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Keiichi Yoshida4, Hidenori Takahashi2, Yuichiro Doki2,
Hidetoshi Eguchi2, Nariaki Matsuura3
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National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan, 2Department of
Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan,
3Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan,
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CD8+ T cells affect the outcomes of pancreatic ductal adenocarcinoma (PDAC).

Using tissue samples at pre-treatment to monitor the immune response is

challenging, while blood samples are beneficial in overcoming this limitation.

In this study, we measured peripheral antigen-specific CD8+ T cell responses

against four different tumor-associated antigens (TAAs) in PDAC using flow

cytometry and investigated their relationships with clinical features. We

analyzed the optimal timing within the treatment course for effective immune

checkpoint inhibition in vitro. We demonstrated that the frequency of TAA-

specific IFNg+4-1BB+ CD8+ T cells was correlated with a fold reduction in CA19-9

before and after neoadjuvant therapy. Moreover, patients with TAA-specific

IFNg+4-1BB+ CD8+ T cells after surgery exhibited a significantly improved

disease-free survival. Anti-PD-1 treatment in vitro increased the frequency of

TAA-specific IFNg+4-1BB+ CD8+ T cells before neoadjuvant therapy in patients,

suggesting the importance of the timing of anti-PD-1 inhibition during the

treatment regimen. Our results indicate that peripheral immunophenotyping,
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combined with highly sensitive identification of TAA-specific responses in vitro as

well as detailed CD8+ T cell subset profiling via ex vivo analysis, may serve as

peripheral biomarkers to predict treatment outcomes and therapeutic efficacy of

immunotherapy plus neoadjuvant chemotherapy.
KEYWORDS

pancreatic cancer, tumor-associated antigen-specific CD8 + T cells, PBMC, prognostic
marker, immune checkpoint inhibition
1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) has a poor

prognosis, with a 5-year survival rate of approximately 12% (1).

Resection is generally feasible in only 20% of PDAC cases (2), and

the recurrence rate remains high (3). Therefore, multidisciplinary

treatment with adjuvant therapies is employed to improve patient

outcomes (4).

Cytotoxic chemotherapy and radiation therapy, which are

commonly used for PDAC, affect immune cells, including CD8+

T cells. For example, gemcitabine administration increases the

peripheral blood and peritumoral CD8/CD4 ratios in a mouse

model of liver metastasis and peritumoral dissemination (5).

Furthermore, in patients with stage III–IV PDAC, elevated

exhausted peripheral blood mononuclear cell (PBMC) CD8+ T

cells are associated with a poorer prognosis post-chemotherapy

(6). Therefore, the characteristics of PBMC CD8+ T cells may vary

depending on the pathogenesis and treatment of PDAC. However,

it remains unclear whether tumor-associated antigen (TAA)-

specific CD8+ T cells influence chemotherapy or surgery outcomes.

Recently, immunotherapy, including immune checkpoint

inhibitors (ICIs), has been applied to the treatment of various

cancers (7–11). However, its benefits for patients with PDAC are

limited, as evidenced by the low objective response rates (3.1%)

(12). The success of ICIs largely depends on the tumor

microenvironment (TME); however, the use of tumor tissue

biopsy samples before ICI initiation is challenging for monitoring

the immunological condition of the TME. Thus, blood surrogate

markers are valuable for assessing the anti-tumor efficacy of

immunotherapeutic approaches. In lung cancer, correlations

between the cytotoxic activity of tumor-infiltrating lymphocytes

(TILs) and that of peripheral blood mononuclear cell (PBMC)-

derived T cells have been reported, as have correlations between the

cytotoxic activity of TILs and the percentage of PBMC-derived

effector memory re-expressing CD45RA CD8+ T cells. These

findings suggest that certain phenotypes of peripheral blood

CD8+ T cells may reflect those of TILs (13).

In the present study, we examined the potential utility of

antigen-specific CD8+ T cell responses against TAAs detected in

the blood of patients with PDAC. By analyzing PBMCs, we

investigated the relationship between TAA-specific CD8+ T cell
02
responses and cytotoxic chemotherapy in patients with PDAC.

Additionally, we evaluated the efficacy of immunotherapy by

monitoring the TAA-specific responses of CD8+ T cells. We also

analyzed immune response enhancement by ICI in vitro to

determine the optimal timing of treatment to maximize the

efficacy of neoadjuvant chemotherapy.
2 Materials and methods

2.1 Patient and sample collection

Patients with pancreatic cancer were recruited from the Osaka

University Hospital (Osaka, Japan) and Osaka International Cancer

Institute (Osaka, Japan) from September 2019 to December 2021.

Al l pat ients rece ived neoadjuvant chemotherapy or

chemoradiotherapy with the following regimens: gemcitabine +

nab-paclitaxcel (n=9), gemcitabine + nab-paclitaxcel + radiation

(n=7), gemcitabine + S-1 (n=20), gemcitabine + S-1 + radiation

(n=13), FOLFIRINOX (n=1), gemcitabine + radiation (n=1), and

multiple regimens (n=6). This study was approved by the local

institutional ethics committees of Osaka University, Osaka

International Cancer Center, and the National Institutes of

Biomedical Innovation, Health, and Nutrition, Osaka, Japan, and

was conducted in accordance with the Declaration of Helsinki

(1975). All participants provided written informed consent.

PBMCs were isolated from patients with PDAC within 6 h of

blood sampling using BD Vacutainer CPT (BD Biosciences,

Franklin Lakes, NJ, USA). PBMCs were cryopreserved in fetal

bovine serum (FBS) containing 10% dimethyl sulfoxide (DMSO)

and stored in liquid nitrogen vapor until analysis.
2.2 Pancreatic cancer cell lines,
quantitative reverse transcription
polymerase chain reaction, and cancer cell
line encyclopedia analysis

Pancreatic cancer cell lines were cultured in an appropriate

culture medium supplemented with 10% FBS and 1% penicillin–

streptomycin (Gibco, Thermo Fisher Scientific, Waltham, MA,
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USA). Dulbecco’s modified Eagle medium (Sigma-Aldrich, St.

Louis, MO, USA) was used for BxPC3, MiaPaCa2, Panc1, and

PSN1 cells, and Eagle’s minimal essential medium (Sigma-Aldrich)

was used for SUIT-2 cells. TYPK1 cells were cultured in a 1:1

mixture of DMEM and Ham’s F-12 medium supplemented with 5%

FBS and 1% penicillin–streptomycin. Cells were cultured at 37°C

and 5% CO2 until reaching 80% confluency, at which point mRNA

was extracted using an RNeasy mini kit (Qiagen, Hilden, Germany).

qRT-PCR was performed using SuperScript III Master Mix

(Invitrogen, Thermo Fisher Scientific), RT enzyme, ROX, and

TaqMan probes for candidate genes (CEACAM5, Hs00944025_m1;

CTAG1, Hs00265824_m1; DCT, Hs01098278_m1; MUC1,

Hs00159357_m1; Telomerase reverse transcriptase (TERT),

Hs00972656_m1; and WT1, Hs00240913_m1). The following thermal

cycling conditions were used: 30min at 45°C, 5min at 95°C, 50 cycles of

1 s at 95°C, and 60 s at 50°C. qRT-PCR was replicated three times.

The CCLE (14) was used to evaluate the mRNA expression of

six TAAs (CEACAM5, NY-ESO-1 [CTAG1A], TRP2 [DCT],MUC1,

TERT, andWT1) in the pancreatic cancer cell lines. The normalized

transcripts per kilobase million (TPM) dataset were downloaded

from the Cancer Dependency Portal (DepMap) on 2022.12.14. The

original log2 (TPM+1) values were plotted as a heatmap

without scaling.
2.3 Overlapping peptides

Overlapping peptides covering four TAAs (all from JPT Peptide

Technologies, Berlin, Germany) were used in this study: PepMix™

Human CEA (#PM-CEA) for CEACAM5; PepMix™ Human

Mutin-1 (#PM-MUC1) for MUC1; PepMix™ Human TERT

(#PM-TERT) for TERT; and PepMix™ Human WT1/WT33

(#PM-WT1) for WT1. The peptides consisted of 15 amino acids

spanning the complete amino acid sequence of the indicated protein

antigen, with 11 overlapping amino acids between adjacent peptides

(Supplementary Table 1).
2.4 Amplification of TAA-specific CD8+

T cells by in vitro culture

TAA-specific CD8+ T cells were enriched from the PBMCs of

patients with PDAC. Briefly, frozen PBMCs were thawed and

treated with 1 mL of 50 unit/mL of benzonase (Merck, Rahway,

NJ, USA) in R10 medium for 2 h at 37°C in 5% CO2. Subsequently,

20% of the PBMCs (1.1×105 [0.2×105 – 3.5 ×105] cells) were pulsed

with 2 mg/mL of each of the overlapping TAA peptides (CEA,

MUC1, TERT, and WT1) for 1 h at 37°C. After washing, the pulsed

PBMCs were co-cultured with the remaining 80% un-pulsed

PBMCs in R10 in the presence of 20 U/mL of recombinant

interleukin (IL)-2 (R&D Systems, Minneapolis, MN, USA) for 10

days; the medium was changed on days 4 and 7. For the ICI

experiments, 1 mg/mL of anti-PD-1 (Cat# 621604, RRID:

AB_2820105; BioLegend, San Diego, CA, USA), anti-TIGIT (Cat#

16-9500-82, RRID: AB_10718831; Thermo Fisher Scientific), or

mouse IgG1 isotype control antibody (Cat# 400102, RRID:
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AB_2891079; BioLegend) was added to the culture medium at the

beginning of the culture, and half of the medium was replaced with

a culture medium without antibodies on days 4 and 7.
2.5 Flow cytometric detection of TAA-
specific CD8+ T cell responses

Ten days after culture, amplified cells were stimulated with 2

mg/mL of the TAA-derived overlapping peptides (CEA, MUC1,

TERT, and WT1) for 30 min at 37°C with CD107A antibody (BD

Biosciences). After 30 min of stimulation, 1 mL/mL BD GolgiPlug

(containing Brefeldin A) (BD Biosciences) and 0.7 mL/mL of BD

GolgiStop (containing Monensin) (BD Biosciences) were added to

the media, and the cells were cultured for another 5.5 h. After

incubation, the cells were washed with phosphate-buffered saline

(PBS) and stained using a Live/Dead Fixable Aqua Dead Cell Stain

Kit (L34957; Thermo Fisher Scientific) at 18-25°C for 5 min.

Subsequently, the samples were probed with antibodies

(Supplementary Table 2A) against cell surface markers for 15 min

at 18-25°C. After washing, the cells were thoroughly resuspended in

200 µL BD Cytofix/Cytoperm solution per well and incubated for 20

min at 18-25°C. The cells were washed twice with BD Perm/Wash

buffer and probed with intracellular staining antibodies for 25 min

at 18-25°C. After staining, the cells were washed twice with BD

Perm/Wash buffer and fixed with 1% paraformaldehyde. The data

were collected using FACSymphony A5 (BD Biosciences).
2.6 HLA typing and analysis

Cryopreserved PBMCs were thawed, and genomic DNA was

extracted from a portion of cells (approximately 100,000 cells) using

a QIAamp DNA mini kit (Qiagen) and stored at −30°C until use.

Isolated genomic DNA was used as a template to prepare cDNA

libraries for HLA typing using the commercially available kit

AlloSeq™ Tx 17.1 (CareDx) or WAKFlow® HLA DNA Typing

(Wakunaga Pharmaceutical Co. Ltd., Osaka, Japan). The

combination of each HLA was visualized using the “circlize”

package (version 0.4.15) in the R software language (version

4.2.1). The frequency of HLA-A types among the donors was

calculated based on the cumulative total number of alleles.
2.7 Ex vivo flow cytometry profiling of bulk
CD8+ T cells

Cryopreserved PBMCs were thawed, washed with PBS, and

stained with Fixable Viable Stain UV440 (BD Biosciences) at 18-25°

C for 5 min. CC-chemokine receptor 7 (CCR7) was stained at 37°C

for 10 min and probed using antibodies against the remaining

markers (Supplementary Table 2B) at 18-25°C for 15 min. After

washing, the cells were thoroughly resuspended in 500 µL Fix/Perm

solution per tube and incubated for 40 min at 4°C. The cells were

washed twice with BD Perm/Wash solution and probed with anti-

Ki67 antibodies for 40 min at 4°C. After staining, the cells were
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washed twice with BD Perm/Wash solution and fixed with 1%

paraformaldehyde, and the data were collected using

FACSymphony A5 (BD Biosciences).
2.8 Flow cytometry data analysis

Flow cytometry FCS files were analyzed using FlowJo software

(version 10.8.1; RRID: SCR_008520; BD Biosciences). The gating

setting for settings for each population are described in result

section and Figures. TAA-specific CD8+ T cell responses were

determined by subtracting the value obtained by peptide-free

stimulation (DMSO; background) from that obtained by TAA

stimulation. After background subtraction, values less than 0.01%

were considered negative (no response). For the IFNg+4-1BB+

criteria, values greater than 0.01% after background subtraction

corresponded with responders, while those with values less than

0.01% corresponded with non-responders. For the IFNg+ and/or 4-
1BB+ criteria, if the sum of the values after the background

subtraction of IFNg+4-1BB+, IFNg+4-1BB-, and IFNg-4-1BB+ was

greater than 0.03%, it corresponded with a responder, while if it was

less than 0.03%, it corresponded with a non-responder. For the

IFNg+ and 4-1BB+ criteria, if the sum of the values after the

background subtraction of two gates in each marker positive cells

was greater than 0.02%, it corresponded with a responder, while if it

was less than 0.02%, it corresponded with a non-responder.
2.9 Statistical analyses

Statistical analyses were performed using R/Bioconductor (R

version 4.2.1) or GraphPad Prism (version 9.0.0; GraphPad

Software, RRID: SCR_002798). Experiments and data analysis were

performed by individuals blinded to the collection of blood samples

and clinical information. For the HLA analysis, statistical significance

of all combinations of four gating sets in each HLA type were

obtained using Fisher’s exact test, and are displayed in tile format.
3 Results

3.1 Selection of specific TAAs in pancreatic
cancer cells

To detect major TAA-specific PBMC CD8+ T cell responses in

patients with PDAC, we selected TAAs based on their expression in

PDAC cells. Of the 403 TAAs registered in the TAA database

(TANTIGEN 2.0) (15), we selected four candidates that have been

uti l ized in peptide vaccine clinical trials : CEACAM5

[carcinoembryonic antigen (CEA)] (16), MUC1 (17), TERT (18),

and WT1 (19). Additionally, we selected two candidates used in

peptide vaccine clinical trials for other cancers, NY-ESO-1

(CTAG1A) and TRP2 (DCT).

Using the RNAseq data of 1404 cell lines from the CCLE, we

assessed the mRNA expression of six TAAs. Of these, CEACAM5,
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MUC1, TERT, andWT1 were expressed in multiple PDAC cell lines,

whereas CTAG1A and DCT were not expressed (Figure 1A and

Supplementary Figure 1). Moreover, mRNA expression was further

confirmed through qRT-PCR in six PDAC cell lines (four from

primary tumors, one from liver metastasis, and one from lymph node

metastasis), revealing upregulation of the expression of CEACAM5,

MUC1, TERT, and WT1 in several cell lines (Figures 1B, C).
3.2 Establishment of a detection system for
TAA-specific PBMC CD8+ T cell response
from patients with PDAC

We then detected TAA-specific CD8+ T cell responses in PBMCs

derived from patients with PDAC at treatment initiation. As these

cells are known to have a low frequency (20), to increase detection

sensitivity, we stimulated PBMCs with overlapping peptides covering

the full length of the four TAAs (Supplementary Table 1) and then

cultured them in the presence of IL-2 for 10 days to amplify TAA-

specific cells (21). Moreover, we aimed to increase detection

sensitivity by stimulation with a mixture of four different TAAs.

After culture, we re-stimulated the cells with the peptide pool and

detected TAA-specific CD8+ T cell responses using a flow cytometer.

To evaluate antigen-specific responses, we measured the expression

levels of interferon-gamma (IFNg), a widely used marker for antigen-

specific CD8+ T cell responses, and 4-1BB, which is known as an

activation-induced marker. IFNg and 4-1BB have each been used as

markers of antigen-specific responses (22, 23), and the antigen-

specific response of the two in combination has been evaluated

(24). However, it was unclear whether the and/or case, single

positive, or double positive is more useful in controlling cancer, so

we compared them in this study based on four criteria: IFNg+ and/or
4-1BB+, IFNg+, 4-1BB+, and double-positive (IFNg+4-1BB+)

(Figures 2A, B). Although there was a certain amount of bulk T

cell amplification due to culture in the presence of IL-2, there was no

increase in TAA-specific CD8+ T cell responses due to TAA

stimulation in healthy donors (Supplementary Figure 2).
3.3 Association of TAA-specific PBMC
IFNg+4-1BB+ CD8+ T cell responses with
neoadjuvant therapy efficacy in patients
with PDAC

To investigate the relationship between TAA-specific CD8+ T

cell responses and clinical features of patients with PDAC (n=57),

we stimulated PBMCs with a peptide pool containing four TAAs

and determined the percentage of responders for TAA-specific

CD8+ T cell response using the four criteria described above

(Figure 2C and Supplementary Figure 3).

We subsequently investigated if these cell responses were

affected by specific HLA class 1 types. Among the 57 donors, 12

HLA-A types were detected with 25 allelic combinations

(Supplementary Figures 4A, B), and TAA-specific CD8+ T cell
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responses were observed for all HLA-A types except A*30:01

(Supplementary Figure 4C). We then compared the HLA

distribution of responders in each criterion to that of all donors

to determine whether TAA-specific CD8+ T cell responses were

more prevalent in specific HLA-A types. However, we detected no

differences in our cohort (Supplementary Figures 4D, E). Larger

cohorts should be employed to investigate the association between

HLA and TAA-specific responses.

We investigated the correlation between TAA-specific CD8+ T

cell responses and patient characteristics at the initiation of

neoadjuvant therapy. The analysis revealed a significant association

between TAA-specific IFNg+4-1BB+ CD8+ T cell response and

pancreatic head and pancreatic body tail cancer (p = 0.0307;

Supplementary Table 3). However, no significant correlations were

observed for basic patient characteristics, such as age, sex, blood

counts, and tumor factors (Supplementary Table 3). Moreover, there

were no significant differences in the presence or absence of TAA-

specific responses by treatment content (Supplementary Table 3).

To more comprehensively assess the relationship between

clinical background information and total TAA-specific CD8+ T

cell responses, we generated a new index that may reflect the effects

of neoadjuvant therapy. The index comprised ratios and differences

of three tumor markers (CA19-9, CEA, and DUPAN-2), along with
Frontiers in Immunology 05
the tumor diameter on computed tomography (CT) images at the

initiation of treatment, after neoadjuvant therapy, and after surgery.

We then analyzed the parameters that were correlated with the

frequency of TAA-specific CD8+ T cell responses based on the

four criteria.

The number of lymphocytes in the peripheral blood was

positively correlated with TAA-specific 4-1BB+ CD8+ T cell and

TAA-specific IFNg+4-1BB+CD8+ T cell frequencies (Figure 2D,

columns 3 and 4). TAA-specific CD8+ T cell frequency,

characterized by IFNg+ and/or 4-1BB+, was inversely correlated

with both clinical progression (cStage) and tumor diameter on CT

before treatment initiation. However, no inverse correlation was

observed between the pathological progression (pStage) of the

resected specimen and the difference in tumor diameter on CT

after neoadjuvant therapy (Figure 2D, column 1). In contrast, the

frequency of TAA-specific IFNg+4-1BB+ CD8+ T cell responses

showed an inverse correlation with the rate of CA19-9 change

during neoadjuvant therapy: the lower the rate, the better the

therapeutic effect (R = −0.56, p = 0.011; Figure 2D, column 4 and

Figure 2E). CA19-9 is a widely used serum biomarker in PDAC, and

changes in its levels during neoadjuvant therapy are considered to

be prognostic (25). The results suggest that patients with TAA-

specific IFNg+4-1BB+ CD8+ T cell response observed prior to
A

B

C

FIGURE 1

Selection of tumor-associated antigens (TAAs) specifically expressed in pancreatic cancer. (A) Gene expression of six TAAs (CEACAM5, NY-ESO-I
[CTAG1A], TRP2 [DCT], MUC1, TERT, and WT1) in pancreatic cancer cell lines. A public database (CCLE) was used to evaluate mRNA expression using
RNA-sequencing. (B, C) mRNA expression of TAAs in pancreatic cancer cell lines determined by qRT-PCR. Relative expression levels of the
housekeeping gene (hGUS) are shown as bar graphs (B), and median values after min-max normalization are shown as heatmap (C). Unpaired t-test
was used for statistical analyses. *P<0.05, **P<0.01, ***P<0.001. “N.D” means “Not Detected”.
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A B

D

E

C

FIGURE 2

TAA-specific responses in CD8+ T cells in PBMCs at the beginning of treatment are associated with changes in serum CA19-9 levels before and after
treatment. (A) Flow cytometry gating for TAA-specific CD8+ T cell response analysis and antigen-specific responses in CD8+ T cells upon stimulation
of PBMCs from patients with pancreatic cancer with the mixture of TAA peptides pool. Examples of TAA-specific response-positive specimens are
shown. Numbers in the gates shown in red indicate frequencies (%). (B) Regions considered to have TAA-specific CD8+ T-cell responses according
to the four criteria are shown. (C) Percentage of patients with or without TAA-specific responses according to the four criteria (n=57).
(D) Correlation between the percentage of TAAs-specific response in antigen-specific response-positive specimens according to the four criteria
and the clinical information of the patients. The percentage of cells positive for each marker in CD8+ T cells without peptide stimulation (as
background) was subtracted from the percentage of each marker positive cells in CD8+ T cells with TAA stimulation. (E) Correlation between the
percentage of TAA-specific response in CD8+ T cells and changes in pre- and post-treatment serum CA19-9 levels. Patients with CA19-9 levels
below the detection sensitivity were excluded. Spearman's rank correlation test was used for statistical analysis.
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treatment initiation had a higher response to neoadjuvant therapy.

Moreover, this criterion resulted in the lowest background;

therefore, we used it for subsequent analyses.
3.4 Postoperative TAA-specific IFNg+4-
1BB+ CD8+ T cells and prognosis

To investigate the prognostic impact of TAA-specific IFNg+4-
1BB+ CD8+ T cells at different time points (before treatment [TP1],

after neoadjuvant therapy but before resection [TP2], and after

resection [TP3]) using PBMCs collected from the same patients

(Figure 3A), we compared the postoperative disease-free survival in

the two groups according to the presence or absence of TAA-specific

IFNg+4-1BB+ CD8+ T cells. There was no difference in the number of

responders at each time point (Figure 3B). No difference was

observed before treatment [TP1] or before surgery [TP2], whereas

a significant difference was observed after surgery [TP3] (Figure 3C).

The modulation of TAA-specific IFNg+4-1BB+ responses over time

did not exhibit a consistent trend, with some patients exhibiting a loss

of response and others becoming new responders before and after

treatment (Supplementary Figure 4). Notably, the four patients who

had responded before treatment and maintained this response after

surgery remained recurrence-free, whereas the three patients

exhibiting loss of TAA-specific IFNg+4-1BB+ responses experienced

recurrence (data not shown). There were no significant differences in

clinicopathologic factors (including treatment regimen) between the

presence or absence of TAA-specific IFNg+4-1BB+ reactions in TP3

(Supplementary Table 4).
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3.5 ICIs enhance TAA-specific PBMC
IFNg+4-1BB+ CD8+ T cell responses in cells
derived from patients with PDAC

We investigated the impact of ICIs on TAA-specific IFNg+4-1BB+

CD8+ T cell response. To identify candidate immune checkpoint

molecules as potential therapeutic targets, we compared the ex vivo

expression profiles of PD-1, TIGIT, Tim-3, CD160, and BTLA on

CD8+ Tm cells in PBMCs derived from patients with PDAC via flow

cytometry (Figure 4A; Supplementary Figure 6). Among these, only

PD-1 was significantly more expressed in samples derived from

patients with PDAC than in those from healthy participants

(Figure 4B). Therefore, we selected PD-1 as the target molecule. We

stimulated PBMCs with TAA peptide pools in the presence of ICIs and

cultured them to analyze TAA-specific IFNg+4-1BB+ CD8+ T cells. We

identifiedmore responders in the anti-PD-1 antibody group than in the

no-antibody and isotype groups, although this observation was not

significant (Figure 4C; Supplementary Figure 7), suggesting that anti-

PD-1 treatment detected new TAA-specific IFNg+4-1BB+ CD8+ T cells

in some non-responders. Furthermore, anti-PD-1, but not anti-TIGIT,

treatment significantly increased TAA-specific IFNg+4-1BB+ CD8+ T

cell frequency (Figures 4C–E).
3.6 Timing of ICI intervention in PBMCs
from patients with pancreatic cancer

To date, clinical trials of ICIs in patients with PDAC have

included patients treated with cytotoxic anticancer drugs. Thus, we
A B

C

FIGURE 3

Patients with TAA-specific IFNg+4-1BB+ CD8+ T cells responses in peripheral blood after surgery (TP3) had better disease free survival. (A) Schematic
showing the timing of specimen collection. The numbers below each time point indicate the duration between each time point (days post TP1 at which TP2
or TP3 were sampled, median and range are indicated). (B) Ratio of responders evaluated by TAAs-specific IFNg+4-1 BB+ CD8+ T cells at TP1/TP2/TP3.
The number of donors with all time points is n=20. (C) Kaplan-Meier survival curves compared disease free survival between the presence or absence of
TAA-specific IFNg+4-1 BB+ CD8+ T cells at TP1/TP2/TP3. TP1, before the start of treatment; TP2, before surgical resection; TP3, after resection.
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next investigated whether chemotherapy, radiation therapy, or

surgery would affect the efficacy of ICI in patients with PDAC.

PD-1 inhibition was assessed at the TP1, TP2, and TP3 time points

using PBMCs collected from the same patients. The efficacy of ICI

in donors increased as follows: 50% at TP1, 25% at TP2, and 35% at

TP3 (Figure 5A). PD-1 inhibition significantly increased the

frequency of TAA-specific IFNg+4-1BB+ CD8+ T cells only at

TP1 (Figure 5B), whereas TIGIT inhibition did not result in

significant changes at any time point (Figure 5C). These results

suggest that anti-PD-1 ICIs may be less effective after

chemotherapy, either alone or in combination with radiotherapy,

which could explain the poor outcomes reported in previous

clinical trials.
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4 Discussion

In the present study, we demonstrated that the frequency of

TAA-specific IFNg+4-1BB+ CD8+ T cells in the blood before

treatment was correlated with reduced CA19-9 levels, suggesting

the potential utility of the proposed method for detecting TAA-

specific IFNg+4-1BB+ CD8+ T cells as a surrogate marker to predict

treatment efficacy. Additionally, we demonstrated that

postoperative IFNg+4-1BB+ TAA-specific IFNg+4-1BB+ CD8+ T

cells may be predictive of postoperative recurrence. Although it

remains unclear whether this peripheral in vitro response reflects in

vivo suppression of cancer cells, patients exhibiting a TAA-specific

IFNg+4-1BB+ response after surgery exhibited a favorable
A

B

D EC

FIGURE 4

PD-1-positive memory CD8+ T cells are increased in PBMCs from patients with pancreatic cancer, and PD-1 inhibition in vitro increased TAA-
specific IFNg+4-1BB+ CD8+ T cells. (A) Representative flow cytometry plots of exhaustion markers expression in PBMCs from the healthy donor and
the patient with pancreatic cancer. (B) PBMCs were analyzed ex vivo via flow cytometry, and the frequency of expression of five immune checkpoint
molecules in memory CD8+ T cells was compared between healthy donors (HD) (n=15) and pre-treatment (TP1) pancreatic cancer patients (PDAC
Pt.) (n=57). Mann—Whitney U test was used for the statistical analysis. (C) Ratio of responders evaluated by TAA-specific IFNg+4-1BB+ CD8+ T cells in
TP1 samples (n=57) treated without antibody, with isotype antibody, with anti-PD-1 antibody, or with anti-TIGIT antibody. (D) Comparison of TAA-
specific IFNg+4-1BB+ CD8+ T cells frequencies in PDAC Pt. TP1 samples (n=57) upon isotype and anti-PD-1 antibody treatment. Wilcoxon signed-
rank test was used for statistical analysis. (E) Comparison of TAA-specific IFNy+4-1BB+ CD8+ T cells frequencies in TP1 samples (n=57) treated with
isotype or anti-TIGIT antibody. Wilcoxon signed-rank test was used for statistical analysis. ****P<0.0001. “ns” means “not significant”.
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prognosis, whereas those exhibiting a response before treatment but

not after surgery were more susceptible to recurrence.

TIL analysis requires invasive tissue collection, posing challenges

to monitoring changes in patients. In contrast, liquid biopsies can be

conducted multiple times with minimal invasiveness, and are

considered a rich source of information that reflects biological

status, therapeutic response, and clinical outcomes (26). Recently,

a variety of biomolecules or particles in plasma such as cell free DNA

(cfDNA), circulating tumor DNA (ctDNA), non-coding RNAs, and

exome or extracellular vesicles have emerged as new probes to

examine the biological status of tumors, therapeutic responses, and

prognoses (27–32). In addition, certain types of cells, such as

circulating tumor cells (CTCs), have been used to identify tumor

status (33, 34). In general, cell-based analysis requires more labor

than molecular-based analysis. However, the overall information it

supplies is richer. Circulating immune cells would be as valuable a

source of information as CTCs. Compared to the rare nature of

CTCs and the specific tools needed to capture them, circulating T

cells are easier to detect and more easily accessible using standard

immunological instruments. Indeed, the transcriptomic analysis of

bulk peripheral CD8+ T cells in melanoma patients has revealed the

association between peripheral CD8+ T cell characteristics and ICI

responses (35). Furthermore, in clinical trials investigating the use of

atezolizumab and personalized RNA neoantigen vaccines, as well as

mFOLFIRINOX as adjuvant chemotherapy in patients with

pancreatic cancer, those with vaccine antigen-specific T cells in

their PBMCs exhibited a significantly improved recurrence-free

survival (36). While more patients are required for further

validation, our study suggests a potential synergistic effect of

immune response and neoadjuvant therapy, providing important

insights for future combination therapies with anticancer drugs

and ICIs.
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In addition to conventional treatments such as surgery,

chemotherapy, and radiation, immunotherapy has emerged as a

new treatment strategy for cancer. However, the effectiveness of ICI

monotherapy is limited in pancreatic cancer (10]. Therefore,

various combination therapies are being investigated, including

cytotoxic chemotherapy and radiotherapy (37). Moreover, a

previous report has suggested that neoadjuvant chemotherapy

activates the immune response (38). In cancers other than

pancreatic cancer, ICI treatment is more effective when

administered before surgery rather than after (39–42). Notably, a

preoperative cytotoxic anticancer drug plus ICI therapy showed

efficacy in a phase 3 trial for resectable non-small cell lung cancer

(43). Based on these reports, clinical trials investigating ICI

treatment in combination with neoadjuvant chemotherapy

regimens are currently underway for pancreatic cancer. The

results of these trials are anticipated to provide insights into the

optimal timing of treatment. However, most of the study focuses on

the neoadjuvant (preoperative) versus adjuvant (postoperative)

difference, rather than the untreated versus neoadjuvant in a

preoperative setting (44), or by comparing it with or without ICI

in the neoadjuvant setting (45). Here, we directly investigated the

three distinct timings of PD-1 inhibition in vitro. Contrary to

the anticipated result from previous studies, our results indicated

the effectiveness of PD-1 inhibition in TAA-specific IFNg+4-1BB+

CD8+ T cells before the start of neoadjuvant therapy, at least in

vitro. There is one possible explanation for this discrepancy. The

rationale for neoadjuvant ICI therapy is the following: increased

priming of tumor-specific T cells due to immunogenic cell death in

tissue that is induced by neoadjuvant increases the antigenic stimuli

(46–49). In our analysis, in contrast, TAA-specific peripheral

memory CD8+ T cells were stimulated by an abundant amount of

TAA peptides either in the presence or absence of PD-1 inhibition.
A

B C

FIGURE 5

PD-1-positive memory CD8+ T cells are increased in PBMCs from patients with pancreatic cancer, and PD-1 inhibition in vitro increased TAA-
specific IFNg+4-1 BB+ CD8+ T cells. (A) Comparison of the percentage (%) of TAAs-specific IFNg+4-1BB+ CD8+ T cells during anti-PD-1 antibody
treatment at TP1/TP2/TP3. The number of donors with all time points is n=20. (B) Comparison of the percentage (%) of TAA-specific IFNy+4-1BB+

CD8+ T cells during anti-PD-1 treatment at TP1/TP2/TP3. The number of donors with all time points is n=20. (C) Comparison of the percentage (%)
of TAA-specific IFNy+4-1BB+ CD8+ T cells during anti-TIGIT treatment at TP1/TP2/TP3. The number of donors with all time points is n=20. Wilcoxon
signed-rank test was used for statistical analysis. before the start of treatment; TP2, before surgical resection; TP3, after resection.
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Another explanation is that the study design of previous reports was

limited to fully delineate the optimal timing of ICI therapy.

Consistently, one study focusing on the sequence of ICI before

and after neoadjuvant suggested that the ICI before neoadjuvant

was efficacious in BRAF-wildtype metastatic melanoma (50).

This study has some limitations. First, this study suggests the

prognostic value of analyzing postoperative peripheral blood

samples in patient follow-up. However, further investigations are

warranted, owing to the small number of cases and short

observation period. Second, given the interplay of peripheral

CD8+ cells with tissue-resident memory CD8+ T cells against

anti-tumoral immunity (51), TAA-specific IFNg+4-1BB+ CD8+ T

cells in the blood may contribute to the efficacy of neoadjuvant

therapy. However, our study did not directly analyze TILs, and it

remains unclear if similar cells existed in the tissues.

In summary, we selected TAA-specific antigen molecules to

stimulate CD8+ T cells and we established a flow cytometry system

to detect antigen-specific responses of these cells in peripheral blood

derived from patients with PDAC, utilizing them as peripheral

biomarkers for assessing the efficacy of neoadjuvant chemotherapy.

Evaluation of the impact of immunotherapy by monitoring the

TAA-specific IFNg+4-1BB+ responses of CD8+ T cells suggested

that PD-1 inhibition may effectively increase TAA-specific IFNg+4-
1BB+ CD8+ T cells when administered as a neoadjuvant therapy.

Our findings suggest that a sequential treatment approach,

involving initial ICI treatment followed by neoadjuvant

chemotherapy, as opposed to a combination therapy where ICI

and neoadjuvant chemotherapy are administered simultaneously,

may optimize the efficacy of multidisciplinary treatment.
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