGETs and Meta-cohort. (A) Heatmap showing the correlation between TEX-score and
immune infiltrating. (B) Heatmap showing the correlation between TEX-score and immune modulators. (C) Box plots comparing the expression
status of all immune checkpoint molecules between low and high TEX-score groups. (D-F) Boxplot and scatter plot displaying the levels of GEP,
CYT, and IFN-g between low and high TEX-score groups. *p<0.05, **p<0.01, ***p<0.001.
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context of immunotherapy. Patients with low TEX-scores in the

GSE91061 cohort exhibited significantly improved DCR compared to

patients with high TEX-scores, and the ROC curve confirmed the

robustness of the TEX-score in predicting therapy response

(Figure 9A). Similarly, patients with low TEX-scores in the

GSE126044 dataset demonstrated a higher likelihood of responding

positively to immunotherapy (Figure 9B). Patients with low TEX-

scores in the Nanthon dataset experienced extended survival times and

weremore inclined to respond to immunotherapy (Figure 9C). Patients

with low TEX-scores in the Mel-ucla dataset exhibited a superior DCR

(Figure 9D). Turning to anti-angiogenic therapy, patients with low

TEX-scores in the GSE79671 dataset were more prone to positive

responses to anti-angiogenic therapy (Figure 9E). Likewise, in the

GSE61676 dataset, patients with low TEX-scores demonstrated

prolonged survival times and were more likely to respond favorably

to anti-angiogenic therapy (Figure 9F). In addition, we verified the

predictive value of the TEX-signature for chemotherapies. As shown,

the TEX-score showed a significant correlation with major

chemotherapeutic agents, including docetaxel-tanespimycin,

regorafenib, sorafenib, topotecan, pazopanib, and paclitaxel. Patients

with high TEX-scores appeared to be more likely to respond positively

to chemotherapies (Figures 9G, H and Supplementary Figures 6B-E).

Taken together, our research revealed that patients with low TEX-

scores could potentially benefit more from certain treatment options.
3.10 The validation of TEX-related
gene expression

To validate the expression patterns of TEX-related genes in

osteosarcoma (OS) patients, we performed RT-PCR and Western

Blot analyses on tumor tissues and adjacent non-tumor tissues from
Frontiers in Immunology 11
three patients. The results showed that, compared to adjacent non-

tumor tissues, the expression of RAD23A, SAC3D1, and PSIP1 was

significantly upregulated in OS tissues (Figures 10A, B).

Additionally, we characterized the localization expression of the

three target genes in CD8 T cells using immunofluorescence in OS

tissue (Figure 10C). Therefore, we propose that dysregulated

expression of these genes may lead to T-cell exhaustion and

promote OS progression.
4 Discussion

Chemotherapy and surgical resection have long been the

mainstay of treatment for OS (31). Unfortunately, there has been

limited advancement in the treatment of OS over the last three

decades, particularly in contrast to the notable progress made in

developing novel therapies for other types of cancer (32). This

stagnation in innovation has regrettably not translated into

improved survival rates for patients dealing with OS. The need

for further research and breakthroughs in treatment options for OS

remains paramount.

Immunotherapy, an emerging therapeutic approach, has made

significant strides in treating various cancer types. However, its

impact on OS has been relatively limited (33). Effectively reshaping

the immunosuppressive tumor microenvironment is crucial for the

success of immunotherapy (34). Nevertheless, the intricate interplay

of factors including the complex immune microenvironment,

tumor heterogeneity, and individual variations in OS poses

formidable challenges to harnessing the full potential of immune-

based treatments (35). The core of immunotherapy is the activated

T cells, particularly CD8+ T cells, whose functional state closely

correlates with immune response effectiveness. However, CD8+ T
A

B
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FIGURE 7

Potential biological process of the TEX-signature. (A) Boxplot showing the differences in the cancer immunity cycle between low and high TEX-
score groups. (B) The differences in immune-related indexes collected from the “easier” package in groups. (C) Heatmap showing the correlation
between TEX-score and immune level developed by Kobayashi. (D) Heatmap showing the correlation between the TEX-score and transcription
factors. *p<0.05, **p<0.01, ***p<0.001.
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cells are often altered or exhausted due to prolonged exposure to

high levels of persistent antigen and inflammatory stimuli during

tumor progression. These exhausted T cells lose their ability to

eliminate tumor cells (11, 36). Immune checkpoint inhibitors such

as anti-PD-1 antibodies and anti-CTLA-4 antibodies, regulatory

cytokines, and metabolic reprogramming targeting the tumor

microenvironment work to reverse the exhausted T cell states,

restore their functionality, and reactivate immune responses.

Previous studies have indicated that the number of tumor-

infiltrating lymphocytes (TIL) is significantly higher in OS

compared to other sarcomas (37), which suggests that immune

checkpoint inhibitors may be able to leverage the abundance of TIL

in OS, offering hope for immunotherapy in this context. However,

the relationship between T cell exhaustion and OS remains

inadequately understood.

CD8+ T cells, originating from CD34 hematopoietic stem cells

located in the bone marrow, can be activated by endogenous

antigenic peptides presented in MHC class I molecules, thereby
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exerting anti-tumor immunity (38). When the functionality of

CD8+ T cells is compromised, the body’s anti-tumor immune

capacity diminishes, elevating the risk of tumor growth and

cancer metastasis (39). Through an exploration of the molecular

and functional attributes of distinct CD8+ T cell subgroups in OS,

we observed indications of functional exhaustion within the tumor

immune microenvironment. In contrast to relatively exhausted

CD8+ T cells, their more active counterparts demonstrated

heightened engagement in cellular interactions, with most

immune-related pathways exhibiting elevated activity. These

pathways encompassed inflammatory activation pathways, TNF

family members, complement C3, cytokine family, immune

response, cell-cell adhesion, necroptosis, and T cell activation.

The relatively exhausted cell subgroup exhibited heightened

expression of markers like LAG-3, TOX, CTLA-4, aligning with

prior studies elucidating mechanisms associated with CD8+ T cell

exhaustion (40). This expression profile may potentially impact the

immune response and prognosis of OS patients. These findings
A
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FIGURE 8

Function enrichment and metabolism of the TEX-signature. (A) Biological process of GO analysis in the low TEX-score group. (B) Cell component
and molecular function of GO analysis in the low TEX-score group. (C) KEGG analysis in the low TEX-score group. (D) GSVA analysis of low and high
TEX-score groups.
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inspire us to further refine and scrutinize exhaustion models,

seeking additional insights to advance immunotherapy for OS.

Following the application of six machine learning algorithms,

we identified RAD23A, SAC3D1, and PSIP1 as genes associated

with T cell exhaustion, forming the basis for an OS prognostic

model. RAD23A, also known as RAD23 or HR23A, is involved in

nucleotide excision repair and the regulation of intracellular protein

degradation (41). Previous pan-carcinoma analyses have indicated a

significant positive correlation of RAD23A in various cancers (42).

It participate in processes such as nuclear translocation of AIF

during cell death induction and enhances resistance to chemical

agents by modulating autophagic response (43). RAD23A may

mediate T cell exhaustion through diverse pathways and is

recognized as an immune function biomarker, substantiating its

inclusion in the prognostic model (44). SAC3D1, or SHD1, is
Frontiers in Immunology 13
implicated in centrosome duplication and mitotic progression,

potentially mediating cell cycle regulation via centrosome

amplification (45). SAC3D1 is involved in immune response, as

well as its association with metabolism-related signaling pathways,

positions it as a key player in T cell exhaustion and provides

valuable insights for prognosis and immunotherapy effectiveness

in various cancers (46, 47). PSIP1, also known as LEDGF/p75,

participates in various biological processes and plays a significant

role in lens epithelium differentiation into fiber cell terminals (48).

The precise influence of these genes on the occurrence and

progression of T cell exhaustion, particularly in relation to CD8+

T cell exhaustion in OS, deserves further exploration. Indeed,

understanding the intricate interplay between the tumor immune

microenvironment and T cell exhaustion is crucial for unraveling

the complexities of cancer progression and devising effective
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FIGURE 9

Predictive value of TEX-signature in therapy response. (A-D) Distribution of immunotherapy responses and ROC curves in the GSE91061 cohort,
GSE126044 cohort, Nanthon dataset and Mel-ucla dataset based on the TEX-signature (E, F) Distribution of anti-angiogenic therapy responses and
the ROC curve between low and high TEX-score groups in the GSE79617 and GSE61676 dataset. (G, H) The sensitivity of docetaxel-tanespimycin
and regorafenib in two groups.
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therapeutic strategies (49, 50). The observations made in this study

regarding immune cell infiltration and immune checkpoints

between individuals with high and low TEX-scores shed light on

potential avenues for enhancing immune efficacy. The heightened

presence of CD8+ cells, macrophages, NK cells, NK T cells, B cells,

and monocyte cells in the low TEX-score group signifies a more

active immune response, which aligns with the notion of reduced T

cell exhaustion. Moreover, the association of immune pathways

with TEX-score subgroups provides valuable insights into the
Frontiers in Immunology 14
potential effectiveness of immunotherapy in OS. The activation of

the WNT/b-catenin signaling pathway in the high TEX-score group

is particularly noteworthy, as this pathway is known to play a

crucial role in T cell differentiation and effector function (51).

Previous studies have demonstrated that the activation of WNT/

b-catenin signaling can suppress the effector functions of CD8+ T

cells, further emphasizing its relevance in the context of T cell

exhaustion (52). The expression of immune checkpoint molecules

can originate from various cell types, including tumor cells,
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FIGURE 10

Validation of TEX-related gene expression. (A) QRT-PCR analysis and (B) Western blot analysis of RAD23A, PSIP1, and SAC3D1. (C)
Immunofluorescence co-localization of CD8 and TEX-related genes was performed under 40x magnification. *P < 0.05, **P < 0.01, ***P < 0.001.
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regulatory T cells (Treg), fibroblasts, or their extracellular vesicles.

In the low-TEX group, co-stimulatory molecules such as CD40/

CD40LG and CD96 were relatively upregulated, accompanied by

elevated levels of TNF-a, GZMA, and IFN-a/IFN-g. Meanwhile, we

observed a relative upregulation of some inhibitory immune

checkpoints, this may be attributed to heightened antigen

presentation stimulation due to high HLA expression and a

tumor’s self-protective effect induced by sustained inflammatory

responses. The upregulation of CD274, IDO1, etc. on the tumor

surface by T cell activation and IFN-a/IFN-g stimulation has been

demonstrated (53, 54). Furthermore, the Meta-dataset’s high-TEX

group showed increased expression of TOX and VCTN1, and the

relationship between immune checkpoint regulation and

immune infiltration was more intricate than we had first thought.

Patients with elevated immune checkpoint levels may also

exhibit higher levels of immune activation, and this group of

patients may experience better clinical benefit from combination

immunotherapy (55). This highlights the potential for interventions

aimed at reversing the state of immune exhaustion in the tumor

microenvironment, a development that could have far-reaching

implications for cancer therapy. Reassuringly, recent clinical

successes in reversing T cell exhaustion underscore the promising

potential of such approaches (56).

As we know, T cell exhaustion is a prolonged and persistent

process characterized by the upregulation of various immune

inhibitory factors and impaired functionality, such as compromised

release of IFN-g and granzymes, within the tumor immune

microenvironment (TIME) under inflammatory stimuli. Despite

being the mainstay of immunotherapy, classical immune inhibitors

like Anti-PD1 and Anti-CTLA4, represented by immune checkpoint

blockade (ICB), unfortunately, fail to provide long-term benefits for a

significant proportion of patients (57). The restoration of exhausted T

cell functions is often limited, and they can rapidly revert to their pre-

treatment state. Current research has identified CD8+ and Th1-type T

cell markers, including IFN-g, PRF1, and TAP1, to be significantly

correlated with patients’ responses to immunotherapy (58).

Additionally, scholars have found that early PD-1 blockade

combined with CAR-T therapy can achieve better prognosis

improvement (59). Therefore, for patients with relatively low tumor

heterogeneity, high immune infiltration, and limited exhaustion,

immunotherapy may attain better long-term efficacy (60). In our

research cohort, besides the significant correlation of important

indicators such as GEP, IFN-g, and CYT with low exhaustion levels,

the consistent performance of scores like Roh-is, Davoli-is, and RIR

further supports our hypothesis, affirming the favorable prognosis of

low TEX and providing support for our hypothesis. The validation of

this model in multiple therapy datasets across different tumor types

further strengthens its predictive efficiency. The findings regarding the

sensitivity of patients to anti-angiogenic drugs and conventional

chemotherapy drugs for OS highlight the potential clinical utility of

the TEX-signature in guiding treatment decisions. However, it’s

important to acknowledge the need for further validation and clinical

implementation. This study sets a promising foundation for future

research and potential advancements in the treatment of OS.

It should be mentioned that there are a few of restrictions.

Firstly, due to tumor heterogeneity and limited sample size, the
Frontiers in Immunology 15
study’s findings are based on single-cell sequencing data from a

relatively small sample number, which may not fully capture the

heterogeneity present in osteosarcoma. Further validation in larger

cohorts would provide more robust and generalizable results.

Second, while the study identifies core genes in the TEX-

signature, further molecular experiments are necessary to

elucidate the functional roles of these genes and understand the

underlying molecular mechanisms of CD8+ T cell exhaustion.

Finally, the study did not specifically address the prediction of

metastasis in osteosarcoma. It’s important to acknowledge that the

model’s performance in this regard remains uncertain, because we

were unable to get reliable metastasis-related data.

In conclusion, our study aims to analyze the immune

microenvironment and tumor heterogeneity in OS using single-

cell sequencing data, identifying distinct differentiation trajectories

of CD8+ T cells in different individuals, and conducting a thorough

evaluation of CD8+ T cells, which holds promise in shedding light

on new avenues for OS immunotherapy.
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SUPPLEMENTARY FIGURE 1

(A) Density plot of transcript counts detected in each sample as a proportion
of cell number. (B) Total number of genes detected in each sample. (C)
Distribution of the percentage of mitochondrial genes in each sample. (D)
Correlation analysis of total transcript number with mitochondrial genes, total
gene number and PCA clustering analysis of all cells.

SUPPLEMENTARY FIGURE 2

(A) Two-dimensional visualization of cell distribution across samples. (B-H)
The “umap” visualization of cell subpopulation-specific marker

expression levels.

SUPPLEMENTARY FIGURE 3

(A) Communication networks among cell populations of multiple signaling
pathways in cluster 2. (B) The enrichment of GO and GSEA terms in cluster 2.

SUPPLEMENTARY FIGURE 4

(A) Risk coefficients for potential TEX-related genes calculated by univariate

analysis. (B-E) The risk correlation analysis for each clinical characteristic and
TEX-score in (B-C) The TARGETs and (D-E) the GSE21257 dataset.

(F) Comparison of TEX scores of metastatic patients in the TARGETs
cohort. (G-J) Kaplan–Meier survival analysis for OS patients with diverse

clinical characteristics of age (G, H), and gender (I, J) in the GSE21257 dataset.
(K-L) Distribution of TEX scores for all patients by age.

SUPPLEMENTARY FIGURE 5

(A-C) Immune characteristics related to the TEX-signature. (D) Heatmap

showing the correlation between TEX-score and immune infiltrating. (E-F)
The expression status of immune checkpoint and antigen-presenting

molecules between low and high TEX-score groups. (G-I) The levels of
CYT, IFN-g and GEP between low and high TEX-score groups.

SUPPLEMENTARY FIGURE 6

(A) Function enrichment and metabolism of the high TEX-score. (B-E) The
sensitivity of Sorafenib, Topotecan, Pazopanib, and Paclitaxel between low
and high TEX-score.
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