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Introduction: Immune checkpoint inhibitors have made a paradigm shift in the

treatment of non-small cell lung cancer (NSCLC). However, clinical response

varies widely and robust predictive biomarkers for patient stratification are

lacking. Here, we characterize early on-treatment proteomic changes in blood

plasma to gain a better understanding of treatment response and resistance.

Methods: Pre-treatment (T0) and on-treatment (T1) plasma samples were

collected from 225 NSCLC patients receiving PD-1/PD-L1 inhibitor-based

regimens. Plasma was profiled using aptamer-based technology to quantify

approximately 7000 plasma proteins per sample. Proteins displaying significant

fold changes (T1:T0) were analyzed further to identify associations with clinical

outcomes using clinical benefit and overall survival as endpoints. Bioinformatic

analyses of upregulated proteins were performed to determine potential cell

origins and enriched biological processes.

Results: The levels of 142 proteins were significantly increased in the plasma of

NSCLC patients following ICI-based treatments. Soluble PD-1 exhibited the highest

increase, with a positive correlation to tumor PD-L1 status, and, in the ICI
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monotherapy dataset, an association with improved overall survival. Bioinformatic

analysis of the ICI monotherapy dataset revealed a set of 30 upregulated proteins

that formed a single, highly interconnected network, including CD8A connected to

ten other proteins, suggestive of T cell activation during ICI treatment. Notably, the T

cell-related network was detected regardless of clinical benefit. Lastly, circulating

proteins of alveolar origin were identified as potential biomarkers of limited clinical

benefit, possibly due to a link with cellular stress and lung damage.

Conclusions: Our study provides insights into the biological processes activated

during ICI-based therapy, highlighting the potential of plasma proteomics to

identify mechanisms of therapy resistance and biomarkers for outcome.
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Introduction

Over the past decade, immune checkpoint inhibitors (ICIs)

directed against the programmed cell death protein-1 (PD-1) and

programmed death ligand-1 (PD-L1) axis have emerged as the

standard of care in the treatment of non-small cell lung cancer

(NSCLC) and other advanced malignancies (1). These agents

disrupt the interaction between PD-1 expressed on T cells and

PD-L1 found on tumor cells, leading to an enhanced antitumor

immune response (2). ICIs are considered a breakthrough for the

management of NSCLC, primarily due to their ability to elicit

durable responses, and in some cases amounting to cure of

metastatic disease. The use of ICIs in the early-disease, pre-

operative setting clearly decreases recurrence rates and increases

cure rates (3). However, despite the impressive long-term survival

observed in selected ICI-treated patients, the overall response rate

remains modest, with only 20-30% of NSCLC patients experiencing

durable benefit (4) and the rest displaying intrinsic or acquired

resistance to ICIs (5). Resistance mechanisms include aberrations in

cellular signaling pathways, the exclusion of T cells from the tumor

microenvironment, the infiltration of immunosuppressive cell

populations, the presence of inhibitory checkpoints, dampened

interferon-g signaling, histological transformations, and loss of

tumor-associated antigenic proteins (6–8). However, these

mechanisms are hard to detect, highlighting a need for clinical

predictive biomarkers of response and resistance to therapy.

Various tissue-based biomarkers, including PD-L1 expression in

tumor cells, high tumor mutational burden, and lymphocytic tumor

infiltrates, have been explored as predictive biomarkers for

immunotherapy response. However, clinical evidence demonstrates

moderate predictive performance for these biomarkers (9, 10). There is

intense interest in blood-based biomarkers due to their minimally

invasive nature and potential for allowing longitudinal monitoring

(11). For example, several studies demonstrate the value of monitoring

circulating cell-free tumor DNA (ctDNA) during treatment to predict
02
clinical response to ICI-based regimens in NSCLC patients (12–14).

With respect to baseline blood-based biomarkers, low baseline levels of

soluble PD-L1 (sPD-L1) have been linked to improved objective

response rates in ICI-treated NSCLC, melanoma, and renal cell

carcinoma patients (15, 16), and an elevated absolute neutrophil-to-

lymphocyte ratio at baseline has been associated with poorer survival

outcomes in NSCLC patients receiving anti-PD-1 therapy (17).

Nonetheless, as individual entities, these biomarkers may not exhibit

a consistently high degree of predictive accuracy as they do not reflect

the multi-faceted nature of response and resistance to ICIs. Blood

plasma proteomic profiling is a powerful approach for biomarker

discovery with the potential to capture the heterogenous mechanisms

of response and resistance to therapy (18, 19), and aid the development

of personalized treatment strategies based on ICIs in combination with

another agent. Additionally, the dynamic nature of the plasma

proteome allows for temporal monitoring of immune system activity

and disease progression (20). Thus, plasma proteomic profiles may

provide real-time insight into tumor-immune system dynamics,

thereby serving as a rich source of potential predictive biomarkers.

Our previous studies elucidated how host-mediated responses to

various cancer treatment modalities contribute significantly to disease

progression and the development of therapy resistance (21). Most

recently, utilizing preclinical murine models, we demonstrated that ICI

agents induce systemic alterations in host-derived factors, subsequently

bolstering tumor aggressiveness, with a pivotal role attributed to

interleukin (IL)-6 in this cascade (22). In a previous clinical study of

ICI-treated NSCLC patients, we analyzed nearly 800 plasma proteins

and identified CXCL10 and CXCL8 as predictive biomarkers for

treatment response along with clinical parameters (23). Despite its

limited cohort and protein dataset size, our clinical study underscores

the potential of plasma proteomic profiling to stratify patients based on

therapeutic response.

In the present study, we used an aptamer-based assay to

measure approximately 7000 plasma proteins in pre- and on-

treatment plasma samples from NSCLC patients treated with ICI-
frontiersin.org
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based regimens, allowing for the characterization of proteomic

changes upon treatment. The analysis revealed: (i) ICI-induced

elevation in soluble PD-1 (sPD-1) in the circulation; (ii) a unique

plasma proteomic signature associated with T cell activation; and

(iii) circulating proteins possibly originating from alveolar cells as

potential blood-based biomarkers for limited therapeutic benefit

from ICIs. Overall, our study provides mechanistic insights into

therapy resistance, paving the way towards biomarker discovery.
Materials and methods

Sample collection

Blood plasma samples and clinical data were collected from

advanced-stage NSCLC patients as part of a clinical study

(PROPHETIC; NCT04056247). All clinical sites (Asklepios Kliniken

GmbH, DE; Thoraxklinik at University Hospital Heidelberg, DE;

Hadassah Medical Center, IL; Tel Aviv Sourasky Medical Center, IL;

Rambam Health Care Campus, IL; Bnai Zion Medical Center, IL; Meir

Medical Center, IL; Sheba Medical Center, IL; HaEmek Medical

Center, IL; Kaplan Hospital, IL; Barzilai Medical Center, IL; Rabin

Medical Center, IL; Assuta Medical Centers, IL; and Shamir Medical

Center, IL) received IRB approval for the study protocol and all patients

provided written informed consent. Patient blood samples were drawn

at baseline (referred to as T0) and, on average, 4 weeks after the

treatment commenced, prior to the second dose of treatment (referred

to as T1). Blood samples were drawn into 4 ml tubes containing EDTA

as an anticoagulant, and plasma was separated from the whole blood by

centrifuging at 1200 x g at room temperature for 10-20 minutes within

4 hours of venipuncture. This protocol allows for a maximum of 4

hours between sample collection and plasma separation to

accommodate the multi-center nature of the clinical trial. The

plasma supernatant was stored at -80°C and later shipped frozen to

the analysis lab. The protocol adheres to the Clinical and Laboratory

Standards Institute (CLSI) guidelines and aligns with the SomaLogic

plasma collection guidelines, similar to (24). Clinical parameters

including age, ECOG, sex, line of treatment; treatment type; Tumor

Proportion Score (TPS); histological type; clinical benefit at 3 months,

objective response at 3 months, and overall survival (OS) was obtained

for all patients. Patients were classified as ‘responders’ (R) or ‘non-

responders’ (NR) based on whether they achieved clinical benefit at 3

months (according to RECIST 1.1). Thus, the R population included

patients displaying complete response, partial response or stable disease

and the NR population included patients with progressive disease. In

some cases, patients were classified according to objective response, i.e.,

patients with complete response or partial response versus patients

with stable disease or progressive disease.
Proteomic profiling

Plasma samples from 225 patients were analyzed using the

SomaScan®V4.1 assay that measures 7596 protein targets, of which

7289 are human proteins. Additional 416 proteins that did not pass

quality control were excluded from the analysis, resulting in a total
Frontiers in Immunology 03
of 6873 aptamers in the analyses. For plasma protein analysis, a

volume of 200µl plasma was used (sufficient for at least 3 runs). The

SomaScan technology uses slow-off-rate modified DNA aptamers

that bind target proteins with high specificity to quantify the

concentration of proteins in a sample. The assay is described in

detail in previous studies (24, 25). Results are provided in relative

fluorescence units (RFU). Samples underwent standard

normalization and calibration per sample set. Plasma acquisition

was conducted at OncoHost’s CLIA-certified laboratory in North

Carolina and SomaLogic’s laboratory in Colorado.
Statistical and bioinformatic analysis

Data were analyzed using Python, R, and Cytoscape. The plasma

levels per protein were expressed as fold change values (T1:T0 ratio)

on a log2 scale. Differences in fold changes were assessed using

paired t-tests with Benjamini-Hochberg FDR correction (FDR<0.01

for comparisons in the entire cohort, as well as in ICI monotherapy

or combination therapy sub-cohorts, and FDR<0.1 for comparisons

between R and NR patients in the ICI monotherapy sub-cohort).

Pathway enrichment analysis was performed with gProfilier,

WebGestalt and ShinyGo 0.77 web tools (26–28) on relevant sets

of proteins (i.e., proteins displaying significant fold changes within

the entire patient cohort or patient subcohorts) with Benjamini-

Hochberg FDR<0.05 against the background of approximately 7000

proteins, using a cut-off as indicated in the figures. ShinyGo 0.77 was

used to generate networks of enriched pathways (showing the

hierarchical relationship between enriched pathways) where two

pathways were connected if they shared at least 20% of proteins.

VolcaNoseR was used to generate and explore the data with volcano

plots (29). Protein-protein interaction (PPI) networks were

generated using the STRING version 12.0 database with a 0.9

confidence interaction score (30).

Multivariate analysis was used to identify associations between

sPD-1 fold change and categorical clinical data (age, ECOG, sex,

line of treatment; treatment type; Tumor Proportion Score (TPS);

histological type; clinical benefit at 3 months, and OS). Cox

proportional hazards models were used to analyze the association

between the protein of interest and OS.
Results

Patient characteristics

The study included 225 NSCLC patients treated with ICI-based

therapy. One hundred patients received PD-1/PD-L1 inhibitor

monotherapy and 125 received a PD-1/PD-L1 inhibitor

combined with chemotherapy (Supplementary Table S1). Patient

demographics and clinical parameters are presented in Table 1. The

mean age was 66.4 years. Approximately a third of the patients were

female. The majority (69.3%) of patients had adenocarcinoma and

20.4% of the patients had squamous cell carcinoma. Overall, 39.6%,

23.6% and 26.7% of patients had tumors with PD-L1 expression of

≥50%, 1-49% and<1%, respectively. Clinical benefit at 3 months was
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evaluated according to RECIST criteria where patients with

complete response, partial response, and stable disease were

termed responders (R), and those with progressive disease were

termed non-responders (NR). Based on this definition, the cohort

comprised 78.4% R and 21.5% NR patients. The high proportion of

R patients in our cohort can be explained by the early time point at

which clinical benefit was assessed (i.e., at 3 months) and the

inclusion of stable disease in the R population in this study. To

allow comparisons between different patient populations, the study

included an additional cohort of NSCLC patients treated with

chemotherapy alone (n=20) and a cohort of melanoma patients

treated with ICI-based therapy (n=20). Patient characteristics of

these cohorts are shown in Supplementary Tables S2, S3.
ICI therapy elevates systemic levels of
soluble PD-1

To study changes in circulating proteins during treatment with

ICI-based therapy, pre-treatment (T0) and on-treatment (T1)

patient plasma samples were profiled using the Somalogic

aptamer-based assay that measures ~7000 proteins per sample.

The proteomic data were expressed as fold-change values of T1 to

T0 measurements. The plasma levels of 142 proteins (represented

by 164 aptamers) were significantly increased upon treatment

(Log2FC>0.1 and FDR q value<0.01). Most notably, sPD-1 was

highly elevated in plasma upon treatment, as demonstrated by

measurements from the two aptamers that detect this protein (FDR

q value 6.04E-88 and 3.66E-61, Figures 1A, B). The aptamers,

designated 15623-1 and 9227-15, bind to regions located within

aa 1-167 and aa 27-167 of sPD-1, respectively, corresponding to

regions encoded by exon 1 and 2 in the PD-1 gene. Thus, both

aptamers recognize the full-length membrane-bound protein and

the soluble forms created by proteolytic cleavage or alternative

splicing (personal communication with Somalogic). Analysis of

patient subgroups revealed that sPD-1 fold change was highest in

patients receiving PD-1 inhibitor therapy with or without

chemotherapy, where the monotherapy subgroup displayed a

higher fold change than the combination therapy subgroup. In

contrast, no fold changes were found in patients receiving PD-L1

inhibitors alone, PD-L1 inhibitors combined with chemotherapy, or

chemotherapy alone (Figure 1C). Since ICI therapy targets the PD-

1-PD-L1 axis, we next asked whether plasma levels of sPD-L1 are

affected by ICI-based therapies. sPD-L1 plasma levels remained

unchanged upon PD-1 inhibitor monotherapy, PD-1 inhibitors

with chemotherapy, and chemotherapy alone, whereas they

dropped upon PD-L1 inhibitor therapy with or without

chemotherapy (Figure 1D). This drop may be This drop may be

explained by the binding of the therapeutic anti-PD-L1 antibody to

the aptamer binding site within the sPD-L1 molecule which may

limit its detection by the assay or promote its clearance by immune

mechanisms. This effect presumably does not occur in the case of

anti-PD-1 therapeutic antibodies and sPD-1 molecules. Lastly, a

relation was found between sPD-1 fold change in plasma and
TABLE 1 Patient demographics, clinicopathological characteristics
and outcomes.

Metric Overall

n 225

Age, mean (SD) 66.4 (8.2)

ECOG, n (%)

0 75 (33.3)

1 128 (56.9)

2 19 (8.4)

3 2 (0.9)

Not reported 1 (0.4)

Sex, n (%)

Female 84 (37.3)

Male 141 (62.7)

Site, n (%)

Thoraxklinik DE 98 (43.6)

Sheba IL 60 (26.7)

Asklepios DE 16 (7.1)

Rabin IL 10 (4.4)

Other 41 (18.2)

Line of ICI treatment, n (%)

First 165 (73.3)

Advanced 60 (26.7)

Treatment, n (%)

ICI 100 (44.4)

ICI + Chemo 125 (55.6)

Tumor PD-L1 Level, n (%)

High ( ≥50%) 89 (39.6)

Low (1%-49%) 53 (23.6)

Negative (>1%) 60 (26.7)

Unknown 23 (10.2)

Histology, n (%)

Adenocarcinoma 156 (69.3)

Squamous Cell Carcinoma 46 (20.4)

Other 23 (10.2)

RECIST criteria, n (%)

CR, PR, SD 175 (78.4)

PD 48 (21.5)

NA 2 (0.1)
CR, complete response; ICI, PD-1/PD-L1 inhibitors; ICI+Chemo, PD-1/PD-L1 inhibitors
combined with chemotherapy; NA, not applicable; PD, progressive disease; PR, partial
response; SD, stable disease.
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baseline PD-L1 expression in tumors. Specifically, in patients

receiving ICI monotherapy (i.e., PD-1 or PD-L1 inhibitors as

single agents), fold-change of sPD-1 was higher in the PD-L1

≥50% group in comparison to the PD-L1<1% group, whereas no

differences between the PD-L1 groups were observed in patients

receiving a combination of ICI with chemotherapy (Figure 1E).

Overall, our findings demonstrate that sPD-1 plasma levels are

elevated upon treatment with PD-1 inhibitors but not PD-L1

inhibitors. The addition of chemotherapy to ICI regimens

dampens the on-treatment elevation in sPD-1 plasma levels,
Frontiers in Immunology 05
possibly due to the immunosuppression effect of chemotherapy

on immune cells, among them T cells (31).
On-treatment elevation in sPD-1 plasma
level is associated with improved
overall survival

We next investigated whether sPD-1 fold change is associated

with various patient demographic or clinical parameters. No
B

C D

E

A

FIGURE 1

sPD-1 is elevated in the plasma following treatment with ICI-based therapy and is associated with tumor PD-L1 expression. (A) Volcano plot
representing fold changes (T1:T0) in plasma protein levels in patients treated with ICI-based therapy (n=225). Proteins displaying significant positive
(dark blue) and negative (light blue) fold-change are indicated. (B) Plasma levels of sPD-1 at T0 and T1, as quantified by two sPD-1 aptamers (15623-
1 and 9227-15). C-D. Fold change of sPD-1 (C) and sPD-L1 (D) in patients receiving PD-1/PD-L1 inhibitor monotherapy (ICI), PD-1/PD-L1 inhibitors in
combination with chemotherapy (ICI+chemo), or chemotherapy alone. (E) Patients were grouped according to baseline tumor PD-L1 expression
levels (≥50%, 1-49%,<1%). The fold changes of sPD-1 in patients treated with PD-1/PD-L1 inhibitor monotherapy (ICI) and PD-1/PD-L1 inhibitors in
combination with chemotherapy (ICI+chemo) are shown.
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significant associations were found between sPD-1 fold change and

patient age, line of treatment or clinical benefit at 3 months

(Supplementary Table S4). To explore possible associations

further, we compared sPD-1 fold change in R and NR patients

within ICI monotherapy and ICI-chemotherapy groups. In the ICI

monotherapy group, sPD-1 fold change was slightly higher in the R

population than in the NR population, although the difference was

not statistically significant. No differences were found between R

and NR populations within the ICI-chemotherapy group

(Figure 2A). To assess whether sPD-1 fold change is associated
Frontiers in Immunology 06
with long-term outcomes, we used the median sPD-1 fold change as

a threshold to classify patients as having high or low sPD-1 fold

change and compared overall survival (OS) between the two patient

groups. In ICI monotherapy cases, patients with high sPD-1 fold

change displayed longer OS than patients with low sPD-1 fold change,

indicating its predictive power for survival rather than for early clinical

benefit (Figure 2B). In contrast, no difference in OS was observed in

patients receiving combination ICI-chemotherapy (Figure 2C). Lastly,

no differences in OS were found between patients grouped by sPD-L1

fold-change (Supplementary Figure S1), suggesting that sPD-1 is a
B

C

A

FIGURE 2

sPD-1 fold change is associated with overall survival. (A) Patients were classified as responders (R) or non-responders (NR) according to clinical
benefit at 3 months. Shown are fold changes (T1:T0) of sPD-1 in R and NR patients treated with PD-1/PD-L1 inhibitor monotherapy (ICI) and PD-1/
PD-L1 inhibitors in combination with chemotherapy (ICI+chemo). (B, C) Kaplan-Meier plots showing the relationship between sPD-1 fold change
and overall survival (OS) in patients treated with PD-1/PD-L1 inhibitor monotherapy (ICI; B) and PD-1/PD-L1 inhibitors in combination with
chemotherapy (ICI+chemo; C). Patients were classified as having high or low sPD-1 fold change using the median sPD-1 fold change as the
classification threshold.
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superior indicator for improved OS compared to sPD-L1, at least in

our experimental set-up.
ICI therapy elevates plasma levels of
proteins associated with T cell activity
irrespective of clinical benefit

To gain insight into the biological processes induced by PD-1/

PD-L1 inhibitors, we first analyzed proteomic data from NSCLC

patients receiving ICI monotherapy, to avoid the potential

disruptive effect of chemotherapy. Within this dataset, the plasma

levels of 85 proteins (represented by 100 aptamers) were found to be

significantly increased upon treatment (log2FC>0.1 and FDR<0.01,

Figure 3A). Pathway enrichment analysis of biological processes

associated with these proteins revealed T-cell activation,

proliferation, and differentiation (Figures 3B, C, Supplementary

Table S5). Specifically, among the 85 proteins, 30 were associated

with a strong T cell network with a confidence level of 0.9

(Figure 3D). Among these 30 proteins are CD8A, a T cell

activation marker centrally positioned within the network, and

the known T cell immune checkpoint proteins, LAG3, CD28,

PD1 and HAVCR2, as well as other immune checkpoints,

including LILRB2, and TREM2 (32). In addition, IL2R, IL15R,

and Granzyme A, were also enriched in this T cell network, further

indicating T cell activation and proliferation (33). Likewise,

increased plasma levels of B2M and HLA-C suggest T cell

activation through antigen presentation (34, 35). Notably, most

proteins are cell-secreted and plasma membrane proteins

(Supplementary Figure S2). Interestingly, the T cell network was

detected in both R and NR populations, albeit by different sets of

proteins, indicating that at least based on circulating factors, T cell-

related biological processes occur regardless of the therapeutic

outcome (Supplementary Figure S3). The T cell network was

similarly detected in datasets based on objective response rather

than clinical benefit (Supplementary Figure S4). We found that the

T cell network was completely disrupted in the patient subgroup

receiving combination ICI-chemotherapy (Supplementary Figure

S5), further indicating that adding chemotherapy to ICI regimens

weakens ICI-induced T cell-related processes. We further compared

the proteins displaying positive fold changes upon ICI

monotherapy and ICI-chemotherapy regimens. T cell-related

processes were highly enriched in the set of proteins found

exclusively in the ICI monotherapy group. In contrast, no

enrichment was detected in the collection of proteins found solely

in the ICI-chemotherapy group. The 27 proteins in both groups

yielded an intermediate enrichment, suggesting that T cell-related

processes are primarily associated with ICI treatment

(Supplementary Figure S6). Overall, on-treatment changes in the

plasma proteome suggest a robust T cell-related biological process

in both R and NR populations. This effect is prominent in patients
Frontiers in Immunology 07
B

C

A

D

FIGURE 3

Proteins associated with T cell-related processes are elevated in the
plasma during ICI treatment. (A) Volcano plot representing fold change
(T1:T0) in plasma protein levels in patients treated with PD-1/PD-L1
inhibitor monotherapy (n=100). (B) Pathway enrichment analysis of
proteins exhibiting significant and positive fold change. Categorization is
based on gProfilier. Cut-off was set to -log10(q value) =10. (C) Network
of GO biological processes showing relationships between enriched
pathways using ShinyGo. Notably, T cell-associated pathways are highly
represented. (D) The protein-protein interaction network shows the T
cell hub (interaction score with 0.9 confidence).
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receiving ICI monotherapy whereas it is not detected in patients

receiving combination ICI-chemotherapy.
Elevated plasma levels of intracellular
proteins correlate with lack of clinical
benefit in ICI-treated NSCLC patients

Focusing on the patient subgroup receiving ICI monotherapy,

we identified proteins displaying differential fold changes between R

and NR populations. Bioinformatic analysis revealed that the NR

dataset was enriched with nuclear and intracellular proteins (FDR q

value<0.1 and log2FC>0.1), some potentially originating from

alveolar type 1 and type 2 cells (Figures 4A, B, Supplementary

Figure S7, Supplementary Table S6). For example, we found 5 RNA

splicing and metabolism-related proteins (PSPC1, KHSRP, EWSR1,

SF1, and PUF60), 3 transcriptional regulators (YAP1, HMGA1 and

SF1), and 2 metabolite interconversion enzymes (DCPS and

ALOX15B) (36) that were elevated in NR compared to R groups.

Furthermore, we found that proteins potentially originating from

alveolar cells were significantly associated with clinical benefit, but

not with other parameters such as age, ECOG, sex, and line of

treatment (Supplementary Table S7). Interestingly, patients with

high fold change in YAP1, a protein recently shown to be associated

with NSCLC and metastasis (37), displayed significantly shorter OS

than patients with low fold change in this protein. The survival

analysis based on YAP1 yielded the highest HR compared to similar

analyses based on other significant proteins expressed by alveolar

cells, such as DCPS and DCBLD1 (HR=2.87, p<0.001; Figure 4C,

Supplementary Figure S8). Of note, YAP1, TEAD3 and TEAD4

were enriched in the Hippo signaling pathway with the lowest p-

value in comparison to intracellular proteins associated with

alveolar cells (Figure 4B, Supplementary Table S7), further

indicating their significant role in NSCLC. Enrichment in

intracellular and alveolar proteins was also found when analyzing

the dataset in which patients were classified according to objective

response rather than clinical benefit (Supplementary Figure S9). In

this case, while YAP1 did not reach the cutoff, the fold change of

stratifin (SFN) was substantially increased in patients displaying

stable disease or progressive disease. SFN is a cell cycle regulator

(38) that was recently shown to serve as a biomarker for diffuse

alveolar damage (39). To gain further biological insights, we

compared fold changes displayed by the R and NR groups within

the ICI-treated NSCLC cohort to chemotherapy-treated NSCLC

patients and ICI-treated melanoma patients. These two additional

small cohorts were used as controls. Specifically, the chemotherapy-

treated NSCLC cohort served as a control for treatment type,

enabling the identification of ICI-related effects. The melanoma

cohort served as a control for cancer type, enabling the

identification of NSCLC-related effects. Interestingly, NR NSCLC

patients displayed a similar trend to the chemotherapy-treated

NSCLC control cohort, while no similarity was observed between

NR NSCLC patients and the ICI-treated melanoma control cohort

(Figure 4D, Supplementary Figure S10). The former finding

suggests that proteins elevated in the NR group of ICI-treated

NSCLC patients are related to cell stress, a process known to be
Frontiers in Immunology 08
B

C

D

A

FIGURE 4

Intracellular alveolar-associated proteins are enriched in plasma of
NSCLC patients lacking clinical benefit. (A) Volcano plot
representing fold change in plasma protein levels [T1:T0 fold change
in non-responders (NR) vs T1:T0 fold change in responders (R)] in
patients treated with ICI monotherapy. (B) Pathway enrichment
analysis of proteins exhibiting significant and positive fold change.
Categorization is based on gProfilier. Cut-off was set on -log (q
value) of 2.1. (C) Kaplan-Meier plots showing the relationship
between YAP1 fold change and overall survival (OS) in patients
treated with ICI monotherapy (n=100). Patients were classified as
having high or low YAP1 fold change using the median YAP1 fold
change as the classification threshold. (D) A heatmap of proteins in
R and NR NSCLC patients treated with ICI monotherapy, NSCLC
patients treated with chemotherapy and melanoma patients treated
with ICI-based therapy. Notably, intracellular alveolar-associated
proteins cluster in ICI-treated NR patients and chemotherapy-
treated patients.
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induced by chemotherapy. The latter finding suggests that the

intracellular alveolar-associated proteins are unique to NSCLC

NR patients treated with ICIs, as they were not identified in any

ICI-treated melanoma patients.
Discussion

The current study comprehensively analyzed plasma proteomic

profiles in a substantial cohort of 225 NSCLC patients. Leveraging

Somalogic aptamer-based technology coupled with bioinformatic

approaches, we analyzed approximately 7000 plasma proteins at

baseline and during treatment (typically 3-4 weeks following the

first treatment dose) to study early on-treatment, systemic

proteomic changes. Our study provides insights into the

biological mechanisms associated with ICI-based therapies and

reveals potential biomarkers for therapeutic benefit. Firstly, we

show that the plasma level of sPD-1 is elevated following

treatment with PD-1 inhibitors, an effect correlated with better

OS, in line with a previous publication (40). sPD-1 elevation is

dampened by the addition of chemotherapy to ICI regimens.

Secondly, we describe a unique plasma proteomic signature

associated with ICI-induced T-cell activation. Thirdly, we identify

a group of intracellular proteins potentially expressed by alveolar

cells that serve as potential blood-based biomarkers for lack of

clinical benefit from ICI therapy.

It is important to note that CXCL10 and CXCL8, which we

identified previously as potential predictive biomarkers for ICI

response (23), were not present within the signatures identified in

our current study. There are several possible reasons for this

discrepancy. Firstly, the previous study analyzed proteomic data

from an ELISA-based assay measuring ~800 proteins in a cohort of

143 patients, whereas the current study used an aptamer-based

assay measuring ~7000 proteins in a cohort of 225 patients.

Secondly, the previous study described T1 levels of CXCL10 and

CXCL8, whereas the current study analyzed fold changes between

T0 to T1. Lastly, while the previous study was designed specifically

for predictive biomarker discovery, the primary aim of the current

study was to explore biological pathways associated with resistance

and response to therapy.

Focusing on observations related to sPD-1, we show that the fold

change in plasma sPD-1 correlates with tumor PD-L1 expression.

Specifically, patients with high tumor PD-L1 expression (PD-L1 ≥50%)

had a greater fold-change in plasma sPD-1. Interestingly, while sPD-1

fold-change did not correlate with clinical benefit at the 3-monthmark,

in ICI monotherapy cases, patients with high sPD-1 fold change

displayed significantly longer OS than patients with low sPD-1 fold

change. These findings are consistent with existing literature reporting

that heightened plasma levels of sPD-1 during ICI-based treatment

correlate with favorable responses in both EGFR-mutated and wildtype

NSCLC patients (40–42). Mechanistically, several possible explanations

exist for the increased sPD-1 levels in plasma upon treatment with PD-

1 inhibitors. It is plausible that ICI-induced reactivation of cytotoxic T

cells augments the proliferation of these cells, thereby fostering

increased production of sPD-1 (42–44). However, this explanation

does not account for the absence of increased sPD-1 plasma levels upon
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treatment with PD-L1 inhibitors. In this respect, the therapeutic anti-

PD-1 antibodies may bind to sPD-1 in the circulation, interfering with

its clearance from the bloodstream, an effect that does not manifest

when treatment involves anti-PD-L1 therapy (42). Indeed, the latter

explanation aligns with studies on other antibody-based drugs.

Specifically, it was documented that upon treatment with anti-IL6 or

anti-TNFa, increased circulating levels of IL6 and TNFa, respectively,
were detected (45, 46). Overall, our results highlight plasma sPD-1 fold

change as a potential predictive indicator for overall survival in patients

treated with ICI monotherapy.

The tumor infiltration of T lymphocytes has been previously

proposed as a predictive biomarker for ICI therapy outcomes (47).

Our study found that upon treatment with ICIs, the plasma proteome

is enriched with proteins associated with enhanced T cell activity and

proliferation, an effect detectable in both R and NR populations.

Conversely, previous studies reported associations between the

proliferation of peripheral T lymphocytes or the expression of

immune checkpoint molecules such as PD-1 or HAVCR2 (TIM3)

and favorable treatment responses (48, 49). Furthermore, a recent

study reported increased circulating activated T cells in NSCLC

patients upon treatment with immunotherapy (50). Nevertheless,

these studies describe the predictive potential of pre-treatment

lymphocyte levels in terms of response, progression-free survival or

OS (49, 50). Notably, in our study, T cell activation, represented by

proteins such as CD8, LAG3, CD28, B2M, GZMA, IL2RA, ILRB, and

IL15A, was observed in patients treated with ICI monotherapies, but

not combination ICI-chemotherapy. Plausible explanations for this

may be related to the immunosuppressive and immune-depleting

effects elicited by chemotherapy, which can impact T-cell activity

and survival (31, 51, 52). However, this hypothesis does not align

with the additive effect seen clinically when ICI and chemotherapy are

used concomitantly. An alternative explanation would be that

chemotherapy-induced tissue damage within the tumor

microenvironment may increase T cell infiltration into the tumor,

depleting their presence in the circulation.

An interesting observation from our study is the on-treatment

elevation in plasma levels of nuclear and intracellular proteins

potentially originating from alveolar cells. Specifically, YAP1 was

significantly elevated in NR patients compared to R patients. YAP1

is known to regulate alveolar cell differentiation and induce the

Hippo signaling pathway (53). YAP1 is also known to upregulate

PD-L1 expression and support immunosuppression (53–55),

possibly explaining its upregulation in NR patients in our study.

In this regard, our findings suggest a rationale for combining ICIs

with a drug that targets YAP1. Importantly, the alveolar-associated

proteins measured in the plasma were observed exclusively in the

NR population within the cohort of ICI-treated NSCLC patients.

Similar proteomic profiles were detected in NSCLC patients treated

with chemotherapy alone and were notably absent in ICI-treated

melanoma patients. The existence of intracellular, alveolar-

associated proteins in the circulation has multiple plausible

explanations. Firstly, it is pertinent to acknowledge that larger

tumors, often observed in non-responding patients, likely exhibit

tumor necrosis and cellular damage, which may impact T-cell

activity. Indeed, prior studies have demonstrated that necrotic

regions in lung squamous cell carcinoma at baseline may predict
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an unfavorable response to immunotherapy (56). This can be

attributed to the release of intracellular potassium ions from

damaged cells that, in turn, affect T cell effector function (57). It

is noteworthy, however, that our results specifically reveal on-

treatment changes in alveolar proteins, and that such changes are

not solely responsible for an attenuated anti-tumor immune

response. Secondly, it is possible that the intracellular proteins

originate from tumors enduring cellular stress. It is known that

chemotherapy exposure induces tumor cell stress, releasing a

substantial quantity of extracellular vesicles such as exosomes and

microparticles that carry intracellular proteins (58, 59). Therefore,

many intracellular proteins described here may originate from

extracellular vesicles released upon cell stress. Such proteins will

likely be detected in the SomaScan assay, as detergents used in

sample preparation may release proteins carried within extracellular

vesicles. The finding that such proteins are enriched in the NR

population can be explained by cases in which tumor cells remain

viable but endure cellular stress, for example when treatment dosage

is suboptimal. Alternatively, tumor stroma represented in part by

alveolar cells can be tumor protective, and as such, alveolar cells

may potentially support lung cancer. However, there is a paucity of

data in this area of lung cancer research.

The application of aptamer technology, enabling the profiling of

nearly 7000 distinct proteins, holds substantial potential for advancing

precision medicine for cancer as well as other diseases. A recent study,

using the Somalogic technology identified plasma protein signatures

that can predict organ aging in health and disease (24). In contrast to

the traditional reliance on cellular or tissue-based biopsies, analyzing

plasma proteins through liquid biopsy methodologies offers a more

accessible and clinically viable approach. Indeed, our study provides the

first comprehensive analysis of plasma proteomes using the Somalogic

technology. It successfully identified proteins associated with tumor

tissue, including those potentially originating from alveolar cells.

Nevertheless, additional technologies are necessary for studying

connections between the tumor and circulating proteins. One such

avenue involves ctDNA analysis which has the potential to provide

valuable insights into tumor-specific features such as genetic mutations

and response patterns (60). The integration of distinct technologies,

each capturing unique aspects of the tumor and host

microenvironment, holds promise for enhancing the predictive

power of biomarkers.
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