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Introduction: Human infections with the food-borne enteropathogen

Campylobacter jejuni are responsible for increasing incidences of acute

campylobacteriosis cases worldwide. Since antibiotic treatment is usually not

indicated and the severity of the enteritis directly correlates with the risk of

developing serious autoimmune disease later-on, novel antibiotics-independent

intervention strategies with non-toxic compounds to ameliorate and even

prevent campylobacteriosis are utmost wanted. Given its known pleiotropic

health-promoting properties, curcumin constitutes such a promising candidate

molecule. In our actual preclinical placebo-controlled intervention trial, we

tested the anti-microbial and anti-inflammatory effects of oral curcumin

pretreatment during acute experimental campylobacteriosis.

Methods: Therefore, secondary abiotic IL-10-/- mice were challenged with

synthetic curcumin via the drinking water starting a week prior oral C. jejuni

infection. To assess anti-pathogenic, clinical, immune-modulatory, and

functional effects of curcumin prophylaxis, gastrointestinal C. jejuni bacteria

were cultured, clinical signs and colonic histopathological changes

quantitated, pro-inflammatory immune cell responses determined by in situ

immunohistochemistry and intestinal, extra-intestinal and systemic pro-

inflammatory mediator measurements, and finally, intestinal epithelial barrier

function tested by electrophysiological resistance analysis of colonic ex vivo

biopsies in the Ussing chamber.

Results and discussion: Whereas placebo counterparts were suffering from

severe enterocolitis characterized by wasting symptoms and bloody diarrhea

on day 6 post-infection, curcumin pretreated mice, however, were clinically far

less compromised and displayed less severe microscopic inflammatory sequelae

such as histopathological changes and epithelial cell apoptosis in the colon. In

addition, curcumin pretreatment could mitigate pro-inflammatory innate and

adaptive immune responses in the intestinal tract and importantly, rescue colonic

epithelial barrier integrity upon C. jejuni infection. Remarkably, the disease-

mitigating effects of exogenous curcumin was also observed in organs beyond

the infected intestines and strikingly, even systemically given basal hepatic, renal,

and serum concentrations of pro-inflammatory mediators measured in

curcumin pretreated mice on day 6 post-infection. In conclusion, the anti-
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Campylobacter and disease-mitigating including anti-inflammatory effects upon

oral curcumin application observed here highlight the polyphenolic compound

as a promising antibiotics-independent option for the prevention from severe

acute campylobacteriosis and its potential post-infectious complications.
KEYWORDS
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1 Introduction

Human infections with the food-borne enteropathogen

Campylobacter jejuni are responsible for increasing incidences of

acute campylobacteriosis cases worldwide and are of both,

tremendous medical and financial impact (1). In 2021, over 127,000

new campylobacteriosis infections were reported in Europe but the real

case numbers including undiagnosed and/or non-reported illnesses are

estimated to exceed the reported ones several-fold (2). Within the

Campylobacteraceae family, the Gram-negative, microaerophilic, non-

spore-forming C. jejuni bacteria live commensally in the intestinal

tracts of warm-blooded vertebrate species, including birds, usually

generating no symptoms (3, 4). However, food chain transmission

via contaminated undercooked meat from poultry or other livestock,

unpasteurized milk, and its byproducts, as well as surface water may all

be considered as potential infectious sources upon ingestion by humans

(5). After a successful gastro-duodenal passage, the highly motile C.

jejuni bacteria invade the distal intestinal tissues, and specific bacterial

cell wall components, such as the endotoxin lipo-oligosaccharide

(LOS), induce the Toll-like receptor-4 (TLR-4)-dependent

hyperactivation of the host immune system (6–9). In this pro-

inflammatory immune cascade, both innate and adaptive immune

cell subsets, including neutrophils and T cells, respectively, are recruited

to the infection site, and pro-inflammatory mediators including

interferon-gamma (IFN-g), tumor necrosis factor-alpha (TNF-a),
interleukin (IL)-6, and nitric oxide (NO) are released to restrict the

infection, but by the expenses of exerting oxidative stress and damage

to the intestinal tissues (10). This results in epithelial cell damage,

induction of apoptosis, ulcerations, crypt drop-outs, and crypt

abscesses, which can lead to malabsorptive dysfunctions and to the

barrier-impaired “leaky gut” (11, 12). Depending on the individual

immunological fitness of the human host as well as the distinct

virulence genes expressed by the pathogen, infected humans may

present with symptoms of different severities after an incubation

period ranging from 2 to 6 days. For instance, patients may

complain about general malaise, nausea, vomiting, abdominal

cramps, watery or even bloody diarrhea, mucous discharge, and fever

(13, 14). Typically, patients recover completely two weeks post-

infection (p.i.). However, rarely, post-infectious autoimmune
02
morbidities affecting the intestinal tract (i.e., irritable bowel syndrome

(IBS), chronic inflammatory bowel disease (IBD)), the joints (i.e.,

reactive arthritis (RA)), and the central nervous system (i.e., Guillain

Barré syndrome (GBS)) may appear weeks to months after the initial

infection (14–16). It is interesting to note that the chance of developing

post-infectious sequelae is strongly correlated with the severity of the

previous enteritis episode, which in turn, depends on the sialylation

state of the C. jejuni-LOS (17). Patients with campylobacteriosis are

typically treated with symptomatic therapies such as analgesic,

antipyretic, and spasmolytic medications, along with electrolyte

replacement and rehydration. Patients with severe medical

conditions, such as those with immune-suppressive disorders, may

be treated with antibiotics including ciprofloxacin or erythromycin (14,

18). The increasing prevalence of infections with multi-drug resistant

C. jejuni strains, however, can make it rather challenging to effectively

treat severe campylobacteriosis cases in critically ill patients (18). Thus,

it is imperative to find non-toxic, antibiotic-independent therapeutic

approaches to ameliorate and even prevent acute campylobacteriosis

and its post-infectious sequelae.

Our One Health approach to identifying new protective

substances against campylobacteriosis focused on curcumin. The

bright yellowish curcumin can be found in the roots of the turmeric

plant Curcuma longa belonging to the ginger family and is

responsible for the spicy taste of curry spices. For a long time, the

polyphenolic compound has been known for its health-promoting

properties and is highly appreciated in traditional medicine as

remedy for many different morbidities (19). Both in vitro and in

vivo studies provided evidence for potent anti-inflammatory, anti-

oxidant, anti-infectious, and even anti-tumor effects of exogenous

curcumin as reviewed previously (20, 21). A recent in vitro study

revealed that curcumin was able to compromise the quorum

sensing of C. jejuni, which is essentially involved in bacterial

motility, colonization, and interaction with epithelial cells (22).

Notably, oral curcumin intake could alleviate acute experimental

inflammation in the small and large intestinal tract (23–25). In

several randomized clinical trials, curcumin has been even shown

efficient in maintaining remission in patients suffering from

ulcerative colitis when administered in combination with

mesalazine (26–28).
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Given its known pleiotropic disease-ameliorating properties,

curcumin constitutes a promising candidate molecule for

combatting campylobacteriosis. This prompted us to test

curcumin for its potential anti-microbial and anti-inflammatory

effects during C. jejuni-induced enterocolitis in mice. Two

prerequisites need to be taken into consideration, however. To

enable C. jejuni to colonize stably the murine intestinal tract, mice

need to be pretreated with antibiotics to deplete the commensal gut

microbiota providing a protective colonization resistance against C.

jejuni (29, 30). Furthermore, wildtype mice are known to be

approximately 10,000 times more resistant to TLR-4 ligands such

as lipo-polysaccharides (LPS) and LOS as compared to humans

(31), whereas the il10 gene knock-out can make mice vulnerable to

C. jejuni-LOS, however (8). Secondary abiotic (SAB) IL-10-/- mice,

in which the intestinal microbiota had been depleted by preceding

antibiotic treatment, were shown to develop acute enterocolitis with

bloody diarrhea and wasting symptoms within less than a week after

oral C. jejuni infection. Moreover, the animals generate pro-

inflammatory immune responses that did not only impact the

intestinal tract but also extra-intestinal organs such as the liver,

kidneys, and systemic circulation (32–34). Our previous studies

underscored that the SAB IL-10-/- mouse model is a reliable way to

assess the potential anti-microbial and disease-mitigating effects of

defined compounds including phenolic molecules such as carvacrol

(35, 36) and resveratrol (37, 38), for instance, during acute

campylobacteriosis. In this preclinical placebo-controlled

investigation, we administered synthetic curcumin orally as a

preventative measure to SAB IL-10-/- mice beginning a week

before C. jejuni infection. We evaluated the effects of this regimen

on various parameters, including i.) fecal C. jejuni shedding over

time p.i., ii.) gastrointestinal pathogen loads, iii.) clinical conditions,

iv.) microscopic inflammatory alterations in the colonic tissues, and

v.) intestinal effects as well as vi.) extra-intestinal outcomes

including vii.) systemic pro-inflammatory immune responses on

day 6 p.i.
2 Materials and methods

2.1 Ethics declaration

All mouse studies were approved by the commission for animal

experiments led by the “Landesamt für Gesundheit und Soziales”

(LaGeSo, Berlin, registration numbers G0104/19) and carried out in

compliance with the European Guidelines for animal welfare (2010/

63/EU). The clinical status of the experimental animals was

evaluated daily.
2.2 Mice, gut microbiota depletion,
curcumin treatment

Under specific pathogen-free (SPF) conditions, both male and

female IL-10-/- mice on a C57BL/6j background were raised and

kept within the same unit located at the Forschungseinrichtungen

für Experimentelle Medizin (FEM, Charité – Universitätsmedizin
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Berlin). Commensal gut microbiota depletion in mice was achieved

by an 8-week treatment with ampicillin plus sulbactam (2 g/L and 1

g/L, respectively; Dr. Friedrich Eberth Arzneimittel, Ursensollen,

Germany) via the autoclaved drinking water (ad libitum) starting

immediately post-weaning, as previously described (34). The day

before initiation of the protective treatment, the antibiotics were

stopped to ensure drug washout (i.e., day -8).

Seven days prior the C. jejuni infection (i.e., day -7), treatment

with curcumin (from Sigma-Aldrich, München, Germany) was

initiated. To improve water solubility, the synthetic compound was

dissolved in 2% carboxy-methylcellulose (Sigma-Aldrich, München,

Germany) which resulted in a final concentration of 0.05%. The

curcumin suspensions were finally concentrated to 1.0 mg/mL

resulting in daily treatment dosages of 200 mg per kilogram

of body weight, equivalent to the concentration applied

in acute murine ileitis previously (23). Placebo treated (and

subsequently infected) mice received vehicle only (positive

controls). Furthermore, naive (i.e., untreated and non-infected

mice) served as negative controls.
2.3 C. jejuni infection and gastrointestinal
colonization properties

On days 0 and 1, 109 colony-forming units (CFU) of the C.

jejuni 81–176 strain were applied to sex- and age-matched litter-

mate mice that were three months old by oral gavage. Animals were

handled under rigorous aseptic circumstances and kept in a sterile

environment (autoclaved food and drinking solutions). C. jejuni

were quantitatively evaluated in feces over time p.i. and in luminal

samples obtained from different regions of the gastrointestinal tract

(specifically from the stomach, duodenum, ileum, and colon) at day

6 p.i. by culture, as previously reported (29, 39) allowing for the

assessment of gastrointestinal colonization features. The viable

pathogen detection limit was 100 CFU/g.
2.4 Clinical outcome

The clinical conditions of the mice were evaluated before and

after the infection with C. jejuni using a standardized

campylobacteriosis score (12 points maximum). This score

addressed the stool consistency (0: formed feces; 2: pasty feces; 4:

liquid feces), the abundance of blood in stool (0: no blood; 2:

microscopic detection of blood by the Guajac method using

Haemoccult, Beckman Coulter/PCD, Krefeld, Germany; 4:

macroscopic blood visible), and the overall clinical aspect (0:

normal; 2: ruffled fur, less locomotion; 4: isolation, severely

compromised locomotion, pre-final aspect), as previously

described (40).
2.5 Sampling

Mice were necrotized by CO2 inhalation on day 6 p.i. Under

sterile conditions, luminal gastrointestinal samples (i.e., from the
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stomach, duodenum, ileum, and colon) and ex vivo biopsies were

obtained from the colon, mesenteric lymph nodes (MLN), liver, and

kidneys. Cardiac blood was drawn for cytokine testing in serum

samples. Each mouse had its colon sample taken in parallel for

studies involving microbiology, immunohistopathology, and

immunology. A ruler was used to measure the large intestinal

lengths (in cm).
2.6 Immunohistochemistry

Colonic ex vivo samples that had been instantly fixed in 5%

formalin and embedded in paraffin, were used for in situ

immunohistochemical investigations. In summary, paraffin slices

of ex vivo biopsies originating from the colon (5 µm) were stained

with primary antibodies directed against cleaved caspase 3 (Asp175,

Cell Signaling, Beverly, MA, USA, 1:200), MPO7 (No. A0398, Dako,

Glostrup, Denmark; 1:500), CD3 (#N1580, Dako, Glostrup,

Denmark; 1:10), and B220 (No. 14–0452-81, eBioscience, San

Diego, CA, USA; 1:200), respectively as reported earlier (41).

Following that, positively labeled cells were analyzed in a blinded

fashion using light microscopy at a 400-times magnification and the

median number from 6 high-power fields (HPF, 0.287 mm2) per

mouse specimen were calculated.
2.7 Pro-inflammatory mediators

Colonic explants were cut lengthwise, cleaned in phosphate-

buffered saline (PBS; Thermo Fisher Scientific, Waltham, MA,

USA), and ~1 cm2 of the tissue strips in addition to ex vivo

biopsies derived from the liver (~1 cm3) and kidney (half of the

organ after longitudinal cut) then placed in 24-flat-bottom well

culture plates (Thermo Fisher Scientific, Waltham, MA, USA)

containing 500 µL of serum-free RPMI 1640 medium (Thermo

Fisher Scientific, Waltham, MA, USA) plus 100 µg/mL of

streptomycin and 100 IU/mL of penicillin (both from Biochrom,

Berlin, Germany). Following eighteen hours at 37°C, the

corresponding culture supernatants and serum samples were

subjected to the Mouse Inflammation Cytometric Bead Assay

(CBA; BD Biosciences, Heidelberg, Germany) using a BD

FACSCanto II flow cytometer to measure IFN-g, TNF-a,
monocyte chemoattractant protein-1 (MCP-1), and IL-6. NO was

measured with the Griess reaction (42).
2.8 Electrophysiological measurements

Ex vivo biopsies from the terminal large intestine were moved to

Ussing chambers (remaining unstripped; 0.049 cm2 area). An

automatic clamp device (CVC6, Fiebig Hard & Software, Berlin,

Germany) was applied to measure the transmural electrical

resistance (Rt) for one hour at 37°C under voltage clamp

conditions. The bathing solution that was equilibrated with

carbogen gas (pH 7.4) had the following composition: Beta-

hydroxybutyric acid (0.5 mmol/L), L-glutamine (2.5 mmol/L), D
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(+)-mannose (10.0 mmol/L), D(+)-glucose (10.0 mmol/L), NaCl

(113.6 mmol/L), KCl (5.4 mmol/L), CaCl2 (1.2 mmol/L), MgCl2 (1.2

mmol/L), Na2HPO4 (2.4 mmol/L), NaH2PO4 (0.6 mmol/L), and

NaHCO3 (21.0 mmol/L).
2.9 Statistical analysis

GraphPad Prism (version 9; San Diego, CA, USA) was used to

determine medians and significance levels following the pooling of

data from three separate trials. The Anderson-Darling test was

applied to evaluate the normalization of data sets. Pairwise

comparisons of regularly distributed and non-normally

distributed data were performed using the Student’s t-test and the

Mann-Whitney test, respectively. The one-way ANOVA with

Tukey post-hoc test (for regularly distributed data) and the

Kruskal-Wallis test with Dunn’s post-hoc test (for non-normally

distributed data) were used for multiple comparisons. Significant

two-sided probability (p) values were defined as < 0.05.
3 Results

3.1 Gastrointestinal pathogen loads
following curcumin pretreatment of
C. jejuni infected mice

Seven days following initiation of the oral curcumin application,

SAB IL-10-/- mice were infected with 109 viable C. jejuni bacteria on

days 0 and 1 by gavage. To test the effects of exogenous curcumin on

the enteropathogenic colonization of the intestinal tract, we

determined the fecal C. jejuni loads by culture every day

following infection. As early as 24 hours after the second oral C.

jejuni challenge (i.e., on day 2 p.i.), the pathogens could be isolated

from the feces of placebo controls at high median loads of 109 CFU

per g, whereas curcumin pretreated mice exhibited approximately

one order of magnitude lower median fecal C. jejuni bacteria

numbers as compared to the latter which also held true for days 3

until 6 p.i. (p<0.01–0.001; Figure 1). At necropsy we further

quantified luminal C. jejuni bacteria in distinct gastrointestinal

regions. Whereas in curcumin pretreated mice approximately one

order of magnitude lower median pathogen numbers could be

determined in the ileal and colonic lumen if compared to placebo

counterparts (p<0.01), even 4 log orders fewer median bacterial cells

were isolated from the stomach of the former as compared to the

latter on day 6 p.i. (p<0.001; Figure 2). Hence, curcumin

pretreatment of C. jejuni infected mice resulted in lower

gastrointestinal pathogen loads.
3.2 Inflammatory sequelae upon curcumin
pretreatment of C. jejuni infected mice

Furthermore, we tested the impact of curcumin prophylaxis on

the clinical course of C. jejuni infected mice with clinical

campylobacteriosis scores assessing the overall clinical aspect and
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1363457
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Heimesaat et al. 10.3389/fimmu.2024.1363457
severity of bloody diarrhea. Whereas on day 6 p.i. placebo control

animals displayed highly elevated clinical scores indicative for

severe acute campylobacteriosis (p<0.001 versus naive), clinical

scores were lower in curcumin pretreated mice and did not even

differ from basal values (not significant (n.s.) versus naive mice;

Figure 3A). Remarkably, 35.7% of mice from the verum cohort did

not exhibit any clinical signs of C. jejuni infection at all (i.e.,

campylobacteriosis score of 0). Since acute inflammation is

known to result in enhanced shrinkage of the affected intestine

(32, 43), we measured the colonic lengths in the sacrificed mice. In

fact, the colonic lengths were lower in infected as compared to naive

mice (p<0.05–0.001), whereas higher values could be obtained in
Frontiers in Immunology 05
curcumin as compared to placebo pretreated mice on day 6 p.i.

(p<0.05; Figure 3B), further indicative for mitigated gross C. jejuni-

induced disease upon oral curcumin prophylaxis.

Moreover, we analyzed potential anti-inflammatory effects of

curcumin pretreatment during campylobacteriosis on the

microscopic level. Therefore, we quantified the extent of

histological cell damage in the infected colon and obtained

increased histopathological scores in mice from the placebo and

curcumin cohorts (p<0.001 and p<0.05 versus naive, respectively)

on day 6 p.i., but with lower values in the latter versus the former

(p<0.001; Figure 3C). Whereas the histopathological scores in the

placebo control group reached mostly maximum values, those
FIGURE 2

Gastrointestinal pathogen counts following C. jejuni infection of mice with curcumin prophylaxis. Secondary abiotic IL-10-/- mice were pretreated
with curcumin (CURCU; open circles) or placebo (PLC; closed circles) via the drinking water starting 7 days prior peroral infection with C. jejuni 81–
176 strain on days 0 and 1. At necropsy (i.e., day 6 post-infection), luminal C. jejuni bacteria were quantified in the gastrointestinal tract (as indicated)
by culture (in colony forming units per gram; CFU/g). Box plots (25th and 75th percentiles), whiskers (minimum and maximum values), medians (black
bar in boxes), numbers of analyzed mice pooled from 3 independent experiments (in parentheses), and significance levels (p values) determined by
the Mann-Whitney test are indicated.
FIGURE 1

Fecal pathogen shedding over time following C. jejuni infection of mice with curcumin prophylaxis. Secondary abiotic IL-10-/- mice were pretreated
with curcumin (CURCU; open circles) or placebo (PLC; closed circles) via the drinking water starting 7 days prior peroral infection with C. jejuni 81–
176 strain on day (d) 0 and d1. Fecal C. jejuni numbers were determined daily post-infection by culture (in colony forming units per gram; CFU/g).
Box plots (25th and 75th percentiles), whiskers (minimum and maximum values), medians (black bar in boxes), numbers of analyzed mice pooled from
3 independent experiments (in parentheses), and significance levels (p values) determined by the Mann-Whitney test are indicated.
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obtained from mice of the curcumin cohort varied considerably

with reaching the maximum score in a single animal, whereas in

two mice no histopathological changes could be observed at all on

day 6 p.i. (Figure 3C). To further grade the large intestinal

inflammation upon enteropathogenic infection, we quantified the

apoptotic epithelial cell responses in the colon applying in situ

immunohistochemistry. Remarkably, C. jejuni infection resulted in

increased numbers of apoptotic colonic epithelial cells in placebo

(p<0.001 versus naive), but not in curcumin pretreated mice on day

6 p.i. (n.s. versus naive; p<0.001 versus placebo; Figure 3D). Hence,

oral curcumin prophylaxis also mitigated C. jejuni-induced

histopathological and apoptotic cell damage in the colon.
Frontiers in Immunology 06
3.3 Colonic immune cell responses
following curcumin pretreatment of
C. jejuni infected mice

To analyze the effects of curcumin pretreatment on C. jejuni-

induced immune cell responses, we stained colonic paraffin sections

with antibodies against surface markers of defined innate and

adaptive immune cell subsets. On day 6 p.i., elevated numbers of

MPO7+ neutrophilic granulocytes were detected in the colonic

mucosa and lamina propria (p<0.01–0.001 versus naive), but with

lower counts in curcumin as compared to placebo pretreated mice

(p<0.05; Figure 4A). When analyzing colonic CD3+ T and B220+ B
A B

DC

FIGURE 3

Macroscopic and microscopic inflammatory signs following curcumin pretreatment of C. jejuni infected mice. Secondary abiotic IL-10-/- mice were
pretreated with curcumin (CURCU; open circles) or placebo (PLC; closed circles) via the drinking water starting 7 days prior peroral infection with C. jejuni
81–176 strain on days 0 and 1. The macroscopic inflammatory signs including (A) the clinical conditions as quantified with a campylobacteriosis scoring
system (see methods) and (B) the colonic lengths as measured with a ruler (in cm) were surveyed on day 6 post-infection. Furthermore, the microscopic
inflammatory changes were quantitatively assessed in colonic paraffin sections with (C) histopathological scores (see methods) and (D) average numbers of
apoptotic epithelial cells (positive for caspase3, Casp3) from 6 high power fields (HPF, 400-times magnification) per animal. Naive mice (open diamonds)
served as non-infected controls without prophylaxis. Box plots (25th and 75th percentiles), whiskers (minimum and maximum values), medians (black bar in
boxes), numbers of analyzed mice pooled from 3 independent experiments (in parentheses), and significance levels (p values) determined by the Kruskal-
Wallis test with Dunn’s post-hoc test (A, C) or by the one sided ANOVA test with Tukey’s post-hoc test (B, D) are indicated.
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lymphocyte populations, C. jejuni-induced increases could

exclusively be observed in placebo controls (p<0.001 versus

naive), whereas curcumin prophylaxis resulted in basal adaptive

immune cell counts in the colon on day 6 p.i. (n.s. versus naive;

Figures 4B, C). Hence, curcumin prophylaxis mitigated C. jejuni-

induced innate and adaptive immune responses in the colon.
3.4 Intestinal pro-inflammatory mediator
secretion following curcumin pretreatment
of C. jejuni infected mice

Furthermore, we tested the effect of curcumin prophylaxis on C.

jejuni-induced secretion of pro-inflammatory mediators. Our

measurements revealed increased IFN-g (p<0.001) and TNF-a
(p<0.01) concentrations in colonic explants taken from placebo as

opposed to curcumin pretreated mice on day 6 p.i. (Figure 5A, B),

whereas colonic NO levels were comparably elevated in both infected

cohorts (n.s.; Figure 5C). In the MLN draining the infected intestines,

however, respective pro-inflammatory mediators were increased in

infected mice from the placebo (p<0.05 versus naive), but not the

curcumin cohort (Figures 5D–F). Hence, curcumin pretreatment

mitigated C. jejuni-induced pro-inflammatory mediator secretion in

the intestinal tract.
3.5 Colonic epithelial barrier function upon
curcumin pretreatment of C. jejuni
infected mice

In addition, we tested whether the disease-alleviating effects

upon curcumin pretreatment of C. jejuni infected mice had an
Frontiers in Immunology 07
impact on large intestinal epithelial barrier function. The

electrophysiological resistance measurements of colonic ex vivo

biopsies in the Ussing chamber on day 6 p.i. revealed that C.

jejuni infection resulted in lower transmural electrical resistances in

the colon derived from placebo, but not curcumin pretreated mice

when compared to naive control animals (p<0.05; Figure 6). Of

note, the colonic transmural resistance values were even higher in

curcumin pretreated mice with induced campylobacteriosis versus

non-infected and untreated controls (p<0.05; Figure 6). Hence,

curcumin pretreatment of C. jejuni infected mice could rescue

epithelial barrier integrity.
3.6 Extra-intestinal and systemic
inflammatory mediator secretion following
curcumin pretreatment of C. jejuni
infected mice

We further addressed whether the anti-inflammatory properties

of curcumin pretreatment were also effective in organs beyond the

infected intestines. Our measurements of pro-inflammatory

mediators in liver and kidney explants revealed that hepatic as

well as renal IFN-g, TNF-a, and NO concentrations were increased

in placebo (p<0.01–0.001 versus naive), but not in curcumin

pretreated mice on day 6 p.i. (n.s. versus naive; Figure 7).

Strikingly, the potent inflammation-dampening effects of

curcumin could also be observed systemically given that in serum

samples taken 6 days following infection of curcumin-pretreated

mice, basal IFN-g, TNF-a, MCP-1, and IL-6 concentrations were

measured (n.s. versus naive), whereas systemic pro-inflammatory

mediators were all elevated in placebo counterparts (p<0.001 versus

naive; Figure 8). Hence, curcumin pretreatment could mitigate also
A B C

FIGURE 4

Colonic immune cell responses following curcumin pretreatment of C. jejuni infected mice. Secondary abiotic IL-10-/- mice were pretreated with
curcumin (CURCU; open circles) or placebo (PLC; closed circles) via the drinking water starting 7 days prior peroral infection with C. jejuni 81–176
strain on days 0 and 1. On day 6 post-infection, the average numbers of (A) neutrophils (MPO7+), (B) T lymphocytes (CD3+), and (C) B lymphocytes
(B220+) were determined in the colonic mucosa and lamina propria from 6 high power fields (HPF, 400-times magnification) per animal in
immunohistochemically stained paraffin sections. Naive mice (open diamonds) served as non-infected controls without prophylaxis. Box plots (25th

and 75th percentiles), whiskers (minimum and maximum values), medians (black bar in boxes), numbers of analyzed mice pooled from 3 independent
experiments (in parentheses), and significance levels (p values) determined by the Kruskal-Wallis test with Dunn’s post-hoc test are indicated.
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extra-intestinal and even systemic C. jejuni-induced pro-

inflammatory mediator responses.
4 Discussion

In our actual preclinical placebo-controlled intervention trial,

prophylactic oral curcumin application to mice starting a week

before C. jejuni infection ameliorated the acute campylobacteriosis

syndrome as evidenced by i.) an improved clinical outcome, ii.) less

inflammation-induced shrinkage of the infected large intestines, iii.)

less histopathological and apoptotic epithelial changes in the colon,

iv.) attenuated colonic infiltration with distinct innate and adaptive

immune cells, v.) diminished pro-inflammatory mediator secretion

in the intestinal tract (i.e., in the colon and MLN), vi.) in extra-

intestinal organs (i.e., liver and kidneys) and strikingly, vii.) even

systemically if compared to placebo. In addition, viii.) the

gastrointestinal C. jejuni numbers (i.e., in the stomach, ileum, and

colon) were lower in the former versus the latter. The result of

decreased gastrointestinal enteropathogen loads (Figure 2) were
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rather unexpected given that the applied curcumin concentration

(1.0 g/L) was below the minimum inhibitory concentration (MIC)

of 5.9 g/L (at pH 7.4). Nevertheless, one needs to take into

consideration that the polyphenol is subjected to modification by

distinct intestinal enzymes yielding metabolites with potential

bacteria-toxic effects (21).

Apart from the lowered gastrointestinal C. jejuni loads the

mitigated campylobacteriosis syndrome upon curcumin

pretreatment (Figure 3) might additionally have been due to

pronounced immune-modulatory effects of the polyphenol in this

acute inflammatory scenario. In support, curcumin was shown to

ameliorate experimental colitis of different etiologies (24, 44–52).

Furthermore, our own previous work revealed that oral

pretreatment of mice with the same curcumin concentration as

applied in our actual trial alleviated acute Toxoplasma gondii-

induced ileitis (23). The immune-modulatory effects of curcumin

treatment were mirrored by less distinct infiltration of the infected

large intestinal mucosa and lamina propria with neutrophils as well

as T and B lymphocytes (Figure 4). In support, both in vitro and in

vivo studies provided evidence that curcumin interacts with various
A B

D E F

C

FIGURE 5

Intestinal pro-inflammatory mediators following curcumin pretreatment of C. jejuni infected mice. Secondary abiotic IL-10-/- mice were pretreated
with curcumin (CURCU; open circles) or placebo (PLC; closed circles) via the drinking water starting 7 days prior peroral infection with C. jejuni 81–
176 strain on days 0 and 1. (A, D) IFN-g, (B, E) TNF-a, and (C, F) nitric oxide concentrations were measured in supernatants of ex vivo biopsies
derived from the colon (A–C) and mesenteric lymph nodes (MLN; D-F) on day 6 post-infection. Naive mice (open diamonds) served as non-infected
controls without prophylaxis. Box plots (25th and 75th percentiles), whiskers (minimum and maximum values), medians (black bar in boxes), numbers
of analyzed mice pooled from 3 independent experiments (in parentheses), and significance levels (p values) determined by the Kruskal-Wallis test
with Dunn’s post-hoc test (A, B, D–F) or by the one-sided ANOVA test with Tukey’s post-hoc test (C) are indicated.
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immune cell subtypes of the innate and adaptive immune system

including the afore-mentioned ones preventing from cellular

infiltration of the target tissues (53). The attenuated immune

cellular infiltration of the colonic tissue following curcumin

pretreatment was accompanied by dampened intestinal secretion

of IFN-g, TNF-a, and NO as measured in the colon and in the MLN

draining the infected intestinal tract on day 6 p.i. Remarkably,

curcumin treated mice presented with colonic T and B cell numbers

and furthermore, with intestinal pro-inflammatory mediator

concentrations that did not differ from those detected in naive

mice (Figure 5). Our data are well in line with previous in vitro and

in vivo studies showing that curcumin was able to down-regulate

the expression of respective pro-inflammatory mediators

counteracting various inflammatory conditions including

intestinal inflammation (53–55). In consequence of the here

observed immune-modulatory effects of curcumin pretreatment,

the large intestinal tissues were less distinctly exposed to cell-toxic
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oxidative stress resulting in less pronounced apoptotic responses in

the colonic epithelial cells and in less severe histopathological

damage (Figures 3C, D). Our data are supported by previous

studies underscoring potent anti-apoptotic effects of exogenous

curcumin as observed in vitro and in vivo (46, 52, 56–59). The

alleviated C. jejuni-induced intestinal tissue damage upon curcumin

pretreatment was accompanied by an uncompromised epithelial

barrier function as indicated by transmural electrical resistance

values measured in the colon of curcumin pretreated C. jejuni

infected mice that were not only higher as compared to placebo

counterparts, but also to naive controls (Figure 6), indicative for an

enhanced tightening of the epithelial barrier. Our actual and

previous studies further underscore potent effects of exogenous

polyphenolic compounds such as curcumin and resveratrol on

rescuing epithelial barrier integrity and function during acute

murine campylobacteriosis (38, 60) and are supported by

previous studies showing epithelial barrier-preserving capacities
FIGURE 6

Colonic epithelial barrier function following curcumin pretreatment of C. jejuni infected mice. Secondary abiotic IL-10-/- mice were pretreated with
curcumin (CURCU; open circles) or placebo (PLC; closed circles) via the drinking water starting 7 days prior peroral infection with C. jejuni 81–176
strain on days 0 and 1. On day 6 post-infection, the transmural electrical resistance of the distal colon was measured in Ussing chambers. Naive
mice (open diamonds) served as non-infected controls without prophylaxis. Box plots (25th and 75th percentiles), whiskers (minimum and maximum
values), medians (black bar in boxes), numbers of analyzed mice pooled from 3 independent experiments (in parentheses), and significance levels (p
values) determined by the one-sided ANOVA test with Tukey’s post-hoc test are indicated.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1363457
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Heimesaat et al. 10.3389/fimmu.2024.1363457
of curcumin application which was accompanied by up-regulated

expression of tight junction proteins such as claudin-1 and zonula

occludens protein-1 (ZO-1) (61–64).

Remarkably, the disease-mitigating properties of curcumin

pretreatment in C. jejuni infected mice could not only be assessed

in the intestinal tract, but also in extra-intestinal organ such as the

liver and the kidneys given hepatic as well as renal IFN-g, TNF-a,
and NO concentrations in curcumin pretreated mice on day 6 p.i.

that were comparable to naive values (Figure 7). In line with our

results, curcumin was shown to exert potent anti-oxidative effects in

a plethora of liver diseases as shown by enhanced radical scavenging

and down-regulating the inducible nitric oxidase synthase (iNOS)

which resulted in decreased hepatic NO concentrations (65, 66).

Furthermore, polyphenolic application led to both, decreased

hepatic TNF-a expression and attenuated cytokine-induced

apoptosis (65, 66). Previous studies underlined also reno-
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protective properties of curcumin due to down-regulated

expression of TNF-a, MCP-1, and iNOS in the kidneys as

reviewed previously (67), whereas polyphenolic pretreatment

attenuated renal injury in LPS-induced endotoxenemia (68).

Strikingly, the disease-mitigating potency of curcumin

pretreatment could also be observed systemically as shown by

naive IFN-g, TNF-a, MCP-1, and IL-6 concentrations measured

in serum samples derived from C. jejuni infected mice of the verum

cohort (Figure 8). In support, curcumin was shown to inhibit pro-

inflammatory cytokine production in endotoxinemia (69, 70) and

to prevent LPS-induced TLR-4 activation and subsequent pro-

inflammatory mediator secretion by the inhibition of the TLR-4/

MyD88/NF-kB signaling pathways during sepsis (71–73). The anti-

TLR-4 effects of curcumin were also propagated by Lubbad and

colleagues who demonstrated that curcumin treatment could

ameliorate experimental colitis in a TLR-4 dependent fashion
A B
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FIGURE 7

Extra-intestinal pro-inflammatory mediators following curcumin pretreatment of C. jejuni infected mice. Secondary abiotic IL-10-/- mice were
pretreated with curcumin (CURCU; open circles) or placebo (PLC; closed circles) via the drinking water starting 7 days prior peroral infection with C.
jejuni 81–176 strain on days 0 and 1. (A, D) IFN-g, (B, E) TNF-a, and (C, F) nitric oxide concentrations were measured in supernatants of ex vivo
biopsies derived from the liver (A–C) and kidneys (D–F) on day 6 post-infection. Naive mice (open diamonds) served as non-infected controls
without prophylaxis. Box plots (25th and 75th percentiles), whiskers (minimum and maximum values), medians (black bar in boxes), numbers of
analyzed mice pooled from 3 independent experiments (in parentheses), and significance levels (p values) determined by the Kruskal-Wallis test with
Dunn’s post-hoc test (A–C, E, F) or by the one sided ANOVA test with Tukey’s post-hoc test (D) are indicated.
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(48). Moreover, in this line, in a previous study applying an

experimental C. jejuni infection model of an immune cell –

epithelial cell co-culture, we were able to show the barrier-

preserving effect of curcumin which was dependent on its

inhibition of NF-kB (60).
5 Conclusion

Given that the hyper-activation of the host immune system by

the bacterial endotoxin LOS constitutes the main molecular

mechanism underlying C. jejuni -induced enteritis (8) and
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furthermore, that the risk for developing autoimmune sequelae

(such as GBS, RA, and IBD) is associated with the severity of the

enteritis (17), the TLR-4 antagonist curcumin constitutes

an elegant antibiotic-independent strategy to mitigate acute

campylobacteriosis and furthermore, to reduce the risk for post-

infectious collateral damages of C. jejuni infection. Curcumin may

be considered as non-toxic, non-mutagenic, and overall safe given

that even high doses of 6 g per day for up to 7 weeks were tolerated

well in human trials (74). One should also take into consideration

that the systemic concentrations of the polyphenolic compound are

rather low given the poor bioavailability of curcumin after

ingestion (74).
A B

DC

FIGURE 8

Systemic pro-inflammatory mediators following curcumin pretreatment of C. jejuni infected mice. Secondary abiotic IL-10-/- mice were pretreated
with curcumin (CURCU; open circles) or placebo (PLC; closed circles) via the drinking water starting 7 days prior peroral infection with C. jejuni 81–
176 strain on days 0 and 1. (A) IFN-g, (B) TNF-a, (C) MCP-1, and (D) IL-6 concentrations were measured in serum samples taken on day 6 post-
infection. Naive mice (open diamonds) served as non-infected controls without prophylaxis. Box plots (25th and 75th percentiles), whiskers (minimum
and maximum values), medians (black bar in boxes), numbers of analyzed mice pooled from 3 independent experiments (in parentheses), and
significance levels (p values) determined by the Kruskal-Wallis test with Dunn’s post-hoc test are indicated.
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