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Expression of immune related
genes and possible regulatory
mechanisms in different stages
of non-alcoholic fatty
liver disease
Risheng He †, Canghai Guan †, Xudong Zhao, Liang Yu*

and Yunfu Cui*

Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University,
Harbin, Heilongjiang, China
Background: Non-alcoholic fatty liver disease (NAFLD), which includes simple

steatosis (SS) and non-alcoholic steatohepatitis (NASH), is a significant contributor

to liver disease on a global scale. The change of immunity-related genes (IRGs)

expression level leads to different immune infiltrations. However, the expression of

IRGs and possible regulatory mechanisms involved in NAFLD remain unclear. The

objective of our research is to investigate crucial genes linked to the development

of NAFLD and the transition from SS to NASH.

Methods: Dataset GSE89632, which includes healthy controls, SS patients, and

NASH patients, was obtained using the GEO database. To examine the

correlation between sets of genes and clinical characteristics, we employed

weighted gene co-expression network analysis (WGCNA) and differential

expression analysis. Hub genes were extracted using a network of protein-

protein interactions (PPI) and three different machine learning algorithms. To

validate the findings, another dataset that is publicly accessible and mice that

were subjected to a high-fat diet (HFD) or MCD diet were utilized. Furthermore,

the ESTIMATE algorithm and ssGSEA were employed to investigate the immune

landscape in the normal versus SS group and SS versus NASH group, additionally,

the relationship between immune infiltration and the expression of hub genes

was also examined.

Results: A total of 28 immune related key genes were selected. Most of these

genes expressed reverse patterns in the initial and progressive stages of NAFLD.

GO and KEGG analyses showed that they were focused on the cytokine related

pathways and immune cell activation and chemotaxis. After screening by

various algorithms, we obtained two hub genes, including JUN and CCL20.

Validation of these findings was confirmed by analyzing gene expression

patterns in both the validation dataset and the mouse model. Ultimately, two

hub genes were discovered to have a significant correlation with the infiltration

of immune cells.
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Conclusion: We proposed that there were dynamic changes in the expression

levels of IRGs in different stages of NAFLD disease, which led to different immune

landscapes in SS and NASH. The findings of our research could serve as a guide

for the accurate management of various phases of NAFLD.
KEYWORDS

non-alcoholic fatty liver disease, weighted gene co-expression network analysis,
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1 Introduction

Over the past few decades, there has been a notable rise in the

occurrence of metabolic disorders, such as obesity. It is crucial to

note that obesity not only has its own associated comorbidities but

also adversely affects overall health and increases susceptibility to

other conditions (1, 2). As a result, people who are obese have an

increased likelihood of experiencing comorbidities like insulin

resistance, type 2 diabetes, high blood pressure, abnormal lipid

levels, heart disease, and fatty liver disease. Non-alcoholic fatty

liver disease (NAFLD) is acknowledged as the liver-related aspect

of the metabolic syndrome (3). NAFLD is a widespread chronic

liver disease that includes different conditions like simple steatosis

(SS) and non-alcoholic steatohepatitis (NASH), which is

characterized by inflammation (4). Projections indicate a

significant rise in the prevalence of NAFLD, with the Chinese

population estimated to exceed 300 million cases by 2030, over

100 million cases in the United States, and 15-20 million cases in

major European countries (5). Hence, the escalating global

incidence of NAFLD warrants considerable clinical scrutiny.

Notably, the clinical presentation of NAFLD is inconspicuous

during the stage of SS, only becoming apparent in the subsequent

stage of NASH (6). As the disease advances, the liver undergoes

significant pathological alterations, characterized by lobular

inflammation and hepatocyte ballooning, accompanied by

fibrosis in some cases (7). Failure to effectively manage the

disease may lead to its progression to cirrhosis and, ultimately,

liver cancer (8). Despite extensive research on this disease, its

pathogenesis and the mechanisms underlying the progression

from SS to NASH are still poorly understood.

In spite of the fact that it is primarily a metabolic disorder,

inflammatory processes mediated by immune cells are involved in

NAFLD, and inflammation is especially important at the stage of

NASH, when it becomes integral to disease progression (9, 10).

Increasing amounts of research validate the crucial involvement of

the immune system in the different phases of NAFLD advancement,

exhibiting alterations in immune cell infiltration levels and cytokine

levels within the liver microenvironment throughout the

progression of the disease (11, 12). In this study, we performed

an extensive bioinformatics analysis comparing normal liver tissues
02
with SS tissues, as well as SS tissues with NASH tissues. Based on

comprehensive bioinformatics analyses, we have identified the

immune status of the liver at different stages of the disease, as

well as the hub genes and the mechanisms that regulate the

immune microenvironment.
2 Materials and methods

2.1 Data acquisition and
preliminary processing

The mRNA sequencing dataset GSE89632 and GSE135251,

which were obtained from the GEO database in NCBI (http://

www.ncbi.nlm.nih.gov/geo/), included expression profiles that

were generated using the platforms GPL14951 and GPL18573,

respectively. These data sets contained normal samples, SS

samples and NASH samples. And log2 was performed to

process raw counts. To further investigate, we obtained

immunity-related genes (IRGs) from ImmPort, a curated

immune database used for the management and identification of

genes related to immunity (13). Figure 1 depicted the main search

process of the article.
2.2 Weighted gene co-expression network
analysis and module gene selection in
normal vs. SS patients

The WGCNA method was used to construct gene coexpression

networks and identify functional modules (14).The cut height was

set to 120 and the goodSamplesGenes function was used to filter

outlier samples, resulting in the construction of a scale-free

coexpression network. The most highly expressed 10000 genes

were selected for the following analysis. The pickSoftThreshold

function determined an appropriate ‘soft’ threshold power (b)
for calculating intergenic adjacency. Weight coexpression

network used the blockwiseModules function. The function

plotDendroAndColors visualized the clustering among samples.

The labeledHeatmap function showed the correlation between the
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group and gene Modules. The function plotEigengeneNetworks

displayed the association among different gene Modules. Finally,

gene significance (GS) and module membership (MM) correlations

were calculated, and the corresponding module gene information

was extracted for further analysis.
2.3 Identification of differentially expressed
genes between SS samples and
NASH samples

Differentially expressed genes (DEGs) were selected from the

SS vs. NASH group using the R limma package (15), based on the

threshold criteria of |log2FC| > 0.25 and p-value < 0.05. Using the

R software, the volcano plot for the DEGs and the expression

heatmap for the top 15 up and top 15 down genes were created

using the ‘ggplot2’ and ‘pheatmap’ packages, respectively. The

draw_venn method in the tinyarray R package was used to display

the key genes, which were obtained by intersecting the DEGs,

modulegenes, and IRGs. The differential expression of these genes

in normal vs. SS group and SS vs. NASH group was visualized

using the ggplot2 and ComplexHeatmap packages. Furthermore,

the corrplot library was employed to examine the associations

among these genes.
2.4 Enrichment analysis

To perform enrichment analysis on important genes, we

utilized the enrichGO and enrichKEGG functions from the R

package clusterProfiler. The enrichGO function was employed

for Gene Ontology (GO) analysis, while the enrichKEGG

function was used for Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis (16). A p-value cutoff of

0.05 was applied. The R package ggplot2 and stringr were used

for visualization.
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2.5 Protein–protein interaction
network construction

Using the online tool STRING (https://string-db.org/), a PPI

network was built by considering all essential genes and applying a

filter condition (combined score > 0.4). Afterwards, we obtained the

interaction data and enhanced the PPI network using Cytoscape

software to improve its visual representation (17, 18). The

identification of significant gene clusters and the acquisition of

cluster scores were achieved using Minimal Common Oncology

Data Elements (MCODE), with filter criteria including a degree cut-

off of 2, a node score cut-off of 0.2, a k-core of 2, and a maximum

depth of 100. The cytoHubba plugins utilized the Maximal Clique

Centrality (MCC) algorithm to determine the significance of genes

within the primary gene cluster.
2.6 Screening of hub genes

Three machine learning algorithms, containing lasso regression

(19), random forest (RF) (20) and SVM (21), were used to screen

the hub genes from the most significant gene cluster screened by

PPI. We used Lasso Cox regression to detect changes in regression

coefficients of the important genes. The optimal parameter l was

determined using 10-fold cross-validation with the R package

glmnet. Finally, we selected genes based on lambda.min. And we

used the R package plotmo to visualize the coefficient contraction of

LASSO Cox regression. The RF algorithm utilized the R package

random Forest to assess the significance of genes in the most

prominent gene cluster identified by PPI. The top five genes were

selected. Support Vector Machines (SVM) is a supervised machine

learning method used for regression or classification tasks, which

necessitates a labeled training dataset SVM-RFE, a method in

machine learning, trained a subset of characteristics from various

groups to reduce the feature set and identify the most influential
FIGURE 1

Flow diagram of the analysis process.
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features. In the end, we identified the hub genes by intersecting the

genes screened using the three algorithms.
2.7 Verification of hub genes expression
and diagnostic efficacy

The expression level of the central genes was determined using

the GSE89632 dataset, and the diagnostic value of these genes in

distinguishing between the normal and SS groups, as well as the SS

and NASH groups, was evaluated by constructing ROC curves

using the pROC package. And the above results were verified with

the GSE135251 dataset.
2.8 Immune infiltration analysis and
correlation analysis

The ESTIMATE algorithm was utilized to deduce the immune

cell infiltration by analyzing the transcriptome data and the

immune microenvironment scores (22). The scores comprised of

the immune score, the stromal score, and the estimate score. To

better recognize the immune cell characteristics in tissue of normal

vs. SS group and SS vs. NASH group, we compared the differences

of immune cell subsets in the samples. The ssGSEA method was

employed to compare the distinct composition of 28 immune cells.

The means in the normal vs. SS group and SS vs. NASH group were

compared using the t_test function from the R package rstatix.

Subsequently, the results were visualized using the ggboxplot

function from the R package ggpubr (23, 24). The correlation

between the distribution of immune cells in SS and NASH

patients was uncovered using the corrplot R package.

Furthermore, we examined the relationship between the

expression of hub genes and the infiltration of immune cells in SS

and NASH patients.
2.9 Construction of SS and NASH
model mice

A total of 18 male C57/BL6 mice, aged 6-8 weeks, were

randomly assigned to three groups. The first group received a

high-fat diet (HFD) consisting of 60% fat (n = 6), the second

group was fed on an MCD diet (n = 6), and the third group was

given a control diet (CD) with 10% fat (n = 6) for a duration of 8

weeks. At the Second Affiliated Hospital of Harbin Medical

University, the animals were kept in a controlled environment

where the temperature was regulated. They were provided with food
Frontiers in Immunology 04
and water freely and followed a 12-hour cycle of light and darkness.

The animal experiments received ethical clearance from the Ethics

Committee of Second Affiliated Hospital of Harbin Medical

University (SYDW2023-077).
2.10 Histological analysis

Liver tissues were isolated from mice and immediately fixed

with 4% formalin (Sigma- Aldrich, St. Louis, MO). Afterward, the

dehydrated samples were embedded in paraffin. Histological

changes were examined by H&E staining. Images were acquired

using the Eclipse E100 microscope (Nikon, Japan). Mice models

were evaluated by two qualified pathologists.
2.11 Quantitative RT-PCR analysis

Total RNA was extracted from liver tissues using Trizol reagent

(Invitrogen), and then reverse transcribed into cDNA using the

Transcriptor First Strand cDNA Synthesis Kit (Roche, Penzberg,

Germany). FastStart Universal SYBR Green Master (Roche) was

used to amplify each sample in a reaction mixture of 20 ml. The fold
changes were converted using the 2-DDCt technique. Expression
levels were determined by calculating and normalizing them to the

endogenous GAPDH. The primer sequences were shown in Table 1.
2.12 Statistical analysis

The findings were presented as average ± standard deviation

from a minimum of 3 separate trials. The differences between groups

were compared using t-test, and GraphPad Prism 8.0 and R software

version 4.2.3 were utilized for data analyses. Statistical significance

was determined by comparing p-values, where p < 0.05 denoted

significance (*p < 0.05, **p < 0.01, ***p<0.001, ****p<0.0001).
3 Result

3.1 Weighted gene co-expression
network construction

We selected data of normal and SS patients in the dataset to

identify regulatory genes related to the occurrence of SS. Correlation

networks were used for identifying clusters of highly correlated genes

across microarray samples. We employed WGCNA to construct and

analyzed active SS-associated networks. After clustering the samples,
TABLE 1 The sequences of primers.

Genes Forward Primer (5′-3′) Reverse Primer (5′-3′)

GAPDH GTGCCGCCTGGAGAAAC AAGGTGGAAGAGTGGGAGT

Jun GGGAGCATTTGGAGAGTCCC TTTGCAAAAGTTCGCTCCCG

Ccl20 CCAGGCAGAAGCAAGCAAC TTTGGATCAGCGCACACAGA
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we established a suitable threshold (cutHeight = 120) to eliminate the

clearly abnormal samples (Figure 2A). After removing outliers, we

drew a sample clustering tree (Figure 2B). Here, we selected top 10000

genes for subsequent analysis. Using a soft-threshold power of b = 14

(R2 = 0.85), the adjacency matrix was created, ensuring gene

distribution adhered to a scale-free network (Figure 2C). This

retained valuable connectivity information. A total of 11 modules

were generated and identified under the parameter settings of

minModuleSize = 30 and mergeCutHeight = 0.25 (Figure 2D). The

connectivity was calculated among the modules and we added group

information to them, then we performed the cluster analysis,

meanwhile, the heat map of their correlation was also plotted

(Figure 2E). In order to further examine the connection between

the models and phenotype, we computed the correlation coefficients

of each model with the SS trait. The findings indicated that SS had a

statistically significant correlation with 6 modules. Among them, SS is

highly associated with four modules: ‘brown’ (r = -0.82, p = 4e−11),

‘red’ (r = -0.58, p = 6e−05), ‘blue’ (r = 0.72, p = 8e−08), and ‘magenta’

(r = 0.7, p = 2e−07) (Figure 2F). Next, we conducted an analysis of

module membership (MM) and gene significance (GS) correlation
Frontiers in Immunology 05
for these 4 modules. Interestingly, we found a strong positive

correlation between MM and GS in these 4 modules (Figure 2G).

After combining the genes of these four modules, we ultimately

acquired a sum of 2939 genes within the modules.
3.2 Identification of immune related key
genes involved in the onset and
progression of NAFLD

Next, we selected data of SS and NASH patients in the dataset to

identify regulatory genes related to the development of SS. DEGs

were identified by converting the fold changes (FC) of gene

expression to log2 values and applying the cutoff criteria of |

log2FC| ≥ 0.25 and p-value < 0.05. Based on these criteria, a total

of 1222 genes were identified as DEGs that potentially contribute to

the progression of SS. Among these genes, 694 were found to be up-

regulated while 528 were down-regulated. Volcano plots of DEGs

were displayed in Figure 3A, while Figure 3B presented a heat map

showcasing the top 30 genes. By intersecting the DEGs, module
B C

D E F

G

A

FIGURE 2

Detection of module genes using WGCNA in normal vs. SS group. (A) Removal of outlier samples from normal vs. SS group. (B) The clustering was
performed using the expression data of the normal vs. SS groups, with the color intensity indicating the disease status (normal and SS). (C) The “soft”
threshold was chosen based on the combined analysis of scale independence and average connectivity. (D) Different colors represent gene
coexpression modules in the gene tree. (E) Collinear heat map of module feature genes. A high correlation is indicated by the color red, while
opposite results are indicated by the color blue. (F) A graphical representation showing the relationship between modules and traits, with each cell
displaying the correlation and P value associated with it. (G) Scatter plot illustrating the relationship between MM and GS in the top four modules.
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genes, and IRGs, we identified a total of 28 genes that were present

in all three gene clusters during the onset and progression of

NAFLD (Figure 3C). Box plots displayed the variations in gene

expression between the normal vs. SS group, as well as the SS vs.

NASH group. We could observe that 6 genes were upregulated in SS

patients, while 22 genes were upregulated in normal samples

(Figure 3D). By contrast, most of these 28 genes were highly

expressed in NASH patients compared to patients with SS

(Figure 3E). In addition, we also analyzed the correlation between

these genes, and the results were shown in Figures 3F, G, which

suggested that most of the genes might interact with each other and

participate in the same pathway.
3.3 Enrichment analyses of 28 immune
related key genes

In order to explore the biological functions and pathways of these

28 immune related key genes, GO and KEGG enrichment analyses
Frontiers in Immunology 06
were performed. We obtained a total of 298 biological processes that

were significantly related, along with 23 KEGG signaling pathways.

To uncover the biological functions of immune-related key genes, a

GO analysis was conducted (Figure 4A). As observed, the majority of

genes in the GO category were primarily involved in functions such

as ‘leukocyte migration’, ‘myeloid leukocyte activation’, ‘cytokine-

mediated signaling pathway’, ‘macrophage activation’, and

‘granulocyte chemotaxis’ (BP); ‘external side of plasma membrane’,

‘secretory granule membrane’, ‘plasma membrane signaling receptor

complex’, ‘specific granule membrane’, and ‘alpha-beta T cell receptor

complex’ (CC); ‘cytokine activity’, ‘cytokine receptor binding’,

‘receptor ligand activity’, ‘immune receptor activity’, and ‘cytokine

receptor activity’ (MF). Figure 4B showed the correlation between the

top 10 biological functions and genes. According to the KEGG

pathway enrichment analysis, the Cytokine-cytokine receptor

interaction, Th17 cell differentiation, Rheumatoid arthritis, IL-17

signaling pathway, TNF signaling pathway, and other pathways

were found to be highly associated with immune response and

inflammation (Figure 4C).
B C

D
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A

FIGURE 3

Detection of DEGs in the SS vs. NASH group and identification of immune related key genes. (A) The volcano plot of DEGs in SS vs. NASH group.
(B) Heat map displayed the top 30 genes that show significant differences. (C) The immune related key genes were acquired by intersecting the
module genes obtained through WGCNA in the normal vs. SS group, the DEGs from the SS vs. NASH group, and the IRGs. (D, E) The variations in the
manifestation of 28 immune related key genes between the normal and SS group, as well as the SS and NASH group. (F, G) The correlation between
28 immune related key genes in normal vs. SS group and SS vs. NASH group.
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3.4 Analysis of the network of interactions
between proteins

Next, we accessed the STRING database and constructed a PPI

network for the immune related key genes using Cytoscape

software, 4 genes were kicked out because they had no interaction

with the other genes, including CMTM2, PLXNC1, NR1D2, and

FABP5 (Figure 5A). MCODE was used to explore the most

significant cluster (cluster 1, containing 8 genes). Using the MCC

algorithm, the interaction network (included 8 nodes and 48 edges)

of these 8 genes were obtained through the CytoHubba plugin of the

software Cytoscape (Figure 5B).
Frontiers in Immunology 07
3.5 Integrated LASSO analysis, RF
algorithm, and SVM for screening
hub genes

In the normal vs. SS group, the LASSO Cox regression model

was employed to identify the most valuable diagnostic gene

signature among the mentioned genes, resulting in the

identification of 4 potential genes (Figures 6A, B). Next, the RF

algorithm evaluated the significance of each gene and determined

the ranking of these 8 genes. From this ranking, we selected the

top 5 genes with the highest importance (as shown in Figure 6C).

Simultaneously, we utilized a machine learning technique with
B

C

A

FIGURE 4

Enriched items in GO and KEGG analyses of 28 immune related key genes. (A) The enriched terms in GO analysis. (B) Correlation between the top
10 biological functions and genes. (C) KEGG analysis.
BA

FIGURE 5

Visual representation of the protein-protein interaction networks. (A) PPI network of immune related key genes. (B) Gene clustering based on the
MCODE algorithm.
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SVM to conduct a thorough analysis of the distinct genes, and

the findings indicated that opting for the top five genes is

suitable (Figures 6D, E). Finally, we intersected the three

screening results mentioned above and obtained the optimal

gene signature consisting of 2 diagnostic genes, including JUN

and CCL20 (Figure 6F).
3.6 Expression and diagnostic efficacy
identification of hub genes

After conducting an examination, we observed the expression of

two central genes derived from the aforementioned analysis in the

normal vs. SS group as well as the SS vs. NASH group. Surprisingly,

their expressions were entirely contrasting, indicating that these two

genes potentially perform contradictory functions during various

phases of the ailment (Figures 7A, B). In order to confirm the

diagnostic significance of the two central genes, we generated ROC

curves and determined the area under the curve (AUC) for these

genes. In normal vs. SS group, the AUC of both two genes were

0.925, while the combined diagnostic efficacy of the two genes was

better than that of any single one (AUC: 0.9417) (Figure 7C). In SS

vs. NASH group, the AUC of JUN and CCL20 were 0.7579 and

0.8421, respectively, however, the combined diagnostic efficacy of

the two genes was not improved (AUC: 0.8289) (Figure 7D).
3.7 Validation of hub genes expression and
diagnostic efficacy through a GEO dataset
and mouse model

For the purpose of confirming the expression patterns and

diagnostic effectiveness of hub genes, the dataset GSE135251 was
Frontiers in Immunology 08
utilized in the current investigation. The findings indicated that the

expression of hub genes aligned with the aforementioned outcomes

(Table 2). In addition, in the dataset GSE135251, both genes had

good diagnostic efficacy (Figures 8A, B). During the animal study,

H&E staining showed obvious fat accumulation in the SS and

NASH groups, and a large number of immune cell infiltration in

the NASH group (Figure 8C). In comparison to the normal group,

we observed a significant decrease in the expression of the two hub

genes in the SS group. On the contrary, compared with SS group,

the expression levels of these two genes were significantly up-

regulated in NASH group. Figures 8D, E displayed the relative

mRNA expression of the two genes.
3.8 Analysis of immune infiltration and
correlation analysis

Immune dysregulation in the liver microenvironment could

potentially be linked to the onset and progression of NAFLD.

Hence, in order to comprehend the development of SS and its

progression to NASH, the ESTIMATE algorithm was utilized to

deduce the infiltration of immune cells. Figures 9A, C, E

demonstrated that individuals with SS exhibited decreased

immune score, stromal score, and ESTIMATE score in

comparison to the healthy controls. In comparison, NASH

patients exhibited elevated immune score, stromal score, and

ESTIMATE score in contrast to SS patients (Figures 9B, D, F).

Furthermore, we employed ssGSEA to assess the variances in the

abundance of 28 immune cell subpopulations infiltrating

the hepatic tissue between the normal and SS groups, as well as

the SS and NASH groups, using data from the GSE89632 dataset

(Figures 10A, B). Compared to healthy controls, SS patients

exhibited higher levels of immune cell infiltration, including
B C

D E F

A

FIGURE 6

The LASSO analysis, RF algorithm, and SVM were used to identify the ultimate hub genes. (A, B) LASSO regression analysis. (C) RF algorithm.
(D, E) Machine learning approach with SVM. (F) Venn diagram showing the central genes identified by LASSO, SVM-RFE, and RF.
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monocytes, central memory CD4 T cells, gamma delta T cells,

central memory CD8 T cells, CD56 bright natural killer cells,

activated CD8 T cells, effector memory CD8 T cells, natural killer

cells, and effector memory CD4 T cells, in the normal vs. SS group.

On the contrary, MDSCs, activated CD4 T cells, mast cells,

neutrophils, and eosinophils were enriched in healthy controls. In

SS vs. NASH group, high infiltration level of activated CD4 T cells

was observed in NASH patients compared to SS patients. Based on

Figures 10C, D, we conducted a correlation analysis on immune

cells in both SS and NASH patients, revealing noteworthy

associations among the majority of immune cells in these

individuals. We conducted separate correlation analyses to

investigate the connection between our identified hub genes JUN

and CCL20 and the content of immune cells. Among individuals

with SS, there was a robust positive association between JUN

expression and Plasmacytoid dendritic cell (r = 0.890), whereas

the CCL20 expression exhibited a noteworthy inverse relationship

with CD56 bright natural killer cell (r = -0.686) (Figure 10E).

Among individuals with NASH, there was a notable inverse
Frontiers in Immunology 09
relationship between JUN expression and macrophage, with a

correlation coefficient of -0.611. Conversely, the CCL20

expression exhibited a robust positive correlation with activated

CD4 T cell, with a correlation coefficient of 0.767 (as shown in

Figure 10F). Collectively, this suggested that these central genes

facilitated the immune response throughout the progression of the

disease in individuals with NAFLD.
4 Discussion

NAFLD is a complex disease caused by multiple factors,

especially obesity. Previous studies have extensively explored its

pathogenesis and found that the mechanism of its development was

affected by a variety of factors, such as age, menopause, and type 2

diabetes (T2D) (25, 26). Since the accumulation of fat may affect the

infiltration of immune cells, the abnormal function of the immune

system in NAFLD has been paid more and more attention (27, 28).

Song et al. found that C/EBPa was significantly upregulated in
TABLE 2 The gene expression pattern in dataset GSE135251 for hub genes.

Normal vs. SS SS vs. NASH

Gene Symbol logFC Adjusted p-Value Gene Symbol logFC Adjusted p-Value

JUN -1.4096286 6.73e-05 JUN 0.4997750 9.93e-04

CCL20 -0.1656848 2.63e-01 CCL20 0.5086908 2.36e-04
B

C D

A

FIGURE 7

Exploring the expression levels and predictive value of hub genes. (A, B) Expression levels of two hub genes in normal vs. SS group and SS vs. NASH
group, respectively. (C, D) ROC analysis of two hub genes in normal vs. SS group and SS vs. NASH group, respectively.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1364442
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2024.1364442
NASH compared with healthy controls, possibly contributing to

disease progression by regulating intrahepatic immune and

inflammatory responses (29). In addition, multiple research

studies validate that both inherent and acquired immune

disorders are significant contributors to the development and

advancement of NAFLD, for example, during NASH, there is a

large infiltration of neutrophils and NKT cells in the liver, which is

closely related to the development of the disease in the direction of

increased inflammation (30–32). Moreover, platelets in the liver

interact with Kupffer cells to induce the secretion of alpha granules,

which contains large amounts of growth factors as well as cytokines,

thereby exacerbating liver inflammation (33). Modifying the

expression of IRGs brings about variations in the infiltration level

and functional state of immune cells (34). Disorders of IRGs have

been described in a variety of diseases, such as osteosarcoma and

Alzheimer’s disease (35, 36). Considering these factors, we

implemented a thorough and extensive assessment system to
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examine the immune-associated hub genes and molecular

pathways in the onset and progression of NAFLD using

bioinformatics. Our objective is to expand the understanding of

the physiological pathology and molecular mechanisms of NAFLD,

and offer insights for clinical diagnosis and treatment approaches.

For this particular investigation, we obtained the gene

expression matrix of SS tissue in comparison to normal liver

tissue and NASH tissue in comparison to SS tissue from the

GSE89632 dataset. In normal vs. SS group, we obtained 11 SS

related modules using WGCNA, and after further screening, we

identified 4 modules that were strongly correlated with SS, and

finally obtained 2939 module genes (Figure 2). In SS vs. NASH

group, we performed differential analysis using another analytical

method and obtained 1222 DEGs, of which 694 genes were up-

regulated and 528 genes were down-regulated. By intersecting

module genes, DEGs, and IRGs, we identified 28 immune-related

genes that played a role in both the onset and progression of
B

C

D E

A

FIGURE 8

Verification of the two hub genes. (A, B) ROC analysis of two hub genes through dataset GSE135251. (C) H&E staining of liver slides. (D, E) The
expression patterns of two hub genes through mouse model. Scale bar, 100 um. *p < 0.05; **p < 0.01; ***p < 0.001.
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NAFLD (Figure 3C). Previous studies performed high-throughput

sequencing of liver tissue from normal mice and mice at different

stages of NASH, they found that compared with normal liver tissue,

the expression patterns of genes in the liver tissue of model mice

and the signaling pathways involved changed as the disease

progressed (37). In our study, we performed a follow-up analysis

to determine whether the expression patterns of these 28 genes also

changed as the NAFLD progressed. Additional examination of the

comparative expression of these 28 genes uncovered a fascinating

observation that these genes did not consistently exhibit increased

or decreased regulation at the initiation of NAFLD and the

advancement to NASH (Figures 3D, F). This suggested that

the immune microenvironment might be diametrically opposed
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at different stages of the disease. Analysis of the immune

infiltration score further confirmed our conjecture (Figure 9).

Dynamic changes in immune cell infiltration in the immune

microenvironment at different stages of the disease had previously

been demonstrated in a variety of diseases (38, 39). In addition, this

also suggested that the treatment might not be consistent at

different stages of the disease.

In order to obtain a deeper understanding of the possible roles

of these genes associated with the immune system, we utilized

bioinformatics tools to conduct GO and KEGG enrichment

analyses on the set of 28 genes. Analysis of the genes revealed

their involvement in immune-related pathways, particularly

cytokine-related pathways and the activation and chemotaxis of
B

C D

E F

A

FIGURE 9

Immune status assessment by ESTIMATE algorithm. (A, B) Immune Score in normal vs. SS group and SS vs. NASH group, respectively. (C, D) Stromal
Score in normal vs. SS group and SS vs. NASH group, respectively. (E, F) ESTIMATE Score in normal vs. SS group and SS vs. NASH group, respectively.
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immune cells (Figure 4). This could explain the lower infiltration of

activated CD4 T cells during the early stage of the disease and their

higher level in NASH. And through a variety of bioinformatics

analysis methods, such as PPI, LASSO, RF, and SVM, we further

screened from these 28 genes and obtained 2 hub genes, including

JUN and CCL20.

JUN plays a vital role in activator protein 1 (AP-1), being

essential for liver development and contributing to the onset and

progression of diverse liver disorders (40). Previous studies focused

on the differential expression of this molecule between NAFLD and

normal healthy controls, but the changes in the expression level of
Frontiers in Immunology 12
this molecule at different stages of the disease and its remodeling

effect on the liver immune microenvironment were rarely

mentioned (41–43). During this investigation, it was discovered

that JUN exhibited a decrease in expression levels in SS in

comparison to individuals without any health issues. This was

consistent with the findings of Qu et al., however, they did not

further explore the expression pattern of JUN in NASH stage (44).

Our study had found that as the disease advanced to NASH, JUN

was notably up-regulated. Furthermore, this particular molecule

played a crucial role in governing the infiltration of various immune

cells throughout different phases of the disease.
B

C D

E F

A

FIGURE 10

Exploration of immune infiltration in NAFLD and its association with central genes through ssGSEA. (A, B) Analysis of the immunocyte infiltration
degrees regarding 28 immunocyte subunits in normal vs. SS group and SS vs. NASH group, respectively. (C, D) Correlation between different
immune cells in SS and NASH patients, respectively. The correlation between immune cell infiltration and two hub genes in patients with SS and
NASH, respectively. *p < 0.05; **p < 0.01; ***p < 0.001; ns: no significance.
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CCR6+ cells are driven to migrate through tissues by the high

affinity binding of CCL20 to its receptor CCR6, which is currently

the sole known ligand for CCR6 (45). Increased infiltration of

CCR6+ lymphocytes with upregulated CCL20 expression was found

in tissue microenvironment during inflammation, infection and

malignant lesions in various organs, such as stomach, intestine, liver

and lung (46). In addition, one study found that postmenopausal

women with T2D were more likely to have upregulated CCL20

expression levels, which might be closely related to a more

pronounced liver inflammatory response and susceptibility to

NASH in these patients (25). In this study, we found that CCL20

was down-regulated in SS compared with healthy controls, but

significantly up-regulated when the disease progressed to NASH. In

our research, it was discovered that this particular molecule

exhibited a strong positive correlation with the infiltration of

activated CD4 T cells in NAFLD. Earlier research had validated

that stimulated CD4 T cell types, like Th1 and Th17, possess the

ability to release diverse cytokines, including IFN-gand IL-17,

thereby enhancing liver inflammation (47–49). Hence, we

hypothesized that this compound might have a crucial function

in the progression of SS to NASH.

HFD-induced mice and MCD-induced mice are currently

recognized animal models that can mimic human NAFLD, and

these models are highly similar to human SS and NASH in

histologic appearance and liver transcriptome characteristics (50,

51). Therefore, in our study we constructed the above two models.

Afterwards, we confirmed the gene expression by conducting in vivo

experiments, the results aligned with the sequencing findings.

Simultaneously, we also confirmed the expression of these two

compounds by analyzing an additional dataset, GSE135251, and

the outcome aligned with our discoveries. We then further

explored the diagnostic capabilities of JUN and CCL20 and found

that they were able to distinguish between different stages of NAFLD

disease. In summary, JUN and CCL20 had been identified as key

targets for mediating the onset of NAFLD and leading to its

progression from SS to NASH, and may be markers for predicting

disease progression.

In conclusion, we proposed that there were dynamic changes in

the expression levels of IRGs in different stages of NAFLD disease,

and they regulated the immune microenvironment of the liver

mainly through the cytokine related pathways and immune cell

activation and chemotaxis, which suggested that the treatment

might not be consistent at different stages of the disease. Among

them, JUN and CCL20 might be the key molecules that promoted

the occurrence and progression of the disease, and had potential as

diagnostic markers and therapeutic targets. However, our study was

based on the public database, therefore, further experiments were

needed to explore and verify the mechanism of the results obtained

from the analysis. We believe these will further deepen our

understanding of the disease and provide references for the

treatment of the disease.
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