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modified T cells
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CD20 located predominantly on the B cells plays a crucial role in their

development, differentiation, and activation, and serves as a key therapeutic

target for the treatment of B-cell malignancies. The breakthrough of monoclonal

antibodies directed against CD20, notably exemplified by rituximab,

revolutionized the prognosis of B-cell malignancies. Rituximab, approved

across various hematological malignancies, marked a paradigm shift in cancer

treatment. In the current landscape, immunotherapies targeting CD20 continue

to evolve rapidly. Beyond traditional mAbs, advancements include antibody-drug

conjugates (ADCs), bispecific antibodies (BsAbs), and chimeric antigen receptor-

modified (CAR) T cells. ADCs combine the precision of antibodies with the

cytotoxic potential of drugs, presenting a promising avenue for enhanced

therapeutic efficacy. BsAbs, particularly CD20xCD3 constructs, redirect

cytotoxic T cells to eliminate cancer cells, thereby enhancing both precision

and potency in their therapeutic action. CAR-T cells stand as a promising strategy

for combatting hematological malignancies, representing one of the truly

personalized therapeutic interventions. Many new therapies are currently being

evaluated in clinical trials. This review serves as a comprehensive summary of

CD20-targeted therapies, highlighting the progress and challenges that persist.

Despite significant advancements, adverse events associated with these

therapies and the development of resistance remain critical issues.

Understanding and mitigating these challenges is paramount for the continued

success of CD20-targeted immunotherapies.
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Introduction

CD20 is a surface protein that exhibits ubiquitous expression in B

cells with minimal occurrence in other tissues, rendering it an ideal

target for immunotherapy against B cell-derived malignancies. CD20

expression initiates during the pre-B cell stage and persists until B

cells undergo terminal differentiation into plasma cells (Figure 1).

Immunotherapy directed at CD20 is extensively employed for

treating mature B cell-derived malignancies, such as chronic

lymphocytic leukemia (CLL) and various B cell-derived non-

Hodgkin lymphomas (B-NHL), including follicular lymphoma

(FL), diffuse large B-cell lymphoma (DLBCL), and mantle cell

lymphoma (MCL). CD20 is also present in multiple subtypes of B

cell precursor acute lymphoblastic leukemia (B-ALL), albeit its

expression at diagnosis is heterogeneous and frequently low (1–3).

Notably, documented upregulation of CD20 after induction

treatment suggests a potential expansion of CD20-directed

immunotherapy applications for B-ALL (4, 5). CD20-specific

therapies offer precise B cell targeting, minimizing impact on other

cell types. These therapies efficiently deplete CD20-expressing B cells

without hindering the replenishment of the B-cell compartment from

early B cell precursors. Hence, upon cessation of anti-CD20

treatment, the B-cell population can recover (6). Notably, the

absence of CD20 on fully mature plasma cells enables patients to

maintain protective humoral immunity against previously

encountered pathogens during treatment (6).

CD20-targeted immunotherapy encompasses diverse modalities

administered at various treatment stages. Rituximab, the pioneering

anti-CD20 monoclonal antibody (mAb) introduced in 1997, stands

out as a well-studied, low-toxicity immunotherapy with manageable

side effects. It is a crucial component of the common therapy

regimens, such as BR (bendamustine + rituximab) or FCR

(fludarabine + cyclophosphamide + rituximab), which are often

used as a first-line treatment in specific groups of CLL and B-NHL

patients. In addition, following positive phase 3 trial results,

rituximab has been recently integrated into chemotherapy for adult

B-ALL patients with at least 20% CD20-positive leukemic cells (7).
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Beyond rituximab, the engineered anti-CD20 mAb obinutuzumab is

registered and employed in combination with chemotherapy as first-

line therapy for defined cases of CLL and FL. In addition to mAbs,

new immunotherapies targeting CD20 have been developed and

successfully introduced into the clinic for patients refractory to

first-line therapy or with relapsed disease (r/r). These include

bispecific antibodies (BsAbs) targeting the CD20 molecule and

simultaneously recruiting cytotoxic T cells, as well as adoptive

therapies using autologous T cells modified with chimeric antigen

receptors (CAR-T). Three BsAbs targeting CD20 have received FDA

approval, while CD20-specific CAR-T cells are presently undergoing

clinical trials. Notably, CAR-T cells simultaneously targeting CD19

and CD20 aim to address CD19-negative clones, with ongoing

clinical trials in advanced r/r B-cell malignancies (Table 1).

This comprehensive review explores various CD20-directed

immunotherapies, including mAbs, radio-immunoconjugates,

BsAbs, and CD20 CAR-T cells. The discussion encompasses both

approved drugs and novel solutions undergoing investigation in

preclinical and clinical trials (Figures 2, 3; Tables 1–3). Mechanisms

of resistance to CD20-directed immunotherapies are presented

(Figure 4), and the potential for various combinations with

immunotherapies is discussed.
CD20 antigen: structure, function, and
expression regulation

CD20 is a transmembrane protein whose significance as a target

for immunotherapy is well recognized, although its biological role

remains elusive. Encoded by the MS4A1 gene, CD20 is part of the

MS4A family, which consists of 18 proteins with similar structures.

The CD20 protein spans the cell membrane with four

transmembrane helices and features two extracellular loops,

which are the main epitopes recognized by anti-CD20 mAbs.

Notably, both the N-terminal and C-terminal ends of CD20 are

situated inside the cell. The detailed structure and dimeric assembly

of CD20 on the cell membrane have recently been extensively
FIGURE 1

A diagram illustrating B cell differentiation and maturation, emphasizing the pronounced increase in CD20 expression levels depicted through a red
color gradient. Associated malignancies are positioned near the cell of origin and represented within grey boxes. B-ALL, B cell acute lymphoblastic
leukemia; BL, Burkitt lymphoma; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; HSC, hematopoietic stem cell; MCL, mantle cell
lymphoma; M-CLL, mutated chronic lymphocytic leukemia; MM, multiple myeloma; MZL, marginal zone lymphoma; SMZL, splenic marginal zone
lymphoma; U-CLL, unmutated chronic lymphocytic leukemia; WM, Waldenstrom macroglobulinaemia. The figure was created using BioRender.com.
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characterized (9). This structural research sheds light on the

molecular architecture of CD20 and anti-CD20 mAbs biding

modes, contributing to our understanding of its potential as a

target for immunotherapy (9).

While no identified physiological ligand binds to CD20, it is

known to form nanoclusters on the B cell membrane with proteins

such as IgD or IgM-class B cell receptors (BCR), CD19, CXCR4, and

CD40 (10). A recent study utilizing CRISPR/Cas9-mediated CD20

elimination from mature B cells revealed CD20’s role as a

gatekeeper in maintaining the resting state. The knockout of

CD20 resulted in the translocation of the BCR toward the CD19

coreceptor, transient B cell activation, and internalization of various

B cell-specific proteins (10). Additionally, initial research proposed
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that CD20 may function as a calcium channel (11), however,

subsequent findings suggested that calcium flux induction is

mediated by the CD20-BCR complex rather than CD20 alone

(12). Therefore, the role of CD20 as a regulator of B cell activity

seems to be inherently linked to interactions of CD20 with other

surface proteins, primarily with the BCR complex.

The regulation of the MS4A1 gene was attributed to several

transcription factors, summarized in (13). The described positive

regulators include transcription factors essential for B cell

development and maturation, such as PU.1, PiP (IRF4), NFkB
(14–16), as well as other factors, such as USF, TFE3.1 (16), OCT1,

OCT2 (17), ELK1, ETS1 (18), SP1, CHD4 and MBD2 (19).

Recently, another member of interferon regulatory factors (IRF)
FIGURE 2

Chronology of clinical approvals and recent breakthroughs in CD20-targeted immunotherapies. The figure was created using BioRender.com.
TABLE 1 Clinically tested CD20-targeting CAR-T therapies.

Name
Effector
cells

Structure Indications
Clinical

trial phase
Clinical

trial identifier

CD20 CAR-T
autologous
T cells

CD20 scFv with CD8a H/TM, 4-1BB, CD3z domains r/r B-NHL phase I NCT04036019

CD19/CD20 CAR-T
autologous
T cells

CD20 and CD19 scFv with CD8a H/TM, 41BB,
CD3z domains

r/r B-
cell malignancies

phase I/II NCT03097770

CD20/CD22 CAR-T
allogeneic
T cells

CD20 and CD22 scFv with CD8a H/TM, 41BB,
CD3z domains

r/r B-NHL phase I/II NCT05607420

CD19/CD20/CD22
CAR-T

autologous
T cells

CD19, CD20 and CD22 scFv with CD8a H/TM,
41BB CD3z domains

r/r B-NHL phase I NCT05418088
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FIGURE 3

Displayed are CAR constructs, including second- and third-generation designs specifically recognizing the CD20 molecule, alongside dual-
specificity CAR constructs recognizing both CD20 and CD19 molecules. Additionally, preclinical and clinical investigations explore the efficacy of
bi- or tri-cistronic vectors for the expression of these CARs. Linker 1: (G4S)5, Linker 2: (EAAAK)3. The figure was created using BioRender.com.
TABLE 2 Clinically approved and tested anti-CD20 mAbs and radio-immunoconjugates.

Name Structure Origin
CD20
epitope

characteristics

Fc
domain

Approval
date*

Indications

Common
dosages
in clini-

cal setting

Clinical
trials

Rituximab IgG1k chimeric
A(170)NPS(173) region

on large
extracellular loop

unmodified 1997
CLL,

DLBCL, FL
375 mg/m2
per infusion

PMID: 9310469

Ofatumumab IgG1 human

FLKMESLNFIRAHT
region on large
extracellular loop
and A74T, I76A,
Y77S residues on

small
extracellular loop

unmodified 2009 CLL
300-2000 mg
per infusion

NCT00092274

Obinutuzumab
glycoengineered

IgG1k
humanized

residues 172–176 on
large

extracellular loop

reduced
fucosylation
of Fc region

2013 CLL, r/r FL
100-1000 mg
per infusion

NCT22431570

Ublituximab
glycoengineered

IgG1k
chimeric

residues 168–171 and
158–159 on large
extracellular loop

reduced
fucosylation
of Fc region

not approved CLL
≤150 - 900 mg
per infusion

NCT02301156

Ocaratuzumab
glycoengineered

IgG1
humanized

A(170)NPS(173) region
on large extracellular

loop. Increased
affinity to CD20

reduced
fucosylation
of Fc region;
protein-

engineered to
improve
affinity to
158-F

FcgRIIIa
carriers

not approved r/r FL
375 mg/m2
per infusion

NCT00354926

90Y-
Ibritumomab
Tiuxetan

90-yttrium
labeled IgG1k

murine
A(170)NPS(173) region

on large
extracellular loop

unmodified 2002 FL, r/r NHL 14.8 MBq/kg PMID: 12777454

131I-
Tositumomab

131-iodium-
linked IgG2al

murine
A(170)NPS(173) region

on large
extracellular loop

unmodified 2003
r/r
NHL

(withdrawn)
75 cGy

PMID:15689582
PMID:11579112
F
rontiers in Immu
nology
 04
(*) regarding approval in oncological indications.
Information about CD20 epitopes recognized by subsequent Abs is described in (8).
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engaged in B cell development, IRF8, was shown to promote CD20

expression in DLBCL as well as in healthy B cells (20). Negative

regulators of CD20 include FOXO1 (21), CREM (19), SMAD2/3

(22), and MYC (23, 24).

Additional regulation of CD20 expression occurs on the

epigenetic level. Histone deacetylase (HDAC) family members

HDAC1/2, HDAC1/4, and HDAC6 as well as methyltransferase

enzyme EZH2 can repress CD20 in healthy and malignant B cells

(25–27). Recently, the occurrence of four 5’-UTR variants ofMS4A1

mRNA with differential translation efficacy was described (28).
Anti-CD20 mAbs
and immunoconjugates

The evolution of anti-CD20 mAbs marks a progression toward

enhanced compatibility and reduced immunogenicity. The first

therapeutic anti-CD20 mAb, rituximab, comprises a chimeric

murine-human structure, contributing to the development of

immune response and infusion-related reactions due to its limited

resemblance to natural human antibodies (29, 30). Enhanced

human content in subsequent mAbs correlates with decreased
Frontiers in Immunology 05
immunogenicity and improved binding affinity to human Fc

receptors. The newer generations of anti-CD20 mAbs, exhibiting

humanized (obinutuzumab) and fully human (ofatumumab)

designs have reduced immunogenicity (31–33). Furthermore,

heightened human sequence content enhances interactions with

immune effector cells and FcRn receptors on hepatic and epithelial

cells, thereby prolonging IgG antibodies’ half-life (34).

CD20-targeting mAbs elicit their cytotoxic function by at least

four different mechanisms (35). Upon binding CD20 on target cells,

they can activate complement-mediated cytotoxicity (CDC), engage

immune effector cells to mediate antibody-dependent cytotoxicity

(ADCC) and phagocytosis (ADCP), as well as directly induce cell

death. The anti-CD20 mAbs currently employed in cancer

treatment vary in their degree of activating specific mechanisms.

These differences are the basis for a categorization of anti-CD20

mAbs into two types. The majority of mAbs are characterized as

type I, which exhibit the ability to cluster CD20 into membrane

lipid rafts, which is associated with potent induction of CDC. On

the other hand, type I antibodies display a higher rate of

internalization, which can limit their therapeutic efficacy (36).

Type II mAbs do not stabilize CD20 in lipid rafts and are weak

inducers of CDC, but they potently evoke direct cell death (37).
TABLE 3 Clinically approved and tested CD20xCD3 BsAbs.

Name Structure
Antigen
binding
domain

Fc domain Production
Approval

date
Indications

Common
dosages in

clinical setting

Clinical
trials

Epcoritamab
full-

length IgG1

1 anti-
CD20 Fab
1 anti-
CD3 Fab

FcgR and C1q
binding
abolished
FcRn
binding

maintained

controlled Fab
arm exchange

2023 r/r DLBCL
0,16-48 mg s.c. in
28-day cycles with
step-up dosing

NCT03625037

Mosunetuzumab
full-

length IgG1

1 anti-
CD20 Fab
1 anti-
CD3 Fab

FcgR binding
abolished
FcRn
binding

maintained

knobes-
into-holes

2023 r/r FL
1-60 mg i.v. in 21-

day cycles
NCT02500407

Glofitamab
full-

length IgG1

2 anti-
CD20 Fab
1 anti-
CD3 Fab

FcgR and C1q
binding
abolished
FcRn
binding

maintained

head to tail
fusion via

flexible linker
2023 r/r DLBCL

2,5-30 mg i.v. in 21-
day cycles with step-

up dosing and
obinutuzumab
pretreatment

NCT03075696

Odronextamab
full-

length IgG4

1 anti-
CD20 Fab
1 anti-
CD3 Fab

FcgRIII
binding
abolished
FcRn
binding

maintained

heavy chains
with different
affnities and
common

light chains

Review
r/r DLBCL,

r/r FL

0,1-320 mg i.v. in 21-
day cycles with step-

up dosing

NCT02290951
NCT03888105

Imvotamab IgM

10 anti-
CD20 Fabs
1 anti-

CD3 scFv

unmodified

IgM platform
with

recombinant
J-chain

Not approved
r/r DLBCL,

r/r FL

15-300 mg i.v. in 21-
day cycles with step-

up dosing
NCT04082936

Plamotamab IgG1

1 anti-
CD20 Fab
1 anti-

CD3 scFv

FcgR binding
abolished
FcRn
binding

maintained

Fab-scFv-
Fc format

Not approved
r/r DLBCL,

r/r FL
dose-escalation study NCT02924402
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Rituximab, ofatumumab, and ublituximab are classified as the type I

anti-CD20 mAbs, whereas obinutuzumab represents a type II anti-

CD20 mAb.

CD20-directed mAbs are also used in the form of

immunoconjugates – Abs linked with drugs (ADCs), toxins

(immunotoxins or engineered toxin bodies – ETBs) or radioactive

isotopes (radio-immunoconjugates). Unlike conventional antibodies,

which largely depend on the immune effector cells or the complement

system for their cytotoxic effects, immunoconjugates can directly

induce apoptosis of cancer cells. Due to the relatively poor

internalization of CD20, few ADCs and immunotoxins were

developed. A single-chain variable fragment-based targeting CD20

and conjugated with Shiga-like toxin A subunit, MT-3724, presented

promising preclinical and early clinical results, but its development

was ceased by the manufacturer (38). Another strategy that does not

require CD20 internalization for direct and targeted cell killing is the

use of radio-immunoconjugates. This approach has gained significant

attention in targeting lymphoma cells, which are highly radiosensitive

(39). Radio-immunoconjugates utilize ionizing radiation to induce

cytotoxicity of the target cell. Concurrently, they can trigger classical

effector mechanisms such as CDC, ADCC, and ADCP.

In this section, we describe anti-CD20 mAbs and conjugates

that were approved for clinical use in lymphoid malignancies.

Additionally, other anti-CD20 agents that displayed effectiveness

in clinical trials of B-cell neoplasms are listed in Table 2.
Frontiers in Immunology 06
Rituximab

Rituximab is the first mAb used for cancer therapy. It is a

chimeric mouse/human IgG1 anti-CD20 mAb targeting the epitope

on a large extracellular loop of CD20. As a type I mAb, rituximab

elicits its function mostly by CDC, ADCC, and ADCP (35). Since

gaining its first approval for low grade FL in 1997 (40), rituximab has

consistently demonstrated its efficacy, both as part of combination

drug regimens and as a standalone agent, across various clinical trials.

Rituximab is currently employed in a broad spectrum of conditions

including DLBCL, Burkitt lymphoma (BL), MCL, FL, marginal zone

lymphoma (MZL), hairy cell leukemia (HCL), and CLL, as

comprehensively reviewed in (41). A relatively recent hematologic

application of rituximab involves its use in CD20+ adult B-ALL,

serving as an adjunct to chemotherapy throughout all stages of

treatment (7). The popularity and effectiveness of rituximab, as well

as the expiration of its patent, has catalyzed an increase in the

production of biosimilars. Following prior studies confirming its

bioavailability, a new formulation of rituximab with hyaluronidase

has been approved for subcutaneous use in FL, CLL, and DLBCL

(42). Despite the success of rituximab, some patients experience

relapses due to various resistance mechanisms, including

trogocytosis, complement exhaustion, internalization of CD20 and

others, described in the section Resistance to CD20-directed

immunotherapies (43, 44). Attempts to increase the efficacy of
FIGURE 4

Mechanisms of resistance to CD20-directed immunotherapies. 1. Internalization, 2. Trogocytosis, 3. Loss of antigen expression, 4. Alternative
splicing, 5. Drug-induced antigen downregulation, 6. Loss of an epitope, 7. Lineage switch, 8. Overexpression of complement regulatory proteins, 9.
Downregulation of complement proteins, 10. CD16 downregulation, 11. Secretion of immunosuppressive cytokines, 12. Immune checkpoints, 13.
Secretion of suppressive molecules, e.g. galectin 1. The figure was created using BioRender.com.
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rituximab prompted the trials combining rituximab with other drugs

that could potentiate its cytotoxicity, ideally in chemotherapy-free

schemes. A phase 3 study AUGUMENT confirmed the benefit of the

addition of the immunomodulatory drug lenalidomide to the

rituximab in r/r FL and MZL (45). Strategies involving the addition

of mTOR inhibitors to rituximab combined with classic

chemotherapeutics are also under investigation for the treatment of

patients with r/r DLBCL, with promising results from phase 1 and 2

trials (46, 47).
Ofatumumab

Ofatumumab (2F2) is a fully human anti-CD20 IgG1k mAb

developed by Genmab and Glaxo PLC. It binds to an epitope

distinct from that of rituximab, targeting both small and large

extracellular loops of CD20 (48). Preclinical tests have shown that

ofatumumab induces CDC more potently than rituximab, while the

ADCC efficacy is comparable to that of rituximab (49, 50). The

superior CDC efficacy of ofatumumab may be in part associated

with the location of its target epitope more proximally to the cell

membrane than the epitope recognized by rituximab (51). Recent

structural studies also revealed that ofatumumab complexes show

optimal geometry for complement recruitment (52). Additionally,

ofatumumab demonstrates a slower off-rate than rituximab (49),

allowing prolonged binding to the target cells. The first approval of

ofatumumab was granted in 2009 for refractory CLL. Despite

promising preclinical results, there is limited clinical evidence to

confirm its superiority over other anti-CD20 agents (53). Clinical

trials comparing ofatumumab to rituximab in FL (54) and DLBCL

(55) relapsed after a rituximab-containing therapy showed no

superiority of ofatumumab. On the other hand, the comparison of

the treatment composed of hyper-fractionated cyclophosphamide,

vincristine, doxorubicin, dexamethasone with ofatumumab

(HCVAD-O) to the historical cohort of B-ALL CD20+ Ph- patients

treated with HCVAD with rituximab (HCVAD-R) showed

improvement in event-free survival (EFS) and overall survival (OS)

(56). Currently, ofatumumab is rarely used in its initial indication,

being replaced by newer agents such as obinutuzumab or ibrutinib

(57–59).
Obinutuzumab

Obinutuzumab (GA101) is a humanized, glycoengineered IgG1

type II mAb that targets the epitope on the large extracellular loop of

CD20, which partially overlaps with the rituximab epitope. The

novelty of obinutuzumab design lies predominantly in the

glycoengineering modifications, which were applied to improve

affinity to the FcgR receptors on effector cells (60). Specifically,

obinutuzumab exhibits reduced fucosylation of oligosaccharides

attached to Asp297 in its Fc region, which results in improved

binding of FcgRIII (61). In preclinical tests, obinutuzumab

presented a slower internalization rate after binding to CD20 and

superior efficacy in ADCC than rituximab and ofatumumab (62). The

ADCP efficacy was comparable between the three antibodies (63). As
Frontiers in Immunology 07
a type II mAb, it exhibits reduced levels of CDC (60, 63), but was

suggested to have the ability to induce direct cell death (DCD) via a

non-apoptotic, lysosome-mediated mechanism, in some, but not all

target cell types (64, 65). While obinutuzumab has consistently

demonstrated greater effectiveness than equivalent doses of

rituximab in the preclinical in vivo models (60, 66, 67), the exact

reasons behind this advantage remain incompletely understood. The

underlying mechanism appears to be multifaceted and potentially

attributable to the combination of several factors including greater

induction of ADCC and DCD, as well as being less prone to

internalization (63). Importantly, obinutuzumab demonstrated

superior efficacy as a part of the chemotherapy regimen in

comparison with the same chemotherapy but with rituximab in

first-line treatment of CLL patients, demonstrating improved

progression-free survival (PFS) and OS in a phase 3 trial (68). This

resulted in the approval of obinutuzumab in combination with

chlorambucil for the treatment of patients with previously

untreated CLL in 2013 (69). Recently published results from the

phase 3 trial have also demonstrated the benefit of obinutuzumab

over rituximab when used as a part of immunochemotherapy in the

first-line treatment of FL (70). On the other hand, no advantage over

rituximab was observed in advanced DLBCL (9, 71, 72). It is also

important to note that the overall doses of obinutuzumab in the

clinical trials were higher for most patients (68, 70, 73). An ongoing

trial will assess the efficacy of obinutuzumab versus rituximab in B-

ALL (NCT04920968). Additionally, promising results of the phase 1

trial of the combination of obinutuzumab with the novel oral

cereblon-modulating agent avadomide suggest the potential for

new chemotherapy-free regimens for NHL (74). Comprehensive

information about obinutuzumab and its efficacy is reviewed in

(69, 73, 75).
Radio-immunoconjugates: 90-Y-
Ibritumomab tiuxetan and
131I-Tositumomab

Y-90-Ibritumomab tiuxetan is a murine anti-CD20 IgG1 mAb

linked with Y-90 isotope of yttrium, which emits beta radiation and

decays to non-radioactive Zirconium-90. A randomized controlled

trial of 90-Y ibritumomab tiuxetan in r/r low-grade, follicular, or

transformed NHL showed a significant improvement in overall

response rate (ORR) and complete response (CR) rates (ORR 80%

vs. 56%; CR 30% vs. 16%) in comparison to the rituximab treatment

(76). 90-Y ibritumomab tiuxetan was approved in 2002 for r/r NHL

patients, and in 2014 the approval was expanded for the first-line

consolidation in NHL (77, 78).

131I-Tositumomab is a murine anti-CD20 monoclonal IgG2

antibody linked with Iodium-131, which emits beta and gamma

radiation. It was approved for use in r/r NHL in 2003. Despite the

documented efficacy in FL and r/r NHL (79, 80) 131I-Tositumomab

was replaced by modern agents and its sale was discontinued

in 2014.

While the use of radio-immunoconjugates is linked to an

increased risk of secondary malignancies and myelotoxicity, their

overall toxicity profile was considered acceptable and comparable to
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other therapies (39, 79, 81–84). Nonetheless, neither of the two

radio-immunotherapeutic agents has been widely used in clinical

practice, mainly due to economic and logistic problems, such as

radiation safety concerns (85). Radio-immunotherapeutics

targeting CD20 are extensively reviewed in (86).
Side effects of anti-CD20 mAbs and
their management

The toxicity of anti-CD20 mAbs is relatively low, with

hypersensitivity reactions, myelosuppression, and immunosuppression

being the most common. Other common side effects include chest pain,

arrythmia, paresthesia, nausea, diarrhea, abdominal pain, and muscle

pain (87, 88). Rarely, more severe complications may occur, including

tumor lysis syndrome or progressive multifocal leukoencephalopathy

(PML). Common strategies for reducing hypersensitivity reaction

incidence include premedication by steroids or antihistamine drugs

and a slow rate of first infusion (89). For CLL patients with high

lymphocyte counts (over 25 x 10^9/L), administration of i.v.

prednisone or prednisolone is recommended before the infusion of

rituximab to decrease the risk of acute infusion reactions and/or cytokine

release syndrome (CRS) (88). Additionally, a recent study confirmed that

obinutuzumab - as a humanized and potentially less immunogenic

antibody - can be used as an alternative to rituximab after a

hypersensitivity reaction (31). In the case of hypogammaglobulinemia,

intravenous immunoglobulin (IVIG) replacement should be considered

to reduce the risk of infections (90). Radiolabeled antibodies exhibit

additional toxicities related to the emitted radiation, including the risk of

myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML)

(86). Additionally, the use of 131I-Tositumomab can lead to

hypothyroidism. This was addressed by oral administration of

potassium iodide to inhibit the thyroid uptake of Iodium-131 (86).
CD20-directed BsAbs

BsAbs represent one of the most promising classes of off-the-

shelf immunotherapies for the treatment of r/r B cell malignancies

(91, 92). Notably, several BsAbs targeting the CD20 antigen

received clinical approvals in 2023, with numerous others

showing promising results in ongoing clinical trials (Figure 2,

Table 3) (93). These engineered proteins, featuring dual binding

sites, can simultaneously target two different antigens or two

epitopes of the same antigen. This dual specificity allows BsAbs to

bridge immune cells, such as T cells, with target tumor cells,

promoting their interaction and subsequent cytotoxicity against

the tumor cells.

Over the past few years, there has been a rapid development of

this technology, resulting in various molecular BsAb formats,

including IgG-like and non-IgG-like platforms (91, 92). IgG-like

BsAbs mimic the structure of IgG, featuring an Fc region for effector

functions, like ADCC and CDC, and provide a larger molecular

weight, which increases solubility, stability, serum half-life. This

allows for a wider spectrum of dosing frequency from daily to

weekly or even less frequent and its administration both
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intravenously and subcutaneously. In contrast, non-IgG-like

BsAbs lack the Fc region, typically have a smaller molecular

weight, and primarily exert therapeutic effects through direct

antigen binding (92). This applies also to blinatumomab, the first

BsAb approved for medical use. Blinatumomab is a CD3xCD19

bispecific T-cell engager that consists only of two scFvs connected

by a linker, which contributes to a relatively short half-life and the

necessity for frequent dosing in prolonged infusions (94).

Among the various formats, the anti-CD20xCD3 BsAb

engaging cytotoxic T cells is the most popular format. Here we

focus on CD20-targeting IgG-like BsAbs as a new therapeutic

option for patients with B-cell malignancies who have already

undergone several lines of mAbs and CD19 CAR-T therapy.
Epcoritamab (DuoBody-
CD3xCD20, GEN3013)

It is a full-length IgG1 BsAb generated by Fab-arm exchange of

a humanized CD3 mAb and human CD20 mAb (95). In preclinical

studies, epcoritamab has demonstrated its efficacy by eliciting

robust T-cell activation and T-cell-mediated cytotoxicity against

NHL cell lines in vitro (95). It also showed high effectiveness against

primary cells derived from lymph node biopsies from newly

diagnosed and r/r B-NHL patients (96). Moreover, epcoritamab-

mediated cytotoxicity was observed against primary CLL cells in

vitro and in vivo in patient-derived xenografts (PDX), where

epcoritamab demonstrated a reduction in both blood and spleen

disease burden. This effect was enhanced when used in combination

with Bruton’s tyrosine kinase (BTK) and BCL2 inhibitors (97).

These promising results led to the testing of epcoritamab in

clinical trials. In the first-in-human trial in patients with r/r B-cell

lymphoma, including DLBCL, FL, MCL, high-grade B-cell

lymphoma (HGBCL), primary mediastinal large B-cell lymphoma

(PMBCL), small lymphocytic lymphoma (SLL) and MZL

(EPCORE™ NHL-1, NCT03625037), epcoritamab administered

as a single agent subcutaneously in 68 patients exhibited notable

efficacy (88% ORR and 38% CR at 48 mg) (98). In an ongoing

clinical trial evaluating the safety and efficacy of epcoritamab in

patients with r/r CLL and Richter’s syndrome (EPCORE™ CLL-1,

NCT04623541) so far epcoritamab was well tolerated (99). Several

other clinical trials using this BsAb are currently underway,

including testing a combination with rituximab for the first-line

FL (NCT05783609). In 2023 the encouraging outcomes of clinical

trials resulted in FDA and EMA approval of epcoritamab for r/r

DLBCL after at least two lines of systemic therapy (100, 101).
Odronextamab (REGN1979)

This hinge-stabilized, fully human IgG4 BsAb targeting CD20 and

CD3, has demonstrated both in vitro and in vivo efficacy (102, 103),

leading to further evaluation of its effectiveness in clinical trials. In a

phase 1, multicenter trial (ELM-1, NCT02290951) investigating the

safety and tolerability of odronextamab in 145 patients with CD20+ B-

NHL pretreated with CD19 CAR-T therapy or refractory to the last
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line of therapy, ORR among all patients reached 51% (72 of 142

patients), but among those with FL who received doses of 5 mg or

higher 91% ORR (29 of 32 patients) and 72% CRR (23 of 32 patients).

DLBCL patients who received doses of 80 mg or higher without

previous CAR T-cell therapy reached 53%ORR and all responses were

complete, and those pretreated with CAR T-cell 33% ORR and 27%

CR (104). Additionally, the efficacy and safety of odronextamab were

demonstrated in a case report of two patients with r/r B-NHL

refractory to CAR-T therapy, who achieved complete responses that

persisted for over 2 years of follow-up (105). In the light of these

results, currently the phase 2 clinical trial is conducted. It assesses the

anti-tumor activity and safety of odronextamab in pretreated patients

with B-NHL (ELM-2, NCT03888105).

Odronextamab is not yet fully approved for marketing, but in

September 2023 FDA accepted it for Priority Review for the

treatment of adult patients with r/r FL and r/r DLBCL after at

least two prior systemic therapies (106). Almost at the same time,

EMA has accepted it for review in the same medical indications

(107). Previously this drug was designated by EMA as an orphan

drug for FL and DLBCL.
Mosunetuzumab (BTCT4465A)

It is a full-length, humanized IgG1 CD20xCD3 BsAb, generated

using “knobs-into-holes” heterodimerization technology, which

allows the combination of two heavy chains, one with the ‘knob’

mutation and the other with the ‘hole’ mutation, into one BsAb

(108, 109). It was effective in vitro against tumor B cells obtained

from PBMC of CLL patients, and in vivo in mice and cynomolgus

monkeys, causing complete B cell depletion in peripheral blood and

lymphoid tissues also in the presence of a competitive anti-CD20

mAb (108).

It has been tested in phase 1/2 clinical trial verifying it as a single

agent and combined with atezolizumab (anti-PD-L1 mAb) in NHL

and CLL (NCT02500407) and demonstrated notable efficacy and a

manageable safety profile in patients with r/r FL (ORR 78%, CR

60%) (110). In patients with r/r DLBCL, including those previously

treated with CAR-T cells, ORR was 42% and CR 23.9% (111). It is

also being investigated in combination with polatuzumab vedotin

(CD79b-directed ADC approved for patients with previously

untreated DLBCL, NOS and HGBL with International Prognostic

Index (IPI) score of at least 2) in B-NHL (NCT03671018) where it

shows a favorable safety profile with highly durable responses (112).

Currently, many other single-agent and combination studies of

mosunetuzumab in r/r and previously untreated B-NHL are

ongoing. In June 2022 mosunetuzumab obtained conditional

approval from EMA (113) and in January 2023 FDA approved it

for adult patients with r/r FL after two or more lines of systemic

therapy (114).
Glofitamab (RO7082859)

It is CD20xCD3 heterodimeric human IgG1 BsAb with two

anti-CD20 and one anti-CD3 Fabs (115). In preclinical studies, it
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showed higher potency than classical 1:1 IgG BsAbs, and its main

treatment-related risk of CRS was mitigated by prior treatment with

obinutuzumab (115). This combination of anti-CD20 therapies was

evaluated in phase 1/2 clinical trial in patients with r/r B-NHL

(NCT03075696), where it demonstrated durable responses, with

most patients in CR (116, 117). These clinical findings were also

confirmed in a group of 46 heavily pretreated patients with r/r

DLBCL, who were given the drug under compassionate use and

reached 7 months median OS (118). Glofitamab is also tested in

combination with polatuzumab vedotin plus rituximab,

cyclophosphamide, doxorubicin and prednisone (R-pola-CHP)

and shows promising early results (ORR 100% and CR 76,5%

among 17 patients) (119). Therefore in June 2023 FDA granted

accelerated approval to glofitamab for r/r DLBCL, not otherwise

specified (NOS) or large B-cell lymphoma (LBCL) arising from FL,

after two or more lines of systemic therapy (120), and in July EMA

approved it for conditional use for adults with r/r DLBCL after at

least two previous treatments (121).
Imvotamab (IGM-2323)

This CD20xCD3 IgM BsAb is generated from 10 high-affinity

CD20 binding domains and a single anti-CD3 scFv fused through

the recombinant J-chain (122, 123). It exhibits a higher avidity for

the CD20 binding and induces CDC against CD20-expressing cells

with a greater potency than IgG BsAbs in vitro (122). Moreover, it

exhibits vastly reduced cytokine release in vitro and in vivo (122)

and seems to maintain higher effectiveness in the presence of

rituximab than IgG BsAbs (124). A combination of imvotamab

and loncastuximab tesirine (CD19-directed ADC approved in r/r

LBCL after two or more lines of systemic therapy) demonstrated

enhanced cytotoxic effect in preclinical studies (125) and is

currently tested in first-in-human clinical trial in patients with r/r

NHL (NCT04082936). So far imvotamab shows notable safety and

tolerability profile due to repeatable IFNg-dominant cytokine

profile (123, 126).
Plamotamab (XmAb13676)

This humanized CD20xCD3 IgG1 BsAb is heterodimer with

one IgG Fab arm exchanged for a scFv (127, 128). Preclinical in vivo

data show its efficiency both in circulation and lymphoid organs

(127). A phase 1 clinical trial (NCT02924402) evaluating its safety

and tolerability in patients with CD20-expressing hematologic

malignancies is ongoing and demonstrated so far evidence of

clinical activity in heavily pretreated patients with DLBCL and

FL, including earlier treatment with CAR-T therapy (129, 130).
Other BsAbs

There are several new directions in the further development of

BsAbs, involving the use of antigens other than CD3. These include,

among others, CD20xNKG2D antibodies, which engage the cytotoxic
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activity of NK cells against leukemic cells in vitro (131, 132). Another

novel type of BsAb tested in preclinical studies is the CD95xCD20

antibody, which induces apoptosis in malignant B cells both in vitro

and in vivo (133, 134). Finally, CD20xCD28 antibodies, which were

first created over 20 years ago, however, due to the high production

costs using conventional methods, were not developed for a long time

(135, 136).
Side effects of CD20-directed BsAbs

Although significant therapeutic successes have been observed

in clinical trials, CD20xCD3 BsAbs are associated with certain side

effects. The most common is CRS, primarily associated with the

initial doses and confined to the first cycle of treatment (110, 137).

This is related to the simultaneous binding of BsAb to CD3 of

effector cells and FcgR of other immune system cells or complement

factor C1q, which results in premature activation and release of

cytokines, hampering the effectiveness of therapy and increasing its

toxicity. Therefore, currently used BsAbs have silencing mutations

in the Fc regions that prevent binding to FcgR and C1q but retain

binding to FcRn, which ensures extended plasma half-life (138).

Another strategies to overcome CRS are step-up dosing of BsAbs

(111, 139) and premedication with anti-CD20 mAb, which depletes

B-cells in both peripheral blood and secondary lymphoid organs

and decreases T cells activation (115). Other common adverse

events include pyrexia, fatigue, injection-site reaction, nausea,

diarrhea, hypophosphatemia, hematological toxicit ies :

neutropenia, anemia, lymphopenia, thrombocytopenia, as well as

neurological adverse events: headache, insomnia, dizziness (98, 99,

104, 110–112, 117–119, 126, 129, 130, 137, 139–143). Immune

effector cell-associated neurotoxicity syndrome (ICANS) is a rare

complication that occurs in less than 5% of patients treated with

BsAb (119, 137, 139). The frequency and severity of these side

effects vary. To mitigate risks, careful patient monitoring,

premedication with anti-CD20 mAb, and dose adjustments are

implemented to enhance the safety profile of CD20xCD3

BsAb therapies.
CD20-directed CAR-T cells

CD20 is also under exploration as a target for CAR-T cells in

preclinical and clinical trials. CARs are synthetic constructs

comprising extracellular antigen recognition domains, hinge and

transmembrane regions, and intracellular signaling domains

responsible for their activation and proliferation. Approved CAR

T-cell therapy involves genetically engineered autologous products,

utilizing the patient’s CAR T cells to target tumor cell antigens.

Currently, four CD19-targeted CAR T-cell therapies are approved

for treating r/r B-ALL and r/r B-NHL. Despite its efficacy, around

60% of patients experience disease relapse post-CD19 CAR-T

treatment, often due to mechanisms like CD19 antigen loss. Also,

in some patients, life-threatening toxicities occur, including severe

CRS and ICANS (144, 145). Ongoing clinical trials suggest that

CD20 CAR T-cell therapy could be a promising treatment for r/r
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NHL, even in cases of CD19-negative disease post-CD19 CAR-T

cell relapse (Table 1). The structure of the clinically tested CD20

CAR T-cells is presented in Figure 3.

Phase 1/2 clinical trials utilizing second- and third-generation

CAR constructs have confirmed the feasibility and efficacy of

autologous anti-CD20 CAR-T cells in r/r CD20+ B-NHL (146).

Particularly noteworthy is the efficacy of CD20 CAR T-cell therapy

in treating r/r B-NHL patients who had previously failed

chemotherapy, including R-CHOP. Studies indicate that CD20-

targeted CAR T cells exhibit effectiveness even in cases of low

antigen expression, proposing their potential utility for patients

with CD20-downregulated B-NHL refractory to CD20 mAb

therapy (28, 147). A comprehensive overview of ongoing and

completed clinical trials for single CD20 CAR T-cell therapy in

hematologic malignancies can be found in Table 2 of a recent

review (148).

CD20 is also a pivotal target in CAR-T cell immunotherapies

designed to mitigate antigen escape risks. Strategies targeting both

CD19 and CD20 include bispecific/tandem CARs, co-administration

of CD19 and CD20-directed CAR-T cells as well as sequential

treatment with CD19 and CD20-directed CAR-T cells. Tan CAR7

T cells are bispecific CAR T cells composed of tandem extracellular

domains targeting CD20 and CD19 tumor antigens linked in frame

to the tisa-cel backbone, capable of activation via binding to either

CD19 or CD20 tumor antigens, or both (149). Long-term remissions

were observed following the use of Tan CAR7 T cells in r/r B-NHL

with a safety profile that included CRS but few cases of high-grade

CRS (150, 151). In a recent phase 1 dose-escalation trial, autologous

CD19/CD20 bispecific CAR-T cells derived from naïve and memory

T cells demonstrated safety and strong efficacy (90% ORR, 70% CR

rate) in patients with r/r B-NHL (152). Beyond bispecific CD19/

CD20 CAR T-cells, ongoing clinical trials explore sequential CD20

CAR-T after CD19 CAR-T infusion and combined infusion of CD19

and CD20-specific CAR-T cells for r/r B-ALL or DLBCL. However, a

phase 2 trial combining anti-CD19 and anti-CD20 CAR-T cells in r/r

DLBCL showed limited long-term responses (153). Recently, a

combinatorial CAR-T cell approach targeting three antigens, CD19,

CD20, and CD22, demonstrated efficacy in preclinical models,

including leukemic cells that do not express CD19, thereby

showcasing the promising potential for treating CD19-negative

relapses (154). This approach is now undergoing testing in a

clinical trial (NCT05418088).
Resistance to CD20-
directed immunotherapies

Despite substantial progress in CD20-targeting immunotherapies,

the issue of resistance and post-treatment relapse remains prominent.

Resistance to CD20-targeted therapies encompasses a spectrum of

mechanisms, ranging from alterations in CD20 antigen levels to

compromised immune system effector functions, and extending to

diverse mechanisms of immune evasion (Figure 4). One of the main

causes of resistance is the loss of the CD20 antigen on the surface of

the target cell, which can be caused by changes in the expression of

theMS4A1 gene, including silenced expression and alternative splicing
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(28, 155–158). A recent study has shown that the gene encoding CD20

in both healthy and malignant B cells is alternatively spliced into four

5’-UTRs variants, of which especially variants V3 and V4 support

robust translation. It has also been demonstrated that resistance to the

BsAbs therapy targeting CD20 results from the V3-to-V1 shift (28). A

potential strategy to combat this resistance through the use of

phosphorodiamidate morpholino oligomers or antisense

oligonucleotides was presented in preclinical studies (28). Other

mechanisms of antigen loss which may also cause resistance include

the internalization of the CD20-mAb complex by cancer cells through

endocytosis as well as the transfer of membrane fragments containing

CD20 from a cancer cell to an effector cell called trogocytosis

(159–161).

Resistance to CD20-directed immunotherapies may also be

caused by impaired effector functions of the immune system, such

as CDC and ADCC. Therapies targeting CD20 may cause

complement depletion and overexpression of its inhibitors CD55

and CD59 (44, 162). Additionally, downregulation of the

complement component C1qA was associated with the resistance

of DLBCL cells to rituximab in vitro (163). Potential strategies to

overcome these mechanisms may include the use of inhibitors of

complement regulatory proteins as well as the use of the new

asymmetric CD55-binding bispecific antibodies (164). Moreover,

rituximab-coated tumor cells were shown to significantly

downregulate CD16 (FcgRIII), leading to impaired ADCC (165).

Mutations that modify the binding of the Fc fragment of antibodies

to FcgR can be used to increase the effector functions of antibodies

(166, 167). However, as previously mentioned, this approach may

not always be optimal when utilizing BsAbs, as it carries an

increased risk of premature activation of T cells, cytokine release,

and tissue damage.

Additionally, genetic alterations within signaling pathways can

also contribute to resistance to CD20-directed therapies, especially

in the context of T cell activation, which is crucial for the activity of

BsAbs and CAR-T cells (168, 169). Moreover, the tumor

microenvironment can play a role in resistance by creating an

immunosuppressive milieu. Tumor cells and immunosuppressive

cells in the tumor microenvironment, e.g. myeloid-derived

suppressive cells (MDSCs), tumor-associated macrophages

(TAMs), and regulatory T cells (Tregs), can secrete suppressive

cytokines that inhibit the activity of effector cells (T cells, NK cells,

phagocytes), thereby reducing the effectiveness of immunotherapy

(170, 171). It has also been shown that some proteins secreted by the

tumor may have a suppressive effect, including galectin-1, which

inhibited CD20 mAb-induced phagocytosis in the lymphoma

microenvironment (172). Moreover, overexpression of PD-L1 by

tumor cells can contribute to resistance to CD20-targeting therapies

by dampening the activity of effector T cells induced by these

therapies. Tumor cells may increase PD-L1 expression in response

to treatment, leading to T cell exhaustion and reduced efficacy of

CD20-targeting therapies (173). Combining CD20-targeting

therapies with immune checkpoint inhibitors is a potential

strategy to overcome resistance and is currently tested in clinical

trials, as discussed in more detail in section Combination therapies

with CD20 immunotherapeutics.
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Due to the multitude of resistance mechanisms, it is crucial to

actively search for new methods that can increase the effectiveness

of immunotherapy. Research efforts encompass the identification of

novel therapeutic targets beyond CD20, the refinement of patient

stratification, and the incorporation of combination therapeutic

strategies. A recent review summarizes potential solutions to

overcome resistance to CAR-T therapy (174).
Combination therapies with
CD20 immunotherapeutics

To enhance their efficacy, anti-CD20 mAbs are commonly

administered in combination with other drugs. One notable

combination is the R-CHOP regimen, which integrates rituximab

with cyclophosphamide, doxorubicin, vincristine, and prednisone,

and has been extensively employed in treating patients with DLBCL

and MCL. Similarly, R-pola-CHP (rituximab, polatuzumab,

cyclophosphamide, doxorubicin) regimen is an approved

treatment for advanced-stage DLBCL. Other regimens include a

combination of rituximab, dexamethasone, high-dose cytarabine

and a platinum-based agent (R-DHAP) used in the treatment of

MCL, and the addition of lenalidomide to rituximab (R-

lenalidomide) which has shown promising results, particularly in

patients with r/r FL. Combinations such as bendamustine and

rituximab (BR) and fludarabine, cyclophosphamide, and

rituximab (FCR) have demonstrated efficacy in the treatment of

CLL. Furthermore, novel combinations of rituximab with targeted

agents have shown significant potential. Rituximab in combination

with venetoclax, a BCL-2 inhibitor, as well as with idelalisib, a PI3K

inhibitor, has been approved for the treatment of CLL.

Furthermore, the R-GemOx regimen, which combines rituximab

with gemcitabine and oxaliplatin, has exhibited notable efficacy in

r/r B-NHL in phase 2 clinical trial (175), and is currently being

compared to a similar regimen using glofitamab instead of

rituximab (glofit-GemOx) in a phase 3 clinical trial (176). In the

treatment of CD20+ B-ALL, rituximab is added to standard

chemotherapy regimens in patients with a Philadelphia

chromosome-negative (Ph-) B-ALL. In patients with Philadelphia

chromosome-positive (Ph+) CD20+ B-ALL, rituximab is combined

with chemotherapy and BCR-ABL1 tyrosine kinase inhibitors, such

as imatinib and dasatinib.

Several clinical trials have investigated the efficacy of other

combination therapies involving CD20-targeting in patients with B-

NHLs. Among these trials, the combination of R-DHAP regimen

with temsirolimus, an mTOR inhibitor, has shown encouraging

results, demonstrating improved outcomes in patients with r/r

DLBCL (47). Temsirolimus has also demonstrated effectiveness in

combination with rituximab alone in patients with r/r MCL in

phase 2 clinical trial (177). Moreover, checkpoint inhibitors are also

being tested in phase 1 and 2 clinical trials in combination with anti-

CD20 therapies. The addition of atezolizumab to an R-CHOP

regimen in previously untreated DLBCL patients resulted in

77,5% CR (178). It is also tested in combination with BsAbs

glofitamab and mosunetuzumab in phase 1/2 clinical trials in
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patients with NHL (NCT02500407, NCT03533283) (179).

Additionally, pembrolizumab (anti-PD1 mAb) was evaluated in

combination with rituximab in a single-arm phase 2 clinical trial

and resulted in 67% ORR with 50% CR among patients with r/r

FL (180).

Notably, drugs that are used in combinations with CD20-

targeting immunotherapies may have a bidirectional impact on

CD20 antigen expression and thus the effectiveness of these

therapies. Prednisolone, a glucocorticosteroid present in many

chemotherapeutic regimens, was shown to upregulate CD20 on

some primary B-ALL samples in vitro (4). On the other hand, some

drugs that are used together with anti-CD20 mAbs, such as BTK

inhibitor ibrutinib, PI3Kd inhibitor idelalisib, or SYK inhibitor

dasatinib, were shown to downregulate CD20 and demonstrated

inhibitory effects on cytotoxic effector cells (181–184). These drugs

decreased the efficacy of anti-CD20 mAbs in vitro (183, 184). It may

also be one of the reasons for the failure of an attempt to improve

ibrutinib efficacy in CLL by the addition of rituximab, as

demonstrated in a randomized clinical trial showing no

improvement in PFS in the rituximab+ibrutinib group versus

ibrutinib alone (185). This highlights the need for further

research on the drug-induced changes in cellular signaling and

related CD20 regulation. Understanding these relationships may be

important for selecting the most effective therapies and improving

therapeutic results. Interestingly, several classes of CD20-

upregulating drugs were described, including aurora kinase

inhibitors, FOXO1 inhibitors, and chromatin modulators,

enabling the increase in anti-CD20-mAbs efficacy in preclinical

settings (13). Combining these drugs with CD20-targeting therapies

could be a potentially valuable strategy to overcome resistance,

however, it requires further evaluation in a clinical setting.
Concluding remarks

A breakthrough in the treatment of B cell malignancies is

evident with recent approvals of CD19 CAR-T cells and BsAbs,

particularly those targeting CD20xCD3, offering effective treatment

and potential cure for r/r patients. Over the past 25 years, CD20, an

early target in immunotherapy, has demonstrated remarkable

effectiveness. However, the widespread use of cytotoxic T cell-

based therapies appeared with new challenges such as treatment-

related complications and side effects. Effective management

requires the accumulation of comprehensive knowledge and

experience, including identifying risk factors for CRS, ICAN, and

refining treatment guidelines. These improvements are crucial for

the widespread use of these innovative drugs.

With diverse treatment modalities emerging, from naked mAbs

to BsAbs and CAR-T cells, understanding determinants of activity

and resistance mechanisms for the specific types of treatment are

crucial for their optimal selection and clinical efficacy. Decent levels

of CD20 are essential for the efficacy of all types of CD20-directed

immunotherapies, however, recent preclinical reports emphasize
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that different types of anti-CD20 therapies require different

amounts of CD20 protein on the cell surface to be effective.

While a certain level of reduction in CD20 compromises the

activity of anti-CD20 mAbs and BsAbs, it may still be adequate

for the effectiveness of CD20 CAR-T cells (28). Although the CD20

CAR-T constructs currently being tested in the clinic show great

efficacy, further refinements to the CD20 CAR constructs, including

changes around the scFv sequence, have shown significant

superiority in preclinical models and offer the prospect of even

better outcomes for patients (186).

Key directions for CD20 immunotherapy improvement also

include combination strategies with small molecule drugs and

simultaneous targeting of multiple immunotherapy targets to

enhance precision and minimize relapse risks. Simultaneous

targeting of CD20 with other antigens like CD19 and CD22

demonstrates efficacy in preclinical models (154) and ongoing

clinical trials. Noteworthy, a better understanding of the

determinants of response and resistance will be critical for patient

selection and future rational combinations.
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