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The emerging extracellular vesicles technologies is an advanced therapeutic

approach showing promising potential for addressing inflammatory diseases.

These techniques have been proven to have positive effects on immune

modulation and anti-inflammatory responses. With these advancements, a

comprehensive review and update on the role of extracellular vesicles in

inflammatory diseases have become timely. This review aims to summarize the

research progress of extracellular vesicle technologies such as plant-derived

extracellular vesicles, milk-derived extracellular vesicles, mesenchymal stem

cell-derived extracellular vesicles, macrophage-derived extracellular vesicles,

etc., in the treatment of inflammatory diseases. It elucidates their potential

significance in regulating inflammation, promoting tissue repair, and treating

diseases. The goal is to provide insights for future research in this field, fostering

the application and development of extracellular vesicle technology in the

treatment of inflammatory diseases.
KEYWORDS
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1 Introduction

Epidemiological studies indicate a significant increase in the incidence of inflammatory

diseases over the past 20 years (1). Consequently, the total number of patients taking

immunosuppressive drugs continues to rise (2). Prolonged use of immunosuppressive drugs

inevitably increases the risk of infections and malignancies as antimicrobial and antitumor

immunity remains suppressed (3). When the normal inflammatory process fails to resolve,

chronic inflammatory pain ensues, leading to an excess of pro-inflammatory cytokines and

chemotactic factors, ultimately resulting in central sensitization (4–6). Therefore, there is an

urgent need for new therapeutic drugs in the treatment of autoimmune and inflammatory
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diseases, capable of suppressing detrimental immune responses

without inducing life-threatening immunosuppression.

Extracellular vesicles (EVs) are a class of small cellular products

with sizes in the nanometer range and are found to possess a bilayer

membrane structure. These small cellular products are released by all

types of cells under both normal and pathological conditions (7)

(Figure 1). EVs contain a rich array of biomolecules such as proteins,

lipids, RNA, cellular metabolites, as well as active molecules like

growth factors and cytokines (8). Simultaneously, EVs as

nanocarriers offer advantages over other systems due to their

ability to carry various endogenous biomolecules, exhibiting

biocompatibility, natural targeting capabilities, and evasion from

clearance (9, 10) (Figure 2). Recently, increasing attention has been

focused on the therapeutic role of emerging extracellular vesicle

technology in inflammatory diseases. Recent studies have

highlighted the prospects of extracellular vesicle technology in the

treatment of inflammatory diseases. This emerging technology has

garnered widespread attention not only for disease treatment but also

for its involvement in immune system regulation. By exploring the

potential role of extracellular vesicles in immunemodulation, we may

break the constraints of conventional treatments, presenting new

opportunities for the diagnosis and treatment of inflammatory

diseases. These findings offer unprecedented possibilities for the

exploration of future therapeutic tools and approaches.
2 Novel extracellular vesicles in
inflammatory diseases

The role of extracellular vesicles in the study of inflammatory

diseases has become a hot topic in biomedical research in recent

years. They are capable of carrying and delivering proteins, lipids,
Frontiers in Immunology 02
RNA, and DNA and thus play a role in many physiological and

pathological processes, including inflammatory response, immune

regulation, and disease progression (11). Compared to conventional

EVs, these emerging EVs can be engineered with specific markers to

improve their targeting, allowing them to more effectively reach and

act on inflamed or damaged tissues (7). Based on their unique origin

and biological activity, these emerging EVs offer new possibilities

for personalized and tailored therapies, especially in the treatment

of inflammatory diseases (12, 13). The development of these

emerging extracellular vesicle technologies not only extends our

understanding of the role of EVs in physiological and pathological

processes, but also provides new therapeutic tools and strategies,

especially in the treatment of inflammatory diseases (14). With

further research, these technologies are expected to overcome the

limitations in the application of traditional EVs and realize more

effective and safer therapies. For example, plant extracellular

vesicles, breast milk extracellular vesicles, mesenchymal stem cell

extracellular vesicles, macrophage extracellular vesicles, and other

novel extracellular vesicle technologies. The respective advantages

of these EVs and their potential value in inflammatory diseases may

help to revolutionize and solve the current dilemma of treating

immune diseases. Therefore, it is necessary to discuss in detail the

research and challenges of these vesicles in inflammatory diseases

with a view to promoting the clinical utilization of novel

extracellular vesicles.
3 Macrophage-derived
extracellular vesicles

3.1 Overview

Macrophage-derived extracellular vesicles (Mj-EVs) play a

unique role in immune responses, holding potential therapeutic

applications for various diseases (15). These vesicles alter the

phenotype and function of target cells by carrying a rich cargo of

proteins, lipids, and genetic information, although their

composition may vary with different phenotypes of macrophages

or microenvironments (16). Mj-EVs modulate communication

between local and systemic cells, temporally and spatially

regulating molecular events in recipient cells, such as promoting

the resolution of inflammation and alleviating inflammation-

induced allergic reactions (17). The surface of Mj-EVs is

enriched with immune molecules like cluster of differentiation 47

(CD47), enabling them to evade immune surveillance and evade

immune attacks (18). Compared to larger macrophages,

extracellular vesicles are smaller, more easily circulated, and

possess the capability to traverse biological barriers, thus can be

further engineered for potential drug delivery systems (19).
3.2 Applications as therapeutic agents

The RNA molecules (20, 21), protein components (22, 23),

soluble mediators (such as enzymes and cytokines) (24, 25), and

lipids (26) found in EVs secreted by macrophages can stimulate
FIGURE 1

Formation of extracellular vesicles and mode of secretion. (A)
Endosomes are vesicles formed by the cell membrane surrounding
a substance and formed by endocytosis, where the substance is
broken down by fusion with lysosomes or released outside the cell
by direct fusion with the cell membrane. (B) Microvesicles are
vesicles formed by the direct shedding of cell membranes through
shedding and separation of cell membranes. (C) Exosomes are
vesicles produced through the endoplasmic reticulum and Golgi
apparatus that fuse with the cell membrane and release them
outside the cell.
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pro-inflammatory signal transduction and activate receptor

immune cells, resulting in the formation of a local immune-

stimulating microenvironment (17, 27, 28). They exhibit a strong

inclination and high affinity for tumors and inflammatory tissues

(29, 30). Mj-EVs have three main phenotypes: unpolarized M0-

derived EVs (M0-EVs), M1-derived EVs (M1-EVs), and M2-

derived EVs (M2-EVs). Their biological functions differ based on

the characteristics of the parent cells (31). M1-type macrophage-

derived extracellular vesicles (M1-EVs) play a crucial role in heart

repair and remodeling by transporting miR-222 and miR-155,

regulating stem cell apoptosis, inflammatory responses, and

vascular regeneration abilities (32–36). In contrast, M2-type

macrophage-derived extracellular vesicles (M2-EVs) execute

cardiac repair functions by transferring miR-1271-5p, inhibiting

cardiomyocyte apoptosis (37). In ischemia-reperfusion injury (IRI),

M1-type macrophage-derived extracellular vesicles (M1-EVs)

promote cardiomyocyte necrosis through miR-29a, resulting in

cardiac dysfunction, while M2-type macrophage-derived

extracellular vesicles (M2-EVs) alleviate IRI by miR-148a,

suppressing the activity of specific signaling pathways to mitigate

cardiac injury (38, 39). M1-type macrophage-derived extracellular

vesicles (M1-EVs) play a critical role in chronic low-grade tissue

inflammation-induced insulin resistance, where their cargo
Frontiers in Immunology 03
miRNAs (such as miR-212-5p, miR-155, and miR-29a) target

specific genes or modulate signaling pathways, limiting insulin

secretion, impairing insulin’s suppression of glucose, potentially

contributing to pancreatic b-cell failure, and obesity-induced

insulin resistance (40–42). Both M1 and M2-type macrophage-

derived extracellular vesicles have distinct roles in diabetic

complications. M1-EVs aid in accelerating wound healing,

modulating Mj phenotypes, inhibiting osteogenesis, while

potentially inducing inflammatory reactions (43–45). On the

other hand, M2-EVs alleviate foot lesions, promote mesangial cell

proliferation in glomeruli, yet are associated with inflammation and

mitochondrial dysfunction (46–48). This underscores the intricate,

sometimes contradictory, roles of EVs in the pathophysiology of

diabetes. However, due to the complex and mixed phenotypes

typically exhibited by macrophages in different diseases or stages

within a disease, even within the same disease, identifying their

exact subgroups of EVs (such as M1 or M2) is challenging.
3.3 Applications as therapeutic carrier

Due to the inherent ability of macrophage-derived EVs to

traverse natural barriers within the body, they can selectively
FIGURE 2

Basic structure of extracellular vesicles and the treatment of immune-related diseases. Biomolecules in extracellular vesicles can be directly
transported by vesicle targeting to the target cells, resulting in therapeutic effects for inflammatory diseases.
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deliver payloads to hard-to-reach sites while minimizing side effects

on healthy tissues (49, 50). Zhang et al. isolated EVs from umbilical

cord blood of M1Mj and M2Mj loaded with cisplatin (CDDP).

Results showed that compared to M2-EVs, M1-EVs exhibited

higher cytotoxicity in drug-resistant cisplatin-resistant ovarian

cancer cell line (A2780/DDP) cells, suggesting their potential as

drug delivery tools in drug-resistant environments (51). Moreover,

Mj-EVs transport neuroprotective factors across the blood-brain

barrier, demonstrating neuroprotective effects (49). Novel Mj-EV
delivery systems exhibit inhibitory effects on oxidative stress and

inflammation, potentially aiding in the treatment of neurological

disorders (52). Furthermore, Mj-EVs carrying specific drugs show
potential in enhancing drug targeting and promoting drug

bioavailability in the brain, holding promise in reducing neuronal

damage and promoting neuronal protection (53, 54). Gao et al.

discovered that M2-EVs delivering berberine drugs enhanced drug

targeting, prolonged duration, and impacted inflammation and cell

apoptosis, prompting a shift of Mj from an inflammatory to a

healing phenotype (55). Similarly, Mj-EVs loaded with baicalin

improved drug solubility and brain targeting, providing significant

neuroprotection for ischemic stroke patients (56). These findings

offer new therapeutic strategies utilizing Mj-EVs as drug

delivery systems, opening new avenues for the treatment of

neurological disorders.
4 Plant-derived extracellular vesicles

4.1 Overview

Plant-derived extracellular vesicles are nanosized vesicles secreted

by plant cells, sharing similar characteristics to extracellular vesicles

from animal cells. They originate from various edible plants and play

roles in various applications through different mechanisms (57). One

significant application is in the treatment of inflammatory diseases,

where they can enhance the immune system’s resistance to diseases

and serve as nanocarriers for therapeutics (58). Engineered plant-

derived extracellular vesicles exhibit excellent targeting, nanoscale

dimensions, low off-target effects, low toxicity, and have the potential

for large-scale production, offering advantages in the field of drug

delivery (59–61). However, due to significant variations in the

quantity, size distribution, antioxidant activity, and other

characteristics of plant-derived extracellular vesicles among

different plant species, and influenced by the chemical properties of

the source plants, separate evaluations are needed for the safety and

effectiveness of each type of extracellular vesicle (62).
4.2 Applications as therapeutic agents

When discussing treatment strategies for inflammatory

diseases, plant-derived extracellular vesicles have garnered

significant attention as an effective therapeutic agent. They

possess the ability to exert anti-inflammatory effects through

various mechanisms such as modulating the immune system,

inhibiting inflammatory factors, and clearing oxidative stress.
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Their role in the treatment of colitis, in particular, has been

confirmed by numerous studies (63–67).

As an example, plant-derived extracellular vesicles have

demonstrated significant therapeutic effects in numerous

experiments concerning colitis. Nanoparticles derived from

broccoli can inhibit colitis in mice by activating dendritic cell

adenosine monophosphate-activated protein kinase (AMPK) (68).

Grape-derived extracellular vesicles promote proliferation and

differentiation of intestinal stem cells, facilitating intestinal

epithelial regeneration and protecting mice from dextran sulfate

sodium (DSS)-induced colitis (57). Ginseng-derived extracellular

vesicles suppress the nuclear factor Kappa-Light-Chain-Enhancer

of activated B cells (NF-kB) pathway, reduce inflammatory factor

levels, and improve gut microbiota composition, effectively treating

DSS-induced colitis in mouse models (69, 70). Lemon-derived

extracellular vesicles manipulate probiotics (C. diff) to inhibit

Clostridioides difficile infection, a major cause of antibiotic-

associated colitis (71, 72). Moreover, ginger and ginger rhizome-

derived extracellular vesicles not only inhibit colitis but also exhibit

inhibitory effects on nucleotide-binding oligomerization domain

(NOD)-like receptor protein 1 (NLRP1) inflammasome activation

(59, 73, 74). Mulberry bark-derived extracellular vesicles also

protect mice from colitis by activating the Aryl hydrocarbon

receptor (AhR) signaling pathway mediated by heat shock protein

family A member 8 (HSPA8) (75).

Furthermore, the potential applications of plant-derived

extracellular vesicles in treating other inflammatory diseases are

increasingly evident. For instance, extracellular vesicles from ginger

exhibit significant efficacy in preventing and treating chronic

periodontitis, primarily attributed to specific interactions between

phosphatidic acid and miR-159a-3p in the vesicles and Hemin-

binding protein 35 in P. gingivalis (76). Ginger-derived extracellular

vesicles also target Severe Acute Respiratory Syndrome Coronavirus

2 nonstructural protein 12 (SARS-CoV-2 Nsp12) and spike genes to

ameliorate lung inflammation and act through the Toll-like

receptor 4 (TLR4)/TIR-domain-containing adapter-inducing

interferon-b (TRIF)-dependent pathway in NF-E2-related factor 2

(Nrf2) induction, preventing alcohol-induced liver injury (77, 78).

Extracellular vesicles from other sources like honey and shiitake

mushrooms also inhibit the activation of the nucleotide-binding

domain, leucine-rich-containing family, pyrin domain-containing 3

(NLRP3) inflammasome, reducing inflammation and liver damage

in experimentally induced acute liver injury (79, 80). Currently,

three plant-derived extracellular vesicles from grapes, ginger, and

aloe vera are undergoing clinical trials related to inflammatory

diseases (81). With more clinical trials underway, we may gain

further insights into the role of plant-derived extracellular vesicles

in the human body, aiding in a more accurate assessment of their

potential and value in clinical applications.
4.3 Applications as therapeutic carrier

In recent years, plant-derived extracellular vesicles have been

discovered to possess the capability of carrying drugs to target tissues,

holding immense potential in treating inflammatory diseases. These
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vesicles are considered ideal nano-carriers as they contain common

proteins, bioactive lipids, RNA, and other pharmacologically active

molecules involved in transfer and transport (58, 82). Sung et al.’s

research demonstrates that extracellular vesicles derived from ginger,

when orally administered, effectively target the colon, reducing the

incidence of acute colitis, enhancing intestinal repair capabilities, and

preventing the onset of chronic colitis and colitis-associated cancers

(83). Grapefruit-derived extracellular vesicles also exhibit similar

abilities, efficiently delivering therapeutic agents to inflammatory

tumor sites by activating leukocyte migration pathways (84, 85).

More excitingly, when combining the anti-inflammatory drug

methotrexate (MTX) with glucocorticoid-induced tumor necrosis

factor receptor family-related protein (GNV), it significantly

reduces the toxicity of MTX and enhances its therapeutic effects in

inflammatory diseases (86). The advantages mentioned above endow

plant extracellular vesicles with enormous potential as a novel drug

delivery system. Researchers successfully utilized lipids extracted

from extracellular vesicles sourced from ginger to prepare ‘natural’

nano-carriers. These carriers loaded with siRNA for treating

ulcerative colitis demonstrated superior effects compared to

traditional synthetic nanoparticles (74, 87, 88). Furthermore, a

crucial characteristic of plant extracellular vesicles as drug delivery

carriers is their capacity for personalized adjustments based on

treatment targets. For instance, grape-derived extracellular vesicles

can target intestinal cells, while grapefruit-derived extracellular

vesicles can target macrophages (57, 86). This offers possibilities for

personalized therapeutic approaches.
5 Mammary gland-derived
extracellular vesicles

5.1 Overview

Mammary gland-derived extracellular vesicles (mEVs) are tiny

vesicles originating from mammary epithelial cells, released into

milk through endosomal pathways or directly from the cell

membrane (89, 90). These mEVs contain a plethora of immune-

related microRNAs and proteins, observed not to induce systemic

toxicity or adverse immune reactions (91, 92). Breast milk is a rich

source of miRNAs, where miRNAs play a crucial role in post-

transcriptional gene regulation and may impact cellular gene

expression through the presence of lactation-specific and

immune-related proteins and miRNAs (93–95). These beneficial

mEVs have been found not only in human milk but also in cow and

goat milk (96). They carry beneficial miRNAs capable of entering

cells and modulating biological functions such as promoting cell

proliferation, regulating inflammatory responses, protecting cells

from damage, and aiding in tissue functional recovery (97–99).
5.2 Applications as therapeutic agents

Mammary gland-derived extracellular vesicles carry unique

RNA, proteins, lipids, and DNA, possessing anti-degradation,

antioxidant, and anti-inflammatory biological properties (100).
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Studies have found these vesicles to play a crucial role in the

treatment of intestinal inflammation and colitis. They can

enhance the vitality and proliferation capacity of intestinal

epithelial cells (97), improve intestinal barrier function (99), and

inhibit inflammatory signal transduction (101). Additionally,

mammary gland-derived extracellular vesicles can reduce

intestinal epithelial damage, restore intestinal tight junction

proteins, and regulate inflammation and cellular homeostasis,

which holds significance for inflammatory bowel diseases such as

necrotizing enterocolitis and inflammatory bowel disease (102,

103). The latest research indicates that mammary gland-derived

extracellular vesicles can modulate lipid and amino acid metabolism

in healthy mice and may alter the metabolomic characteristics of

DSS-induced colitis in mice, particularly increasing levels of lipid

anti-inflammatory metabolites and decreasing levels of fecal amino

acids, which could be a primary driving force in alleviating colitis

(100). Moreover, these vesicles have demonstrated potential

applications in other inflammatory disease domains. Studies

suggest their potential use in treating inflammatory lung diseases

induced by agricultural dust exposure and alleviating cartilage

degradation metabolism and inflammation processes in

osteoarthritis (104, 105).
5.3 Applications as therapeutic carrier

Mammary gland-derived extracellular vesicles are considered

potential drug delivery carriers due to their low immunogenicity,

good biocompatibility, stability, and the ability to traverse the

gastrointestinal barrier (106). Studies have found them particularly

effective in the treatment of colitis (100). Furthermore, mammary

gland-derived extracellular vesicles have shown potential as carriers

for siRNA drug delivery. They can withstand harsh environments

during digestion, improve intestinal permeability, and protect the

payload (107). Because they can survive under the strongly acidic

conditions of the stomach and the degrading conditions of the

intestine and traverse biological barriers to reach targeted tissues,

they are considered promising natural drug carrier tools for oral

administration (108). These vesicles can also serve as delivery systems

to enhance the bioavailability and efficacy of miRNA therapy. For

instance, they can act as drug carriers for potential therapeutic miR-

31-5p in diabetic wound healing (109). They can limit the

degradation metabolism and inflammatory processes in cartilage by

transferring growth factors and genetic modulators like miR-148a,

thereby reducing cartilage damage in osteoarthritis patients (110).

Another study assessed the use of mammary gland-derived

extracellular vesicles as carriers for extracellular RNA therapeutics,

finding breast milk to be a cost-effective source of extracellular

vesicles suitable as nanocarriers for functional miRNA, potentially

applicable in RNA-based therapies (111). However, the complex

content and quality control of mammary gland-derived

extracellular vesicles hinder their application in drug delivery (106).

Further research should focus on developing novel purification and

isolation techniques to address quality control issues, reduce batch-

to-batch heterogeneity, and promote the application of mammary

gland-derived extracellular vesicles in the field of drug delivery.
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6 Mesenchymal stem cell-derived
extracellular vesicles

6.1 Overview

Mesenchymal stem cells (MSCs), derived from various tissues,

possess pluripotency, can differentiate into various tissues, and have

regenerative capabilities (112). They not only treat tissue injuries

but also exhibit immunomodulatory functions by migrating to

inflammatory sites and utilizing extracellular vesicles to regulate

immune responses (113). These EVs are small vesicles secreted by

cells, facilitating intercellular communication through membrane

transfer and various substances (114). Compared to MSCs,

mesenchymal stem cell-derived extracellular vesicles (MSC-EVs)

are easier to obtain and store. Furthermore, MSC-EVs are believed

to pose no safety issues in cell-based therapies, such as the

tumorigenic potential associated with cell administration (115,

116). Increasing evidence suggests that MSC-EVs play a

significant role in immunoregulation. They contain various anti-

inflammatory substances and regulate immune responses by

interacting with immune effector cells (117).
6.2 Applications as therapeutic agents

MSC-EVs have been confirmed in numerous preclinical studies

to have a positive impact on the treatment of liver diseases. Studies

have shown that MSC-EVs improve liver inflammation and

alleviate various liver diseases by modulating immune responses.

MSC-EVs have demonstrated positive effects in the treatment of

non-alcoholic fatty liver disease (NAFLD) (118–122), autoimmune

hepatitis (123–125), acute liver failure (126–130), liver fibrosis

(131–133), and liver ischemia-reperfusion injury (IRI) (134–136).

They can regulate macrophage activation, alter cytokine expression,

and influence related signaling pathways.

MSC-EVs in myocardial infarction reperfusion therapy can

increase ATP levels, reduce oxidative stress, and activate the

Phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt)

pathway to enhance myocardial vitality and prevent adverse

remodeling after myocardial ischemia/reperfusion injury (137). In

the Ischaemia/Reperfusion (I/R) model of myocardial ischemia/

reperfusion, injection of MSC-EVs significantly reduces cell

apoptosis and myocardial infarct size while improving cardiac

function (138). In the field of neuroscience, researchers found

that extracellular vesicles from MSCs can restore synaptic

dysfunction and regulate inflammatory responses by modulating

miR-21, thus enhancing learning and memory abilities in amyloid

precursor protein/presenilin 1 transgenic (APP/PS1) mice (139). In

the treatment of colitis, extracellular vesicles secreted by bone

marrow mesenchymal stem cells (BMSCs) exhibit a positive

therapeutic effect in colitis. They promote macrophage

proliferation and suppress inflammation, showing positive effects

in improving symptoms of ulcerative colitis and reversing
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experimental colitis (140, 141). More specific studies have also

revealed that MSC-EVs transfer various nucleic acids, proteins, and

lipids from parent cells to recipient cells, participating in chronic

inflammation and immune processes, playing a significant

regulatory role in the pathogenesis of arthritis (142).
6.3 Applications as therapeutic carrier

Research on MSC-EVs as therapeutic carriers is continually

making new strides. In the treatment of idiopathic pulmonary

fibrosis (IPF), bone marrow mesenchymal stem cell-derived

extracellular vesicles (BMSC-EVs) and their carried microRNAs

(miRNAs) show promise. Particularly, miR-186 delivered by

BMSC-EVs has been found to halt the progression of lung

fibrosis by inhibiting fibroblast activation, downregulating SRY-

box transcription factor 4 (SOX4) and Dickkopf-related protein 1

(DKK1), offering a novel therapeutic strategy for idiopathic

pulmonary fibrosis (IPF) treatment (143). In the treatment of

renal diseases, mesenchymal stem cells overexpressing miRNA-

let7c electively localize to damaged kidneys and upregulate the

expression of miR-let7c through their secreted extracellular vesicles,

thereby alleviating renal injury and significantly downregulating

various fibrotic genes (144). This provides a new direction for

miRNA therapy targeting renal diseases. In skin wound healing,

wingless-type MMTV integration site family member 4 (Wnt4)

found in human umbilical cord mesenchymal stem cell-derived

extracellular vesicles is discovered to promote nuclear translocation

and activity of b-catenin, enhancing proliferation and migration of

skin cells (145).

In addition, MSC-EVs have played a significant role in the

treatment of liver and heart diseases. MSC-EVs can carry various

RNAs, exert anti-fibrotic effects, reduce the deposition of

extracellular matrix (ECM), and improve liver function (146–

148). In the treatment of autoimmune hepatitis, MSC-EVs

carrying dexamethasone can enhance the anti-inflammatory

therapeutic effect of dexamethasone while reducing its side effects

(149). In heart diseases, using extracellular vesicles derived from

bone marrow mesenchymal stem cells (BM-MSCs) as carriers, miR-

19a/19b has been proven to significantly inhibit apoptosis of cardiac

HL-1 cells (150). In myocardial infarction (MI) models, Exo/miR-

19a/19b combined with MSC transplantation can significantly

enhance cardiac function recovery and reduce cardiac fibrosis

(150). With technological advancements, the understanding and

application of MSC-derived extracellular vesicles as therapeutic

carriers will continue to deepen. It can be anticipated that they

will play even more critical roles in future therapeutic research.
7 Expectations and challenges

Emerging EVs have received widespread attention for their

potential application in the treatment of inflammatory diseases as

an important tool for cellular communication. EVs from different
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sources have demonstrated their unique properties and potential

therapeutic advantages, but have also revealed common challenges

that need to be overcome before clinical applications can be

promoted (Table 1). Macrophage EVs have significant

immunomodulatory capabilities and are able to ameliorate the

inflammatory state by directly acting at the site of inflammation

(151). However, their effects may be affected by macrophage

activation status, which requires detailed phenotypic and

functional analyses prior to clinical application to ensure the

desired therapeutic effect. Studies of plant EVs have provided new

perspectives on EVs of non-mammalian origin, which demonstrate

good biocompatibility and low toxicity, making them potentially

safe therapeutic vectors. However, the composition and activity of

plant EVs may vary depending on the plant species and growth

conditions, requiring the establishment of standardized production

and purification processes to ensure product quality (152). Lactic

EVs have shown unique advantages in promoting gut health and

immunomodulation, especially promising applications in neonatal

development. However, access to milk EVs is limited by the

availability of milk sources and individual differences in their

composition, factors that may affect their consistency and

widespread use as therapeutic tools (153). The ability of MSC

EVs to promote tissue repair and anti-inflammation makes them

a powerful tool in regenerative medicine. However, challenges

remain for the large-scale production and clinical application of

MSC EVs, including the diversity of cell sources, standardization of

the production process, and evaluation of long-term safety.

Each of these EVs has its own advantages in treating

inflammatory diseases, but they also face different challenges.

Future research needs to address how to improve the targeting of

EVs, enhance their therapeutic efficacy, optimize production and

purification processes, and ensure safety and stability. In addition,

an in-depth understanding of the distribution, metabolism and

mechanism of action of EVs in vivo is essential for developing

customized EVs-based therapeutics and enhancing their clinical

application value. On this basis, interdisciplinary collaboration has

become the key to promote the research and application of EVs,

pooling the strengths of biology, materials science, engineering
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technology, and clinical medicine to explore and develop

innovative EVs-based therapeutic strategies.
8 Discussion

This article reviews the research findings of various types of

extracellular vesicles in the treatment of inflammatory diseases.

Studies have indicated that these extracellular vesicles can exert

therapeutic effects by modulating immune responses, inhibiting the

release of inflammatorymediators, and promoting tissue repair (14, 17,

92, 151, 152). These results affirm the potential value of extracellular

vesicle technology in the treatment of inflammatory diseases.

Despite the potential therapeutic efficacy demonstrated by

emerging extracellular vesicle technology in treating inflammatory

diseases, it faces several challenges in practical application. Research

indicates therapeutic effects of different types of extracellular

vesicles in inflammatory disease models, yet obstacles persist in

clinical translation. Moreover, there remain controversies and

uncertainties regarding the therapeutic mechanisms, optimal

dosage, effective routes, and uncertainties surrounding

extracellular vesicle treatment. Deeper understanding of the

generation, release, targeting mechanisms of extracellular vesicles,

and enhancing their efficacy as therapeutic tools are necessary to

address challenges in large-scale production, stability, and targeting.

Additionally, as a drug delivery system, extracellular vesicles still

require solutions for effective drug loading, improved stability and

specificity, assessment of safety and effectiveness, and differences in

therapeutic effects from various sources.

Future research could focus on further exploring the

characteristics and mechanisms of different types of extracellular

vesicles to better understand their role in the treatment of

inflammatory diseases. Simultaneously, there is a need to develop

more efficient production methods and improve purification

techniques to enhance the yield and quality of extracellular

vesicles. Additionally, finding more suitable carriers and delivery

routes and conducting further clinical trials to validate their safety

and effectiveness are crucial directions for future research. More
TABLE 1 Emerging extracellular vesicle technology in inflammatory diseases.

Type Source Function Challenge Reference

Macrophage-
derived Evs

Macrophage Modulates the immune response,
targeting and altering the function of
immune cells.

Inconclusive efficacy and potential risk of stimulating an immune storm
in the organism.

(16–19)

Plant-
derived Evs

Various
edible plants

Highly biocompatible for use as cell-
targeting nanomaterials and
inexpensive for mass production
of nanoparticles.

Poor single effect likelihood, potential biosafety, mixing of multiple
vesicles demanding high extraction techniques.

(57–62)

Mammary
gland-
derived Evs

Mammary
epithelial cell

Enriched with immune-modulating
microRNAs/proteins to promote
gut health.

The function and composition of the vesicles are influenced by the
cellular state of the source animal, with the potential risk of triggering an
immune storm, and their immunogenicity needs to be
further investigated.

(89–91,
96, 99)

MSC-
derived EVs

Mesenchymal
stem
cells (MSC)

Strong regeneration and repair ability,
high efficiency anti-inflammatory,
reduce the function of
immune response.

It is expensive and not suitable for mass production, triggering the
possibility of tumorization of the organism.

(112, 113,
115–117)
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interestingly, the preparation of artificial extracellular vesicles with

specific targeting effects, as in the case of liposomes, may be more

conducive to the large-scale clinical use of nanovesicles. Of course,

this would require a more complete study of the targeting and

functional mechanisms of cell-derived vesicles.
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