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Background: It has been well established that glycosylation plays a pivotal role in

initiation, progression, and therapy resistance of several cancers. However, the

correlations between glycosylation and head and neck squamous cell carcinoma

(HNSCC) have not been elucidated in detail.

Methods: The paramount genes governing glycosylation were discerned via the

utilization of the Protein-Protein Interaction (PPI) network and correlation

analysis, coupled with single-cell RNA sequencing (scRNA-seq) analysis. To

construct risk models exhibiting heightened predictive efficacy, cox- and

lasso-regression methodologies were employed, and the veracity of these

models was substantiated across both internal and external datasets.

Subsequently, an exploration into the distinctions within the tumor

microenvironment (TME), immunotherapy responses, and enriched pathways

among disparate risk cohorts ensued. Ultimately, cell experiments were

conducted to validate the consequential impact of SMS in Head and Neck

Squamous Cell Carcinoma (HNSCC).

Results: A total of 184 genes orchestrating glycosylation were delineated for

subsequent scrutiny. Employing cox- and lasso-regression methodologies, we

fashioned a 3-gene signature, proficient in prognosticating the outcomes for

patients afflicted with HNSCC. Noteworthy observations encompassed

distinctions in the Tumor Microenvironment (TME), levels of immune cell

infiltration, and the presence of immune checkpoint markers among divergent

risk cohorts, holding potentially consequential implications for the clinical

management of HNSCC patients.
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Conclusion: The prognosis of HNSCC can be proficiently anticipated through

risk signatures based on Glycosylation-related genes (GRGs). A thorough

delineation of the GRGs signature in HNSCC holds the potential to facilitate

the interpretation of HNSCC’s responsiveness to immunotherapy and provide

innovative strategies for cancer treatment.
KEYWORDS
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1 Introduction

Head and neck squamous cell carcinomas (HNSCCs) emanate

from the mucosal epithelium within the oral cavity, pharynx, and

larynx, constituting the most prevalent malignancies manifesting

within the cephalic and cervical regions (1). As an extremely

malignant tumor, HNSCC stands as the sixth most prevalent

neoplastic condition globally, registering 890,000 newly diagnosed

cases and 450,000 fatalities in the year 2018 (2). The frequency of

HNSCC persistently ascends and is prognosticated to escalate by

30%, projecting an annual occurrence of 1.08 million new cases by the

year 2030 (3). The primary modalities of therapeutic intervention for

locally or locoregionally confined HNSCC encompass resection,

radiation, and systemic therapy. Surgical procedures are frequently

chosen for malignancies within the oral cavity, whereas radiation is

more commonly employed for pharyngeal and laryngeal cancers. In

the case of laryngeal cancers, a moderately hypo-fractionated

radiation schedule yields superior locoregional control and survival

outcomes compared to standard radiation therapy (4, 5). Progress in

minimally invasive resection techniques, such as transoral robotic or

laser resection, and larynx-preserving partial laryngectomy, alongside

advancements in reconstructive methodologies, have broadened the

indications for primary surgical management under the expertise of

high-volume head and neck surgical oncologists (6). Even though,

most HNSCC patients still have to encounter unfavorable prognosis

due to the lack of early diagnosis and precise treatment. Therefore, it

is urgent to develop appropriate methods applied for diagnosis and

therapy of HNSCC.

Glycosylation, a fundamental and prominent post-translational

modification of proteins, plays pivotal roles in diverse cellular

processes, including cell proliferation, differentiation, oncogenic

transformation, adhesion, and immune surveillance of cancers (7,

8). Recent attention has focused on changes in cellular glycosylation

as a key component of neoplastic progression (9). Nowadays, state-

of-the-art technologies have provided novel opportunities and

methodologies for scrutinizing cancer-associated glycosylation.

Consequently, glycans, along with anomalously glycosylated

proteinaceous cancer biomarkers, have gained escalating

recognition (10). Glycans intricately participate in foundational
02
molecular and cellular processes inherent to cancer, encompassing

cell signaling and intercellular communication, disintegration and

infiltration of neoplastic cells, interactions between cells and the

extracellular matrix, tumor angiogenesis, immune modulation, and

the establishment of metastatic lesions. The significance of glycans in

cancer is underscored by the observation that modifications in

glycosylation intricately govern the evolution and advancement of

cancer, functioning as pivotal biomarkers and furnishing a repertoire

of precise targets for therapeutic intervention (11). Cancer

immunotherapy employing immune checkpoint blockade (ICB),

encompassing antibodies that impede cytotoxic T lymphocyte

protein 4 (CTLA-4) and programmed cell death protein 1 [PD-(L)

1], has enhanced the outcomes for cancer patients. However, the

benefits of the presently available ICB are realized by only a minority

of individuals (12). Ongoing investigations explore novel target

pathways, and combinatory strategies involving agents obstructing

both CTLA-4 and PD-(L)1 exhibit encouraging preclinical and early

clinical efficacy (13). The upregulation of sialic acid–containing

glycans in the tumor microenvironment, referred to as tumor

hypersialylation, contributes to the establishment of an

immunosuppressive milieu and attenuates antitumor immune

responses by engaging immunomodulatory Siglecs expressed on

tumor-infiltrating immune cells (14, 15). Recent research indicates

the sialoglycan-Siglec axis as a novel immune checkpoint that can be

addressed to stimulate innate and adaptive antitumor immunity (16).

Nevertheless, in light of the presence of numerous Siglecs and their

extensive array of expression within the immune system, the precise

mechanism remains ambiguous. The complexity of glycan structures

and their interactions with Siglecs adds a layer of intricacy to our

comprehension. While we have made strides in elucidating the roles

of specific sialoglycans and Siglecs in modulating immune responses,

there are still gaps in our understanding of the precise mechanisms

underlying these interactions, particularly in diverse physiological

contexts (17). While our knowledge of the sialoglycan-Siglec axis has

expanded, there are still uncertainties and challenges that necessitate

further research. Acknowledging these limitations not only enhances

the credibility of our findings but also guides future investigations

aimed at unraveling the complexities of glycan-mediated

immune regulation.
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In this investigation, we acquired single-cell RNA sequencing

(scRNA-seq) data and transcriptome data from accessible databases

to discriminate glycosylation and construct a risk signature based

on Glycosylation-Related Genes (GRGs) for Head and Neck

Squamous Cell Carcinoma (HNSCC). We assessed the clinical

import of the GRGs-based signature and subsequently scrutinized

the immune milieu and responsiveness to immunotherapy

correlated with it. Vitro experiments were used to validate the

crucial impacts core gene has on HNSCC cell lines. With the

findings, early modalities are more likely to be applied for those

patients diagnosed with HNSCC, who could have more

favorable outcomes.
2 Methods

2.1 Data collection and processing

HNSCC single-cell RNA sequencing (scRNA-seq) data were

procured from the GEO database [Home - GEO - NCBI (nih.gov)]
Frontiers in Immunology 03
under accession number GSE234933, 14 samples of which were

selected for our research, comprising of 7 primary malignant

tumor samples and 7 metastatic ones. We systematically

excluded individual cells exhibiting expression of fewer than

three genes or manifesting expression in fewer than 250 genes.

Subsequently, the proportion of ribosomal RNA (rRNA) and

mi tochondr ia l content was computed u t i l i z ing the

PercentageFeatureSet function within the Seurat R package. As a

result, a total of 28736 cells were acquired for subsequent

analytical endeavors. Besides, we systematically gathered

transcriptomic data and associated clinical information

perta in ing to HNSCC from TCGA repos i tory [GDC

(cancer.gov)]. Samples devoid of outcome status or survival-

related data were omitted, resulting in the acquisition of 128

HNSCC specimens for external validation. The training cohort,

comprised of 109 HNSCC samples, was derived from the

GSE27020 dataset after discarding samples lacking follow-up

information, retrieved from the Gene Expression Omnibus

(GEO) database. The last, 184 glycosylation-related genes were

obtained from GSEA (GSEA (gsea-msigdb.org)).
FIGURE 1

The flow chart of this study.
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2.2 Pathway and enrichment analysis

In order to evaluate the functionalities of GRGs, gene set

enrichment analysis (GSEA) was conducted utilizing the R

packages ‘clusterProfiler’ and ‘limma,’ incorporating the hallmark

gene sets (h.all.v7.5.symbols.gmt) and the Gene Ontology-

Biological Processes (GO-BP) subsets derived from the canonical

pathway gene sets (c2.cp.go.v7.5.symbols.gmt) (18).

In order to interrogate the profound biological processes

associated with these disparately expressed GRGs, pathway and

enrichment analyses were executed utilizing the R package

‘clusterProfiler.’ Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses were conducted.

P-adjusted values < 0.05 were deemed as significant thresholds.
2.3 Protein-protein interaction

To explore the protein-protein interaction in glycosylation-

related genes, PPI network was constructed. Proteins with strong

interactions were obtained from ‘STRING’ with interaction score

was set as highest confidence (0.900). The Cytoscape software

(version 3.9.0; https://cytoscape.org/) was utilized to build the PPI

network. The cytoHubba plug-in (version 0.1; https://

apps.cytoscape.org/apps/cytohubba) To analyze the network

topology properties of the nodes, the CytoNCA plug-in (version

2.1.6; https://apps.cytoscape.org/apps/cytonca) was used, and the

parameter was set to “without weight”. The crucial nodes of PPI

network were obtained after arranging each node with the order

of score.
2.4 Cell-type clustering and GRGs
expression in scRNA

The scRNA-seq data pertaining to Head and Neck Squamous

Cell Carcinoma (HNSCC) underwent re-analysis through the

Seurat package (19). The primary objective was to systematically

delineate the GRGs signature. Commencing the data preprocessing,

cells expressing fewer than 250 or more than 6000 genes were

excluded. The remaining expressed genes underwent log-

normalization. Subsequently, the FindIntegrationAnchors

function was employed. In order to diminish the data’s

dimensionality, the t-distributed Stochastic Neighbor Embedding

(tSNE) method was applied with a resolution of 0.1, utilizing 30

principal components. It is noteworthy that the tSNE method

employed manifested non-linear characteristics. To categorize

individual cells into distinct subgroups, the FindNeighbors and

FindClusters functions were utilized, with a dimensionality of 30

and a resolution of 0.1. Thus, 18 cells clusters were obtained

comprising of 28736 cells. The cellular entities were subsequently

classified into eight principal cell types, guided by the identification

of canonical marker genes. Noteworthy classifications include

Epithelial cells, characterized by the presence of CDKN2A,

CDH1, EPCAM, MUC5B, WFDC2, and PTPRT. T cells were
Frontiers in Immunology 04
discerned through the expression of CD247, CD2, and CD3E,

while B cells were identified based on the manifestation of

CD79A, CD79B, and MS4A1. Fibroblasts were distinguished by

the expression of COL1A1, COL1A2, LUM, and DCN, and

endothelial cells were marked by PECAM1, ENG, PLVAP, and

CDH5. Cancer stem cells exhibited characteristic gene expression

including EPCAM, CD24, SOX4, and KRT18. Additionally,

Monocytes were identified by the presence of CST3 and LYZ,

whereas Macrophages were marked by CD68, CD163, and CD14.

Those marker genes were identified to play pivotal roles in specific

cellular functions.
2.5 Trajectory analysis

Single-cell trajectory analysis was performed utilizing monocle

2 (v2.22.0). The count matrix derived from a specific cell type was

employed, and genes expressed in fewer than 10 cells were

preserved for subsequent analysis. The differentially expressed

genes between High B4GALT1 fibroblasts and Low B4GALT1

fibroblasts (logFCfilter=1 adjPvalFilter=0.05) were selected for

further analysis. For High B4GALT1 fibroblasts or Low B4GALT1

fibroblasts, the determination of ordering genes was predicated on

their dispersion and expression levels across all genes. Ultimately,

the trajectory was delineated through the reduceDimension

function, employing the DDRTree method.
2.6 Cell–cell communication analysis

To comprehend the intricate communication network within

the eight major cell types, an analysis of cell–cell communication

was systematically undertaken through CellphoneDB (v3.1.0). Only

ligand-receptor pairs with a P-value below 0.05 were deemed

significant and retained for further investigation (The criteria

about how the ligand-receptor pairs were identified as significant

in CellphoneDB analysis were referred to database cellphonedb.org/

ppi-resources). In the context of Cellchat (v1.4.0) analysis, all the

ligand-receptor pairs, encompassing Secreted Signaling, ECM-

Receptor, and Cell–Cell Contact categories, were employed to

construct a comprehensive cell–cell communication network. This

network was delineated across various cell types in primary

malignant samples and metastasis, utilizing default parameters.
2.7 DNA methylation analysis

Data of DNA methylation in HNSCC was downloaded and

further processed from GEO database (GSE178218). For

methylated data, the beta value undergoes conversion to M value

through the formula M = log2[beta/(1 - beta)] (20). The utmost

methylation locus situated within the corresponding gene promoter

region, encompassing TSS1500, TSS200’s, and 5’UTR, was

employed to represent the methylation level of the gene promoter

region (21). Subsequently, the R package limma was employed for
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the scrutiny and characterization of differentially expressed genes

(DEGs) and differentially methylated CpG sites (DMCs) across

tumor and normal samples. The Benjamini–Hochberg (BH) false

discovery rate (FDR) method was applied to ascertain the adjusted

p-value for each CpG site and gene. An FDR-adjusted p-value less

than 0.05 served as the threshold criterion for the identification of

DEGs and DMCs.
2.8 Construction of GRGs risk signature

The Differentially Expressed Genes (DEGs) exhibiting elevated

expression levels in High B4GALT1 fibroblasts compared to Low

B4GALT1 fibroblasts were derived through the utilization of the

FindMarkers or FindAllMarkers function, employing default

parameters and the Wilcoxon rank-sum test, unless explicitly

specified. DEGs with an adjusted P-value below 0.05 were

selectively retained for subsequent analysis. To curtail the number

of genes, the least absolute shrinkage and selection operator (lasso)

methodology (coefficient = 0.038) was employed. Subsequently, a

Multivariate Cox regression analysis, utilizing the stepwise

regression method, was executed to establish a GRGs-based risk

signature. Patient stratification into low- and high-risk groups was

accomplished through zero-mean normalization. The predictive

efficacy of the risk signature was assessed via the timeROC

package, facilitating Receiver Operating Characteristic (ROC)

analysis. The results conclusively indicated that the risk signature

bore significant predictive value concerning patient prognosis.
2.9 Immune landscape analysis

The correlation between the prognostic signature and the Tumor

Immune Microenvironment (TIME) underwent comprehensive

scrutiny through various algorithms, including CIBERSORT, EPIC,

MCPCOUNTER, and TIMER. Stromal scores, immune scores, and

estimate scores were meticulously computed utilizing the “estimate”

R package, facilitating the assessment of variances within the patient’s

tumor microenvironment. Additionally, the proportions of 22

distinct immune cell subtypes were estimated through the

CIBERSORT algorithm, leveraging data from the GSE27020 cohort.

Further investigation delved into the correlation between the genes

constituting the signature and the immune score, shedding light on

the profound impact exerted by these genes on immune-

related functionalities.
2.10 Cell lines culture of HNSCC cells and
cell transfection

All patients provided explicit informed consent prior to their

enrollment in the research initiative. Sample collections adhered to

procedures sanctioned by the Ethics Committee of Cancer Hospital

and Shenzhen Hospital, Chinese Academy of Medical Sciences

(KYLX2021-54). Cell lines pertaining to head and neck squamous
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cell carcinoma (HNSCC), namely HN-5 cells and UMSCC-47 cells,

were procured from the American Type Culture Collection

(ATCC). The cultivation of all cells employed RPMI 1640 media

(Gibco, USA), supplemented with 10% fetal bovine serum

(HyClone Sera, USA) and 1% penicillin‐streptomycin (Sangon

Biotech, China). Cellular maintenance occurred within an

atmosphere sustained at 37°C with 5% CO2. The SMS siRNA

expression vector and the scrambled siRNA nontarget control

were acquired from Genewiz (China). Plasmids underwent

transfection utilizing Lipofectamine 3000 (Thermo Scientific,

USA), following the manufacturer’s prescribed protocols.

Furthermore, oligonucleotides used in research were presented in

Supplementary Table S2.
2.11 RNA extraction and quantitative real-
time polymerase chain reaction

Total RNA was isolated from the cellular specimens employing

TRIzol, following the guidelines stipulated by the manufacturer

(15596018, Thermo). Subsequent to this, complementary DNA

(cDNA) synthesis transpired through the utilization of the

PrimeScript TMRT kit (R232-01, Vazyme). Real-time polymerase

chain reaction (RT-PCR) was conducted utilizing the SYBR Green

Master Mix (Q111-02, Vazyme). The mRNA expression levels for

each target were normalized to the GAPDH mRNA levels, and the

quantification of expression levels was executed employing the 2-

DDCT method.
2.12 Colony formation

We planted transfected head and neck cancer cells in a 6-well

plate, with 800 cells per well. After 2 weeks, we observed the number

of colonies formed by each group of cells. The cells were fixed,

stained, and then counted.
2.13 Wound-healing assay and
transwell assay

The transfected cells were inoculated in 6-well plates and cultured

within a controlled cell incubator until they achieved 95% confluence.

Subsequently, each well underwent a delicate scraping process using a

sterile 200 ml plastic pipette tip, and any non-adherent cells and

debris were rinsed twice with phosphate-buffered saline (PBS). The

extent of the scratch wounds was quantified utilizing the Image J

program, with photographic documentation captured at both the 0-

hour and 48-hour time points. For the experiments pertaining to cell

migration, treated HN-5 cells and UMSCC-47 cells (2×104) were

incubated in the upper chamber of 24-well plates for a duration of 48

hours. Following the removal of cells from the upper surface, the

remaining cells on the lower layer were fixed with 4%

paraformaldehyde and stained with 0.1% crystal violet

(Solarbio, China).
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2.14 Statistical analysis

All statistical analyses were executed utilizing the R software

(version 4.1.3). The Wilcoxon test was employed for the

comparative analysis of two groups, while correlation matrices

were scrutinized through the Spearman or Pearson correlation, as

deemed appropriate. Survival disparities, as depicted by Kaplan-

Meier curves, were evaluated employing the Log-rank test, wherein

statistical significance was established at a p-value less than 0.05.
3 Results

3.1 Enrichment analysis based on
transcriptome sequencing

The flow chart of the study is presented in Figure 1. To explore

the influence of glycosylation on HNSCC, the data of HNSCC was

downloaded and further analyzed from TCGA, which contained

116 malignant samples as well as 12 normal ones. Meanwhile, 184

glycosylation-related genes were obtained from GSEA (Gene Set

Enrichment Analysis). As was depicted in the heatmap (Figure 2A),

the expression of first 30 glycosylation-related genes was exhibited

with 12 paired tumor-and-normal samples. Then, GSEA analysis

was conducted, which indicated that glycosylation signal was

significantly enriched during these samples (Figure 2B).

Furthermore, these RGRs were enrolled into differential analysis

(results of differential analysis were presented in Supplementary

Table S1) and Figure 2C demonstrated that up-regulated genes were
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overwhelmingly enriched in pathways including glycosphingolipid

biosynthesis ganglio series, notch signaling pathway and so on. On

the other hand, down-regulated genes were mostly enriched in N-

glycan biosynthesis, glycosphingolipid biosynthesis heparan sulfate,

etc. Both the notch signaling pathway and were identified to

contribute to the initiative, proliferation and migration of several

cancers (22, 23). Likewise, results of GO analysis also verified that

these GRGs were obviously enriched in glycosylation related

pathways (Figures 3E–G).
3.2 Immune infiltrations exploration in
transcriptome sequencing

After conducting the enrichment analysis, the transcriptome

data was further enrolled for immune infiltrations exploration. As

depicted in Figure 3A, slight difference of immune infiltrations was

identified between tumor specimens and normal ones. Higher

proportions of immune-related cells were found enriched in

normal samples compared with those malignant ones, such as

naïve B cells, CD4+ T cells (memory resting), monocytes, resting

dendritic cells, and resting mast cells. Conversely, more percentage

of macrophages (M0, M1) were observed in the normal samples.

Moreover, method of ‘Spearman’ was utilized to explore the

relationship between immune infiltrations and glycosylation. The

results manifested that proportions of naïve B cells and CD4+ T cells

(memory resting) were positively related to glycosylation, while T

cells (follicular helper) were negatively correlated with glycosylation

(Figures 3B–D). Results of disparities of immune cells proportions
A B

C

FIGURE 2

Gene Set Enrichment Analysis (GSEA). (A) Single Sample Gene Set Enrichment Analysis (ssGSEA) of Head and Neck Squamous Cell Carcinoma
(HNSCC). (B) GSEA of HNSCC focused on glycosylation signal. (C) Kyoto encyclopedia of genes and genomes (KEGG) of HNSCC. (**P < 0.01; ***P
< 0.001)
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between different samples were presented in Supplementary

Figure S1.
3.3 PPI (Protein-protein interaction)

The fundamental essence of nearly every biological process is

encapsulated within proteins and their intricate interactions. To

obtain the core genes that play a pivotal role in the glycosylation of

HNSCC, PPI network was performed. Well exhibited in

Supplementary Figure S2A, these GRGs have extensive links

between each other and B4GALT1 was found to have the most

edges in the network, according to which, we infer that B4GALT1

might play an indispensable role in the HNSCC’s glycosylation.

Besides, relevant parameters used in the PPI network were

displayed in Supplementary Figure S2B.
3.4 RGRs expression in scRNA samples

Next, to explore the expression pattern of GRGs in different

cells, scRNA sequencing of HNSCC (GSE234933) was obtained

from GEO database, from which 7 primary tumor samples as well as

7 metastatic ones were selected for subsequent analysis. Totally,

28736 cells were acquired from the scRNA-seq data after initial

screening. Results of data preprocessing details were presented in

Supplementary Figure S3. To begin with, 18 subpopulations were

identified after conducting log-normalization and dimensionality

reduction (Figure 4A). Then, we performed the cell annotation and

obtained 8 types of cells, including T cells, B cells, Monocytes,
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Macrophages, Endothelial cells, Epithelial cells, Cancer stem cells,

and Fibroblasts (Figure 4B). Furthermore, upon conducting the

method of ‘FindVariableFeature’, 9996 DEGs (different expression

genes) were acquired based on the 8 clusters. The volcano plot

depicted the top5 DEGs (Figure 4C). According to these DEGs,

GSEA analysis was performed, the results demonstrated that DCN,

LUM, COL1A1 and CXCL14 were significantly enriched in

Fibroblasts and remarkably correlated with several pathways, such

as collagen fibril organization, extracellular matrix organization and

so on (Supplementary Figure S4). Besides, the histograms exhibited

the cell proportions of the 8 clusters in each sample (Figure 4D),

which demonstrated that the sample metastasis5 acquired the

highest cell proportions and sample primary7 shared the most T

cells. The last, 8 GRGs that exert crucial impacts in the former PPI

network were presented in tsne plots (Figure 4E). The expression of

B4GALT1 was found significantly high in Fibroblasts, Macrophages

and Epithelial cells.
3.5 Glycosylation’s influence in
different cells

Similar to former findings, expression of B4GALT1 was

identified dramatically high in Fibroblasts, Macrophages and

Ep i th e l i a l c e l l s ( F i gu r e 5B ) . Wi th the me thod o f

‘AddModuleScore’, the violin plots exhibited that there was little

difference of glycosylation between primary tumor samples and the

metastasis ones (Figure 5A). Considering the high expression of

B4GALT1 in Fibroblasts, the cluster of Fibroblasts was screened out

and further classified into ‘low B4GALT1 Fibroblasts’ and ‘High
A B C

D

E F G

FIGURE 3

Immune Infiltrations Analysis and GO Analysis. (A) Comparison of proportions of 22 immune-related cells between tumor and normal groups. (B–D)
Correlations between several immune-related cells and glycosylation signal. (E) GO-BP analysis (F) GO-CC analysis (G) GO-MF (E)KEGG analysis.
(Wilcox. Test, *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant).
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B4GALT1 Fibroblasts’ subgroups (Figure 5C). Then, results of GO

enrichment analysis revealed that both the two subgroups were

significantly correlated with extracellular matrix structural

constituent (Figure 5D). Next, we performed monocle2 to probe
Frontiers in Immunology 08
into the fibroblast ’s potential developmental trajectory.

Interestingly, we found that high expression of B4GLTA1 was

obviously located at the ending point of the developmental

trajectory (Figures 5E, F). Similarly, ‘High B4GLAT1 Fibroblasts’
A B C

D E

FIGURE 4

Glycosylation-related genes (GRGs) expression in scRNA data of HNSCC patients. (A) tSNE plots of distribution of 18 clusters. (B) tSNE plots of
distribution of 8 clusters after annotation. (C) Volcano plot of the top5 marker gene expression of subgroups. (D) Histogram showing cell numbers in
main clusters and samples. (E) tSNE plots exhibiting eight GRGs expression.
A B C
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FIGURE 5

Glycosylation of HNSCC based on fibroblasts. (A) Disparities of glycosylation between metastasis and primary HNSCC samples in different cells. (B)
Expression level of B4GALT1 in different cells. (C) tSNE plots of distributions of ‘Low B4GALT1 Fibroblasts’ and ‘High B4GALT1 Fibroblasts’ after
clustering. (D) GO-BP analysis of ‘Low B4GALT1 Fibroblasts’ and ‘High B4GALT1 Fibroblasts’ clusters. Trajectory of Pseudotime (E), expression level of
B4GALT1 (F), ‘Low B4GALT1 Fibroblasts’ and ‘High B4GALT1 Fibroblasts’ clusters (G), glycosylation level (H). (Wilcox. Test, ****P < 0.0001; ns,
not significant).
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was identified at the end of developmental trajectory (Figure 5G).

Thus, we infer that B4GALT1 might impede the progression of

HNSCC. By converse, Figure 5H displayed that low proportion

of glycosylation was relatively enriched at the beginning point of

developmental trajectory, demonstrating that glycosylation may

contribute to the initiation and progression of HNSCC.
3.6 Specific cellular interactions between
fibroblasts and the others

To explore the heterogeneity of cell-cell interactions between

primary tumor samples and the metastatic ones, series of ligand-

receptor (L-R) pairs obtained from CellphoneDB database were

utilized to predict potential interactions among eight major cell

types. Compared with metastasis tumor samples, the primary ones

had more sufficient interaction pairs, especially in Fibroblasts,

Macrophages, and Endothelial cells (Figure 6A). Besides, these

cycle graphs (Figures 6B–E) demonstrated that in spite of less

interaction numbers, metastatic samples had more intensive

interaction weights, indicating that cell-cell interactions were

vividly involved during the progression of malignant cells.
3.7 DNA methylation analysis of B4GALT1
in HNSCC

As an extremely malignant tumor, HSCC has been identified

significantly correlated with epigenetics. Thus, we further explored
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the B4GALT1methylation in HSCCwith GEO database (GSE178218).

The heatmap presented the differences in methylation level between

tumor samples and the normal ones (Figure 7A), revealing that normal

samples might have a relatively high methylation level. Besides, we

could infer that methylation level of B4GALT1 in normal specimens

was slightly higher than that in malignant samples based on Figure 7B.

Moreover, results of disparity of methylation level between different

genes were exhibited in Figures 7C, D.
3.8 Risk signature construction
and validation

With the scRNA-seq data, DEGs between ‘low B4GALT1

Fibroblasts’ and ‘High B4GALT1 Fibroblasts’ cells were acquired.

The prognosis of these genes was further evaluated using univariate

cox regression. As presented in Figure 8A, 14 RGRs were identified

significantly correlated with the prognosis of HNSCC. To diminish the

number of genes, we executed Lasso Cox regression analysis, yielding a

set of three genes. Ultimately, employing the stepwise regression

methodology, we developed the risk signature subsequent to a

comprehensive multivariate Cox regression analysis (Figure 8B). The

signature comprised of 3 genes, namely spermine synthase (SMS),

heart development protein with EGF like domains 1 (HEG1) and

myosin IB (MYO1B). Utilizing z-score normalization, we computed

the risk scores for each patient, stratifying individuals into categories of

high-and-low risk. The data of GSE27020 was used as training cohort

while the testing cohort was constructed based on TCGA database.

Kaplan-Meier survival analysis elucidated those characterized as low-
A B

C D E

FIGURE 6

Specific cellular interactions between fibroblasts and the others. (A) Heatmap displaying number of interactions in primary and metastasis HNSCC
samples. (B) Cycle graph showing interaction weighs in primary HNSCC samples. (C) Cycle graph showing number of interactions in primary HNSCC
samples. (D) Cycle graph showing interaction weighs in metastasis HNSCC samples. (E) Cycle graph showing number of interactions in metastasis
HNSCC samples.
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risk exhibited markedly superior survival outcomes in contrast to their

high-risk counterparts, which could be validated not solely within the

training cohort but also extensible to both internal and external cohorts

(Figures 8C–E). Moreover, based on the TCGA and GEO cohorts, the
Frontiers in Immunology 10
Area Under the Curve (AUC) metrics of the signature for survival

spanning 1, 3, and 5 years were deemed gratifying, thereby signifying

the model’s exemplary prognostic efficacy (Figures 8I, J). Besides, these

3 genes were enrolled into Kaplan-Meier survival analysis and the
A B

C D

FIGURE 7

Methylation analysis in HNSCC. (A) Heatmap presenting disparities of methylation between tumor and normal samples. (B) Methylation of B4GALT1
in HNSCC. (C, D) Volcano plots showing differences of methylation level between different genes.
A B C
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FIGURE 8

A novel risk signature developed based on several GRGs. (A) Results of univariate cox regression based on these GRGs. (B) Each independent
variable’s trajectory and distributions for the lambda. (C) K-M curves of the risk signature in training cohort. (D) K-M curves of the risk signature in
internal test cohort. (E) K-M curves of the risk signature in external test cohort. (F) K-M curves of the gene SMS. (G) K-M curves of the gene HEG1.
(H) K-M curves of the gene MYO1B. (I) ROC curves of the risk signature in training cohort. (J) ROC curves of the risk signature in test cohort.
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results indicated that both of them were risk genes, however, only gene

SMS was identified with p-value < 0.05 (Figures 8F–H). We also

presented the distribution of risk score, patient survival status, and

expression of hub genes in the training cohort in Supplementary Figure

S5A. Similarly, the results of both internal and external cohorts were

shown in Supplementary Figures S5B, C, illustrating that the risk

signature can excellently predict the prognosis of HNSCC patients.
3.9 Landscape of immune infiltrations and
correlations between signature
and immunity

Upon scrutinizing the landscape of immune and stromal cell

infiltrations within both cohorts characterized by low and high risk,

our investigation delineates the discernible disparity, showcasing

individuals within the high-risk stratum manifest elevated

proportions of immune and stromal cell infiltrations in

comparison to their low-risk counterparts (Figure 9A).

Employing the CIBERSORT algorithm for a comprehensive

analys is , we computed the immune cel l proport ions

distinguishing the high-risk and low-risk groups (as illustrated in

Figures 9B, C). Our findings underscore a noteworthy observation:

individuals within the high-risk category exhibit a statistically

significant augmentation in the proportions of CD4 T cells

(memory resting) and Macrophages (M0). Conversely, within the

low-risk cohort, an enrichment is observed in CD8 T cells, T cells

(follicular helper), and Tregs. We subsequently probed into the
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intricate interplay between risk-associated genes and the immune

milieu (Figures 9D, E). Our findings evinced a notably affirmative

correlation between HEG1 and kinds of immune cells. Conversely,

both SMS and MYO1B exhibited a discernibly inverse association

with immune cells. Ultimately, Figure 9F elucidated the

interrelationship among the triad of risk genes and the seventy-

five genes germane to the immune system.
3.10 Immunotherapy response prediction

To predict the response to immunotherapy, we developed TIDE

based on the risk signature. The results reflected patients in high-

risk group had higher score of Exclusion (Supplementary Figure

S6C) while shared lower MSI scores (Supplementary Figure S6D)

than those in low-risk group. However, there was little difference

found in terms of Dysfunction (Supplementary Figure S6B). In

summary, patients in low-risk group had higher TIDE scores

(Supplementary Figure S6A), indicating that those patients

probably response poorly to immunotherapy based on ICIs. After

comparing the efficacy of diverse chemotherapeutic agents across

distinct cohorts, we discerned individuals affiliated with the high-

risk category manifested augmented IC50 values for

chemotherapeutic substances such as Roscovitine, Metformin,

Pyrimethamine, and Salubrinal (Figures 10E, G, I, J). Conversely,

patients within the low-risk category were noted to exhibit

heightened responsiveness to CMK, Imatinib, Docetaxel, and the

like (Figures 10A–D, F, H).
A B C

D E

F

FIGURE 9

The immune infiltrations analysis based on risk signature. (A) Heatmap of results on immune cells of tumor microenvironment (TME) in HNSCC with
multialgorithm. (B) Comparison of proportions of 22 immune-related cells between high-and-low-risk groups. (C) Comparison of proportions of
immune-related functions between high-and-low-risk groups. (D) Correlations between nine hub genes and 22 immune-related cells. (E)
Correlations between the three hub genes and immune score. (F) The correlation analysis between three hub genes and 75 immune-
associated genes.
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3.11 In vitro biological function in
HNSCC cells

In order to further elucidate the role of SMS in HNSCC, we

conducted in vitro investigations to scrutinize the functionality of

SMS in HNSCC cells. We quantified the level of SMS expression

after 24 hours of transfection using quantitative Reverse

Transcription Polymerase Chain Reaction (qRT-PCR) to evaluate

the effectiveness of siRNA-mediated SMS knockdown in HN-5 cells

and UMSCC-47 cells. In comparison to the NC group, we observed

a significant reduction in SMS expression in HN-5 cells and

UMSCC-47 cells following treatment with siRNA sequences (Si-1

and Si-2) (P < 0.001) (Figure 11A). Correspondingly, in the

validation of tissues from 10 patients, the results showed that the

expression level of SMS in tumor tissue was higher compared to

adjacent non-cancerous tissue. (Figure 11B). The results of the plate

cloning assay provided additional evidence that the inhibition of

SMS expression hindered the proliferation of HN-5 cells and

UMSCC-47 cells relative to the NC group (Figures 11C, D). This

suggests that SMS may play an indispensable role in the

proliferation of HNSCC cells. The scratch-wound healing

experiment also yielded congruent results; wherein decreased

SMS expression led to a noteworthy deceleration in the rate of

wound healing in cells (Figures 11E, F). The transwell experiments

confirmed that SMS knockdown considerably reduced the

migration and invasion of HN-5 cells and UMSCC-47 cells

(Figures 11G, H). To ensure the accuracy and consistency of the

results, all tests were conducted in two HNSCC cell lines (HN-5 and

UMSCC-47), and all data were presented as means with standard

deviations from three independent experiments. *P < 0.05, **P <

0.01, ***P < 0.001.
4 Discussion

It is widely acknowledged that head and neck squamous cell

carcinoma (HNSCC) is characterized by an exceedingly high degree

of malignancy, posing a significant threat to human health (1, 24).
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Despite the implementation of comprehensive interventions

encompassing surgery, radiotherapy, chemotherapy, and the like,

the prognosis for HNSCC remains markedly unsatisfactory (25). In

addition to genetic and epigenetic alterations, aberrant

glycosylation in cancer is increasingly being acknowledged as a

distinctive hallmark. Accumulating evidence suggests that

hyperactive glycan synthesis, uptake, and storage pathways

contribute to tumorigenesis. Therefore, the inhibition of

glycosylation pathways presents itself as a potential therapeutic

target in the context of cancers (26, 27). Nevertheless, the

connection between glycosylation and the pathological

progression of cancer is not sufficiently elucidated.

Firstly, KEGG analysis was performed based on the

glycosylation-related genes in transcriptome data. Interestingly,

notch signal pathway was identified significantly correlated with

up-regulated genes, which has been verified to play a pivotal role in

initiative and progression of HNSCC (28). Down-regulated genes

were found obviously enriched in N glycan biosynthesis and it has

been reported that several types of N-glycome could be observed in

HNSCC cell lines (29), revealing that N glycan biosynthesis might

have impacts on biological behavior of HNSCC. We further

developed the immune infiltrations analysis, which demonstrated

that glycosylation was positively associated with B cells (naive) and

CD4+ T cells (memory resting) and negatively related to T cells

( fo l l icular helper) , that play crucia l ro les in tumor

immune microenvironment.

Considering that most of proteins act in multimolecular

complexes instead of isolation within cells, PPI network was

conducted. Our results showed that B4GALT1 had the most

edges and nodes, striking on us that B4GALT1 might play an

indispensable role in the network. The proteins identified in the PPI

network, particularly those directly interacting with B4GALT1,

likely exert complementary or synergistic effects on HNSCC

biology. For example, proteins involved in the regulation of cell

cycle progression, apoptosis, DNA repair, and epithelial-

mesenchymal transition (EMT) may cooperate with B4GALT1 to

promote tumor growth, invasion, and metastasis. Additionally,

proteins implicated in drug metabolism, resistance, and
A B C D E
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FIGURE 10

Prediction of chemotherapy drug sensitivity in ESCC patients based on different groups, including CMK (A), Imatinib (B), Midostaurin (C), Pazopanib
(D), Roscovitine (E), Docetaxel (F), Metformin (G), Parthenolide (H), Pyrimethamine (I), and Salubrinal (J).
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detoxification pathways may contribute to therapeutic resistance in

HNSCC patients. Grasping the intricacies of these PPIs and their

dynamic nature constitutes one of the paramount challenges in the

realms of cell and cancer cell biology, offering the potential for the

development of innovative therapeutics (30).

Single-cell RNA sequencing (scRNA-seq) emerges as a

formidable methodology for deconstructing the intricacies

inherent in solid tumors, facilitating the discernment of cellular

diversity and the delineation of heterogeneous phenotypic states
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with unparalleled granularity (31). HNSCC is characterized by

substantial intra-tumoral heterogeneity, encompassing diverse cell

populations with distinct molecular profiles and functional roles. By

delineating the glycosylation patterns across different cell types,

including tumor cells, immune cells, fibroblasts, and endothelial

cells, our scRNA-seq analysis offers unprecedented insights into the

heterogeneity of glycosylation landscapes within the tumor

microenvironment. This heterogeneity likely contributes to the

diverse phenotypic behaviors observed in HNSCC, such as tumor
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FIGURE 11

The role of SMS in HNSCC. (A) SMS expression in NC group, HN-5 cells and UMSCC-47 cells following treatment with siRNA sequences (Si-1 and Si-
2) (B) The expression of SMS in HNSCC tissue and normal tissue of patients. t-test was used to compare the expression of genes between normal
and tumor. (C, D) The results of the plate cloning assay of SMS expression in NC group, HN-5 cells and UMSCC-47 cells following treatment with
siRNA sequences (E, F) Scratch-wound healing assay depicted that a significantly slower wound healing rate was observed in cells with a decreased
expression of SMS. (G, H) Transwell assay showed that downregulation of SMS expression inhibited the migration and invasion capacity of HNSCC
cells. To demonstrate the accuracy and reproducibility of the results, all experiments were repeated in two HNSCC (HN-5, UMSCC-47) cell lines and
all data were presented as the means ± SD of three independent experiments, *P < 0.05, **P < 0.01, ***P < 0.001.
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growth, invasion, metastasis, and response to therapy (32).

Containing malignant cells and a bunch of non-malignant cells,

cancers stand for complex ecosystems, embedded in variant

extracellular matrix. The tumor microenvironment (TME)

comprises of several immune cell types, including endothelial

cells, cancer-associated fibroblasts, pericytes, and diverse tissue-

resident cell types (33). Single-cell RNA sequencing has been widely

applied to probe into the intricates of TME, shedding new light on

the management of cancers (34). For example, high levels of

cy to tox i c T lymphocy te s (CTLs ) wi th in the tumor

microenvironment have been associated with improved survival

in HNSCC patients. CTLs play a crucial role in recognizing and

eliminating cancer cells, thus inhibiting tumor growth and

metastasis (35). Conversely, regulatory T cells (Tregs) may

suppress anti-tumor immune responses, promoting tumor

immune evasion and progression (36). Lately, single cell analyses

have unveiled the intricacies of tumor-infiltrating myeloid cells,

encompassing tumor-associated macrophages (TAMs) and

dendritic cells (DCs), across various malignancies (37, 38).

(TAMs) represent a significant component of the immune

infiltrate in HNSCC. Depending on their polarization state,

TAMs can exhibit either pro-tumorigenic (M2-like) or anti-

tumorigenic (M1-like) properties. M2-like TAMs are associated

with tumor-promoting activities, including angiogenesis,

immunosuppression, and tissue remodeling, whereas M1-like

TAMs may exert anti-tumor effects by promoting inflammation

and cytotoxicity (39). The biological function of fibroblasts,

however, have not been well elucidated so far. Thus, we

performed scRNA-seq analyses based on public database to unveil

glycosylation’s impact on various cells. It was found that fibroblasts

beard the highest level of glycosylation and B4GALT1 was notably

enriched in fibroblasts. The following trajectory analyses using

‘Monocle2’ exhibited that the level of glycosylation got higher

while the expression of B4GALT1 became lower, disclosing that

glycosylation might incur migration and invasion of HNSCC.

Moreover, the specific cellular interactions showed that fibroblasts

had intensive interactions with other cells, especially Epithelial cells

or Cancer stem cells, illustrating that Fibroblasts exert great

influence on TME of HNSCC. To notice, it has been discovered

that cancer-associated fibroblasts (CAFs) located in primary and

metastatic neoplasms exhibit remarkable versatility, plasticity, and

resilience, actively participating in the intricate dynamics of cancer

progression through intricate interplays with diverse cell types

within the tumor microenvironment (40).

Apart from glycosylation, epigenetic could also regulate the

tumor invasion and metastasis. Epigenetic features commonly

deviate from the norm in neoplastic cells. Human malignancies

frequently manifest distinctive alterations in DNA methylation,

encompassing global hypomethylation and locus-specific

hypermethylation (41). Histomorphology has persistently stood as

a cornerstone in cancer diagnosis within anatomic pathology for

numerous years. DNA methylation profiling emerges as an evolving

adjunctive instrument poised to augment the precision of

pathological diagnoses (42). Methylation alterations in the

promoter region of B4GALT1 may lead to aberrant gene silencing

or overexpression, thereby influencing glycosylation patterns and
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tumor behavior in HNSCC. For instance, hypermethylation of CpG

islands within the B4GALT1 promoter may contribute to

transcriptional repression and reduced B4GALT1 expression,

leading to altered glycosylation profiles associated with tumor

progression and therapeutic resistance. In our study, we developed

methylation analyses in HNSCC and the results illustrated that the

malignant samples tended to have higher level of methylation

compared with the normal ones. Besides, slight disparity was

discovered in methylation level of B4GALT1 between tumor

species and the normal ones. One research argued that both the

attenuated expression and promoter hypermethylation of B4GALT1

exert an adverse prognostic influence on colorectal malignancy (43).

In summary, we hypothesize that low expression and high level of

methylation of B4GALT1 could promote migration and invasion of

HNSCC. Despite the extraordinary progresses have been achieved

recently in the therapy of HNSCC, there still exists the dilemma:

unfavorable curative effects and poor prognosis (44). Lack of early

diagnosis and precise treatment give rise to the detrimental outcome.

Hence, we developed a risk signature to predict the prognosis and

immunotherapy response of HNSCC. The novel signature was

composed of three genes, including SMS, HEG1, and MYO1B.

Multiple researches have unveiled that SMS is remarkably related

with initiative, invasion of several kinds of cancers and can function

as a biomarker for prognosis (45–47). Yet, the relationship between

SMS and HNSCC has not been well elucidated. In our study, it was

found that HNSCC patients with high level expression of SMS

encountered significantly unfavorable outcome through the initial

bioinformatic analyses. The three genes may function synergistically

to promote HNSCC progression by influencing common signaling

pathways involved in proliferation, invasion, and immune evasion.

For example, dysregulation of SMS may alter lipid metabolism,

leading to changes in membrane composition that affect the

localization and activity of MYO1B, thereby enhancing cancer cell

motility and invasion. Additionally, HEG1-mediated alterations in

cell-cell adhesion and signaling may potentiate the effects of MYO1B

and SMS dysregulation, further driving HNSCC aggressiveness.

Furthermore, the vitro experiments validated that SMS could

strikingly promote proliferation, invasion, and migration in

HNSCC cell lines. Under the circumstances, SMS was deemed to

be obviously correlated with HNSCC prognosis and excellently

function as a biomarker. Far from mere conglomerations of

malignantly proliferating cells, tumors represent intricately

organized complex ecosystems (48). Comprising discrete

populations of immune cells within tumor islands, the Tumor

Immune Microenvironment (TIME) exhibits a pronounced

correlation with the anti-tumor immunological milieu of the

Tumor Microenvironment (TME) (49). The TIME has long been

recognized as significantly linked to the progression, recurrence, and

metastasis of tumors (50). Besides, it has been well established that

the features in TIME have tremendous impacts on immunotherapy

response in several tumors (51–53). In order to gain deeper insights

into the ramifications of our risk signature, we systematically

evaluated the immune infiltration status utilizing diverse

algorithms. The results revealed that high-risk group had relatively

high level of immune infiltrations, implying that this group tend to set

up a ‘hot’ tumor state to stimulate the immune system to impute
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tumor progression. Additionally, analysis of immune infiltration

status alongside the risk signature can provide insights into the

composition and functional orientation of tumor-infiltrating

immune cells. T cells regulatory (Tregs) were observed dramatically

enriched in low-risk group, which has been identified correlated with

immunotherapy resistance in cancers (54). Results of TIDE analysis

reflected patients in low-risk group were more likely prone to

immune escae or immunosuppression during anti-tumor

immunotherapy. Accordingly, we assume that patients in high-risk

group probably response better to anti-tumor immunotherapy.
5 Conclusion

Our risk signature based on GRGs autonomously forecasts the

prognosis of patients with HNSCC and anticipates their

responsiveness to immunotherapeutic interventions. Nevertheless,

certain constraints in our investigation necessitate attention.

Primarily, the risk signature was formulated utilizing retrospective

data derived from publicly available databases. Consequently, a

more extensive collection of prospective and multi-center HNSCC

cohorts is imperative to mitigate inherent biases. Secondly, our

predict ive scope was confined to immunotherapeutic

responsiveness via the employment of our risk signature.

Subsequent investigations are indispensable to assess the potential

of our risk signature in predicting responses to diverse precision

therapies in forthcoming studies.
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