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1Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea, 2College of
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Introduction: Humanized mouse models to recapitulate human biological systems

still have limitations, such as the onset of lethal graft-versus-host disease (GvHD), a

variable success rate, and the low accessibility of total body irradiation (TBI). Recently,

mice modified with the CD47-SIRPA axis have been studied to improve humanized

mouse models. However, such trials have been rarely applied in NOD mice. In this

study, we created a novelmouse strain, NOD-CD47nullRag2nullIL-2rgnull (RTKO)mice,

and applied it to generate humanized mice.

Methods: Four-week-old female NOD-Rag2nullIL-2rgnull (RID) and RTKO mice

pre-conditioned with TBI or busulfan (BSF) injection were used for generating

human CD34+ hematopoietic stem cell (HSC) engrafted humanized mice. Clinical

signs were observed twice a week, and body weight was measured once a week.

Flow cytometry for human leukocyte antigens was performed at intervals of four

weeks or two weeks, and mice were sacrificed at 48 weeks after HSC injection.

Results: For a long period from 16 to 40weeks post transplantation, the percentage

of hCD45 was mostly maintained above 25% in all groups, and it was sustained the

longest and highest in the RTKO BSF group. Reconstruction of human leukocytes,

including hCD3, was also most prominent in the RTKO BSF group. Only two mice

died before 40 weeks post transplantation in all groups, and there were no life-

threatening GvHD lesions except in the dead mice. The occurrence of GvHD has
Abbreviations: BLT, human bone marrow-liver-thymus; BSF, busulfan; GvHD, graft-versus-host disease;

hCD34+, human CD34+ hematopoietic stem cells; hPBL, human peripheral blood lymphocytes; HSC,

hematopoietic stem cell; PBMC, peripheral blood mononuclear cells; RID, NOD-Rag2nullIL2rgnull mice;

RTKO, NOD-CD47nullRag2nullIL2rgnull mice; TBI, total body irradiation; wpt, weeks post transplantation.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1365946/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1365946/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1365946/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1365946/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1365946/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1365946/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1365946&domain=pdf&date_stamp=2024-07-26
mailto:bd0226@amc.seoul.kr
https://doi.org/10.3389/fimmu.2024.1365946
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1365946
https://www.frontiersin.org/journals/immunology


Kim et al. 10.3389/fimmu.2024.1365946

Frontiers in Immunology
been identified as mainly due to human T cells infiltrating tissues and their

related cytokines.

Discussion: Humanizedmousemodels under all conditions applied in this study are

considered suitable models for long-term experiments based on the improvement

of human leukocytes reconstruction and the stable animal health. Especially, RTKO

mice pretreated with BSF are expected to be a valuable platform not only for

generating humanized mice but also for various immune research fields.
KEYWORDS

busulfan, cd47, hematopoietic stem cells, humanized mice, signal-regulatory protein
alpha, total body irradiation
Introduction

In various fields of biomedical research, disease models using

immunocompetent mice are beneficial and widely used tools.

However, there are limitations in recapitulating human biological

systems using mouse models because of the genetic and

immunological differences between mice and humans, especially

in studies involving the human immune response (1). To address

these limitations, humanized mouse models, which are engrafted

with human hematopoietic cells or lymphoid tissues in

immunodeficient mice, have been developed (1, 2).

Humanized mouse models can be classified into the following

three categories; human peripheral blood lymphocytes (hPBL),

human CD34+ hematopoietic stem cells (hCD34+), and human

bone marrow-liver-thymus (BLT) engrafted models (2, 3). The

hPBL model, which is generated by intravenous or intraperitoneal

injection of human peripheral blood mononuclear cells (PBMC)

into immunodeficient mice, is considered the fastest, simplest, and

most economic model. However, there is a narrow experimental

window (4~6 weeks after PBMC injection) because of the

occurrence of lethal graft-versus-host disease (GvHD), and this is

the main limitation of the model (4, 5). The BLT model generated

by implantation of human fetal liver and thymus tissues into

immunodeficient mice provides the microenvironment of the

human thymus and represents a complete human immune

system, including the development of human T cells. However,

the availability of human tissues is seriously restricted, and GvHD is

more severe in the BLT model than the hCD34+ model due to T cell

affinity for the mouse major histocompatibility complex (3, 4, 6).

The hCD34+ model is created by the injection of human CD34+

hematopoietic stem cells (HSCs) after total body irradiation (TBI)

or the administration of myelosuppressive agents such as busulfan

(BSF). This model has advantages, including the immune

reconstitution of all human hematopoietic lineages, a low

incidence of GvHD as compared to other models, and a relatively

long-term experimental window. On the other hand, the relatively

long period for humanization of more than 10 weeks, low
02
accessibility of TBI, and a variable success rate in humanization

are disadvantages of this model (3, 4). To overcome the limitations

of each humanized mouse model, various research trials such as

additional human cytokine treatments, modifications of human

cells, and the application of new genetically engineered mice strains

have been performed (1, 4).

Numerous immunodeficient mouse strains are applied for

generating humanized mouse models, and NOD-scid IL2rgnull,
NOD-Rag1/2nullIL2rgnull, Balb/c-Rag2nullIL2rgnull, and related

strains are representative models (7). The signal-regulatory

protein alpha (SIRPA) gene of the NOD mouse strain has a

strong affinity for human CD47, which could facilitate

engraftment of human leukocytes (8). The Rag1/2 mutation has

the advantage of irradiation tolerance and no occurrence of T/B cell

leakiness (9). Therefore, the NOD-Rag1/2nullIL2rgnull strain is a

more suitable platform for generating the hCD34+ model than the

NOD-scid IL2rgnull strain.
SIRPA, also known as CD172a, is an immunoglobulin

superfamily protein that is abundantly expressed mainly on

macrophages and myeloid cells. CD47, also called integrin-

associated protein, is expressed ubiquitously, including on

leukocytes, and it interacts with SIRPA. The interaction of CD47

and SIRPA plays a role in inhibiting host cell phagocytosis.

Therefore, CD47 is functionally known as a “don’t-eat-me” signal

(10). Furthermore, CD47 of the SIRPA signaling system plays an

important role in the engraftment of human tissues and HSCs (11).

Recent studies of humanized mouse models using CD47 knockout

immunodeficient mice demonstrated enhanced engraftment of

human cells and reduced GvHD occurrence (12–15). However,

there are few studies about CD47 gene modification using NOD

background mice (8).

In this study, we generated the hCD34+ model using NOD-

Rag2nullIL2rgnull (RID) and NOD-CD47nullRag2nullIL2rgnull

(RTKO) mice, and their immunological and pathological features

were examined in detail. RID mice are suitable for generating

hCD34+ models (9), and we expected that human cell

engraftment and GvHD occurrence would be improved in RTKO
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1365946
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kim et al. 10.3389/fimmu.2024.1365946
mice. At the same time, two pre-conditioning methods, TBI and

BSF injection, were compared to improve on the low accessibility of

TBI due to the cost of the irradiator and strict regulations (16), and

to evaluate whether BSF injection is also effective in the RTKO

mouse, a new genetically engineered strain.
Materials and methods

Animals

All procedures were approved by the Institutional Animal Care

and Use Committee of the Asan Institute for Life Sciences (Seoul,

Korea, IACUC No 2020-12-093). CD47 KO NODmice were kindly

provided by Dr. In-Jeoung Baek (Convergence Medicine Research

Center, Seoul, Korea), and Rag2;IL2rg double KO NOD (RID) mice

were obtained from GEM Biosciences (Cheongju, Korea). CD47;

Rag2;IL2rg triple KO NOD (RTKO) mice were generated by mating

CD47 KO NOD mice and RID mice. Genotyping for the RTKO

mice was examined by polymerase chain reaction (PCR) using the

Taq polymerase (ebt 1201; Elpis bio, Daejeon, Korea) and TAKARA

PCR Thermal Cycler Dice (TP600; Takara, Tokyo, Japan). The

primer information is listed in Table 1. The amplified DNA was

evaluated by electrophoresis using 4% agarose (Lonza, Rockland,

ME, USA) gel, and subsequent ethidium bromide (ER2003-020-00;

Biosesang, Yongin, Korea) staining. Gel imaging was obtained using

the Gel Doc XR+ Gel Documentation System (Biorad, Hercules,

CA, USA) (Figure 1A). All mice were maintained in the laboratory

animal breeding room under specific pathogen-free conditions.
Experimental design

4-week-old female RID and RTKO mice were utilized for

generating HSCs engrafted humanized mice following

myelosuppression. Two myelosuppressive methods were applied for

immune suppression: TBI with 550 cGy (X-rad 320; Precision x-ray

irradiation, Madison, CT, USA) or intra-peritoneal injection of 50 mg/

kg BSF (Otsuka Pharmaceutical Co. Ltd., Tokyo, Japan). BSF was

administered twice at an interval of 24 hours at a dose of 25 mg/kg. For

humanization, hCD34+ HSCs were purchased from Lonza (2C-101;

Basel, Switzerland), and HSCs were cultured with RPMI-1640 medium
Frontiers in Immunology 03
(Thermo Fisher Scientific, Waltham, MA, USA). After one day of

incubation, 1X105 HSCs suspended in phosphate-buffered saline (200

µL) were intravenously injected within 24 hours after

myelosuppression (Figure 1B). Enrofloxacin (0.27 mg/mL; Bayer,

Leverkusen, Germany) was added to the drinking water to prevent

bacterial infection (16). Clinical signs were observed twice a week, and

body weight was measured once a week. After inhalation anesthesia

using 2% isoflurane (Terrel™, Piramal Critical Care, Inc., Bethlehem,

PA, USA), 100ml of blood from the retro-orbital plexus was collected

every four weeks from eight to 44 weeks and every two weeks from 44

to 48 weeks after the hCD34+HSC injection. Mice were sacrificed at 48

weeks after the HSC injection. At the time of the sacrifice, 50mg/kg of

alfaxan (Jurox, Rutherford, Australia) and 10mg/kg of xylazine

(Rompun™; Elanco, Ansan, Korea) were injected via intraperitoneal

route for general anesthesia (17, 18). After confirming that mice were

fully anesthetized, they were then sacrificed by exsanguination from the

inferior vena cava for the further analysis.
Flow cytometry analysis

In peripheral blood samples taken from the mice, red blood cells

were lysed by RBC lysis buffer (Biolegend, San Diego, CA, USA) and

then stained with eight types of fluorescein-conjugated antibodies. The

following antibodies specific for human antigens were employed: anti-

hCD45-pacific blue (HI30), anti-hCD3-APC-Cy7 (SK7), anti-hCD4-

FITC (RPA-T4), anti-hCD8-PE (RPA-P8), anti-hCD19-PerCP-cy5.5

(HIB19), and anti-hCD56-Amcyan (NCAM16.2) from Becton

Dickinson Biosciences (Franklin Lakes, NJ, USA); anti-hCD14-APC

(HCD14) and anti-hCD66b-PE-Cy7 (G10F5) from Biolegend. Data

were acquired on a FACS Canto II Flow cytometer (BD Biosciences)

and analyzed using FACSDiva 8.0.2 (BD Biosciences).
Hematoxylin and eosin staining and
histopathological analysis

Fixed lung, liver, kidney, and skin tissues were processed by

standard methods, embedded in paraffin, and then cut into 4-mm
sections. The sections were deparaffinized, rehydrated, and stained

with H&E. The sections were then dehydrated, cleared, mounted,

and viewed by light microscopy. A semi-quantitative scoring system
TABLE 1 Sequences of polymerase chain reaction primers used to genotype the knockout alleles of the Rag2, IL2rg, and CD47 genes.

Gene Sense Sequence
Product size
KO (WT)

Tm (°C)

Rag2
Forward
Reverse

5′-TGT CTG TCG CTT GCA AGA AT-3′
5′-CCA AAG AGA ACA CCC ATG CT-3′

128 bp
(142 bp)

62.9

IL2rg
Forward
Reverse

5′-TAC TCT GCC CCT TCC AGA GG-3′
5′-CTT CTT CCC GTG CTA CCC TC-3′

134 bp
(144 bp)

68

CD47

Nested 1st Forward
Nested 1st Reverse
Nested 2nd Forward
Nested 2nd Reverse

5′-GAC ACG AAG CCG GAA GAG AG-3′
5′-TGC GGT TGT TCC CAG TTC TT-3′
5′-GTT TCC CTT GAA GGC AGC AG-3′

5′-GGC GCC TGG GTG CTG-3′

671 bp
(697 bp)
148 bp
(174 bp)

68
62.9
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(0 to 5 grades), based on the severity of the lesion, was applied for

the histological assessments as follows (19, 20): (0) Normal; (1)

Minimal: minimal inflammatory cell aggregation; (2) Mild:

inflammatory cell aggregation (≤ 10%), minimal apoptosis or

necrosis, epithelial thickening (≤ 30 µm); (3) Moderate:

inflammatory cell aggregation (≤ 25%), apoptosis or necrosis,

epithelial thickening (≤ 60 µm); (4) Severe: inflammatory cell

aggregation (≤ 50%), necrotic foci, epithelial thickening (≤ 100

µm); (5) Generalized: inflammatory cell aggregation (≥ 50%),

necrotic foci, epithelial thickening (≥ 100 µm). Two veterinary

pathologists independently reviewed all of the lesions.
Immunohistochemical staining

For immunohistochemistry, selected serial sections (4 mm) were

deparaffinized, rehydrated, placed in 0.01 M citrate buffer (pH 6.0), and

heated in a microwave for 15 min. Then, the slides were incubated

for 10 min in 1.0% H2O2. The slides were preincubated with

blocking serum (Vectastain ABC kit; Vector Laboratories,

Burlingame, CA, USA), incubated with rat anti-human CD45 (MA5-

17687, 1:100, Invitrogen), rabbit anti-human CD3 antibodies (PA5-

32318; 1:1,000, Invitrogen), and mouse anti-human CD19 (14-0199-82;

1:50, Invitrogen). The sections were incubated with biotinylated

secondary antibodies followed by incubation with avidin-coupled

peroxidase (Vectastain ABC kit; Vector Laboratories). The CD19

antibody was stained using the Mouse on Mouse (M.O.M.) detection
Frontiers in Immunology 04
kit (Vector Laboratories). After development with 3,3’-

diaminobenzidine (DAB Substrate kit, Vector Laboratories), the slides

were counterstained with hematoxylin.
Western blot analysis

Protein was extracted from spleen tissue with extraction

solution (Pro-PrepTM; Intron Biotechnology, Seoul, Korea). The

protein concentrations were determined using a BCA kit (Pierce

Biotechnology Inc. , Rockford, IL, USA). After being

electrophoresed on SDS-PAGE and transferred onto nitrocellulose

membranes, the proteins were blocked and incubated with specific

antibodies against anti-mouse b-actin (A5441; 1:5000, Sigma-

Aldrich, St. Louis, MO, USA), anti-human CD3 (PA5-32318;

1:50, Invitrogen), anti-human CD19 (PA5-11578; 1:1000,

Invitrogen), anti-human CD45 (MA5-15478; 1:500, Invitrogen) at

4˚C. Then, the membranes were washed with Tris-buffered saline

with Tween® 20 detergent (GIM003; Dongin biotech Biotech,

Seoul, Korea) and incubated with either anti-rabbit or anti

−mouse secondary antibodies (Jackson ImmunoResearch, West

Grove, PA, USA), which were horseradish-peroxidase linked.

Specific antibodies were detected with an ECL test kit (Kirkegaard

& Perry Laboratories Inc., Gaithersburg, MD, USA). The band

intensities were quantified using Imagequant Software (Image Lab

V4.0; Bio-Rad Inc., San Diego, CA, USA) and normalized to b-
actin expression.
B

C D

A

FIGURE 1

Genotyping, scheme, and clinical observation of the hematopoietic stem cell engrafted humanized mouse model. (A) The representative PCR results of
wild type, RID, and RTKO mouse. (B) Scheme for the generation of the humanized mouse. Four-week-old female RTKO and RID mice were used to
generate humanized mice. For FACS analysis to confirm human leukocyte engraftment, peripheral blood was collected by retro-orbital bleeding from
mice at four-week intervals from eight to 44 weeks and at two-week intervals from 44 to 48 weeks after hCD34+ HSC injection. (C) The body weight
ratio of humanized mice (presented as percentage of original body weight determined at the time of HSC injection) and (D) the survival rate changes
were monitored weekly after HSC injection. The number of mice in each experimental group was as follows; RID BSF n=6, RID TBI n=6, RTKO BSF n=6,
RTKO TBI n=7; M, a ladder marker; WT, wild type; RID, Rag2; IL-2rg double KO NOD mice; RTKO, CD47; Rag2; IL-2rg triple KO NOD mice; FACS,
fluorescence-activated cell sorting; HSC, hematopoietic stem cell; BSF, busulfan; TBI, total body irradiation; wpt, weeks post transplantation.
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Multiplex human cytokine analysis

At the time of sacrifice, whole blood of each mouse was

collected from the inferior vena cava, and the serum was used for

measuring human cytokines with a Human CorPlexTM Cytokine

Panel 1 10-Plex Array (116-7BF-1-AB; Quanterix, Billerica, MA,

USA) according to the manufacturer’s instructions. The array

measured cytokine concentrations of human IL-1b, IL-4, IL-5, IL-
6, IL-8, IL-10, IL-12p70, IL-22, IFN-g, and TNF-a. The results were
acquired and analyzed with the SP-X Imaging System (Quanterix).
Statistical analysis

For statistical analysis, all data obtained were analyzed using

SPSS V14.0 software (SPSS Inc., Chicago, IL, USA). Statistically

significant differences between the studied groups were evaluated

using the unpaired Student’s t-test or Fisher’s exact test. Results

were determined to be statistically significant for values of p<0.05

(p<0.05 and p<0.01 are indicated in the Figure legends).
Results

Generation of humanized mice and
clinical signs

Four-week-old female RID and RTKO mice were employed for

generating humanized mice following myeloablation and

transplantation of HSCs. The mice were euthanized 48 weeks after

HSCs administration (Figure 1B). To determine the animal health

status and the severity of GvHD, the mice were weighed once a week.

The body weight (BW) ratio increased the most in the RID BSF group

and the least in the RID TBI group. The BW ratio of the RID BSF

group was significantly higher during most of the period as compared

to the RID TBI group from nine weeks post transplantation (wpt) and

the RTKO group from 43 wpt. The BW ratio of the RTKO BSF group

was greater than that of the RTKO TBI group; however, there was no

meaningful difference (Figure 1C). Clinical symptoms such as

hyperkeratosis, hair loss, cachexia, anemia, and jaundice were

observed, and some mice died during the experiments. In the RID

BSF group, three mice died at 43 wpt, and in the RID TBI group, one

mouse died each at 23 and 45 wpt, respectively. In the RTKO BSF

group, onemouse died each at 36 and 42 wpt, and twomice died at 47

wpt in the RTKO TBI group. Overall, the 48 wpt survival rate was the

highest in the RTKO TBI group (71.4, n=7), and the lowest in the

RID BSF group (50.0%, n=6), while the survival rates of the RID-TBI

group and the RTKO BSF group were each 66.7% (n=6) (Figure 1D).

The detailed information on animal mortality is described in Table 2.
Immune monitoring of the
humanized mice

To evaluate the human immune cells engraftment, flow cytometry

for human leukocyte antigens was performed at intervals of four weeks
Frontiers in Immunology 05
or two weeks. After eight wpt, the hCD45 percentage of the DKO TBI

group was the lowest (13.7%). The other groups had more than 20%,

and that of the RTKO BSF group was the highest (34.5%). At most of

the measurement points, the hCD45 percentages of the RTKO BSF

group were the highest, and those of the DKO TBI group were the

lowest. Finally, the hCD45 percentage of the RTKO BSF group was

23.0%, and in the other groups, it was around 10% at 48 wpt

(Figures 2B, C). At the early stage of transplantation, most of the

immune cells were hCD19+ B cells, but they gradually decreased to less

than 2.0% from 40 wpt (Figures 2D, E). The percentage of hCD3+ T

cells increased rapidly from 12 wpt, and they made up most of the

human leukocytes after 40 wpt. At the beginning of the hCD3 T cells

expansion, the percentage of hCD3+ T cells increased rapidly in the

RTKO groups as compared to the DKO groups, and it was significantly

greater at 16 and 20 wpt. Examining the results after 20 wpt, hCD4+ T

cells among the hCD3+ T cells gradually increased from around 60.0%

and finally increased to approximately 80.0%, whereas hCD8+ T cells

continually decreased from about 40.0% to 10.0% (Figures 2F–I). Dot

plots for significant comparisons of hCD45 (Supplementary Figure S1),

hCD3 and hCD19 (Supplementary Figure S2), hCD4 and hCD8

(Supplementary Figure S3) were provided in the Supplementary

Material. Other markers of leukocytes, including hCD14, hCD56,

and hCD66b, were hardly detected, except for hCD66b in one

mouse of the DKO BSF group (Supplementary Figures S4–S6).
Pathological changes and assessment of
the severity of GvHD

To determine the symptoms and severity of GvHD,

histopathological analysis was performed. Inflammatory cell

aggregation, mostly in the perivascular region, and some

apoptotic cells were observed in the liver, lung, kidney, and skin.
TABLE 2 The detailed information on animal mortality.

Groups
Number and

timing
of deaths

Clinical signs or nec-
ropsy findings

RID
BSF group

One dead mouse at
43 wpt
Two dead mice at
43 wpt

Sudden death, no weight loss, moderate
alopecia and hyperkeratosis.
The breeding management problem (a
water bottle leak and starvation)

RID
TBI group

One dead mouse at
23 wpt
One euthanized
mouse at 43 wpt

Sudden death, no weight loss, mild
alopecia and hyperkeratosis, moderate
splenomegaly.
Weight loss 16.5%, jaundice, hunched
posture, reduced activity.

RTKO
BSF group

One dead mouse at
36 wpt
One euthanized
mouse at 42 wpt

Sudden death, no weight loss, moderate
hepatic inflammation.
Weight loss 12.5%, anemia, hunched
posture, reduced activity.

RTKO
TBI group

One euthanized
mouse at 47 wpt
One euthanized
mouse at 47 wpt

Weight loss 8.1%, anemia, hunched
posture, reduced activity.
Weight loss 7.8%, moderate alopecia and
hyperkeratosis, hunched posture,
reduced activity.
RID, Rag2; IL-2rg double KO NOD mice; RTKO, CD47; Rag2; IL-2rg triple KO NOD mice;
BSF, busulfan; TBI, total body irradiation; wpt, weeks post transplantation.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1365946
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kim et al. 10.3389/fimmu.2024.1365946
In the skin, epidermal hyperplasia and hyperkeratosis were

prominent lesions (Figure 3A). Analyzing the semi-quantitative

scoring system, pathological changes in the lung and liver were

minimal to mild. Lung scores of the TKO groups were greater than

the DKO BSF groups and significantly higher than the DKO TBI
Frontiers in Immunology 06
group. In the kidney, minimal inflammatory cell aggregation was

observed only in some TKO group mice, and there were no

significant differences among the groups. The skin lesions were

the most severe, and the scores of the RTKO groups were

significantly higher than the DKO TBI group. The scores of the
B C

D E

F G

A

H I

FIGURE 2

Immune monitoring of the humanized mouse. Engraftment of human cells was examined by FACS analysis from eight to 48 weeks after hCD34+
HSC injection. Sera were collected by retro orbital bleeding from mice. (A) Gating strategy for flow cytometry analysis. Levels and significant
comparisons of (B, C) hCD45 leukocytes, (D, E) hCD19 B cells, (F, G) hCD3 T cells were examined. When hCD3+ cells were taken as a whole (100%),
the percentages of (H) hCD4+ cells and (I) hCD8+ cells were calculated. Dot plots for significant comparisons of hCD45 (Supplementary Figure S1),
hCD3 and hCD19 (Supplementary Figure S2), hCD4 and hCD8 (Supplementary Figure S3) were provided in supplementary figures. *p<0.05 and
**p<0.01. h, human; FACS, fluorescence-activated cell sorting; RID, Rag2; IL-2rg double KO NOD mice; RTKO, CD47; Rag2; IL-2rg triple KO NOD
mice; HSC, hematopoietic stem cell; BSF, busulfan; TBI, total body irradiation; wpt, weeks post transplantation.
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RTKO BSF group were the highest in all organs; however, there

were no life-threatening lesions (Figure 3B).
Expression of human leukocyte antigens

Immunohistochemistry was performed to examine which types

of human immune cells were infiltrating in affected tissues.

Aggregating leukocytes in the perivascular area and interstitial

tissues of the lung, liver, kidney, and spleen and subcutaneously

infiltrating immune cells were stained with the hCD45 antibody.

Most of the leukocytes were stained for hCD3 protein, and some

immune cells expressed hCD19 (Figure 4A). To evaluate the

engraftment and proliferation of the human leukocytes, the

expression levels of hCD45, hCD3, and hCD19 proteins were

analyzed using spleen tissues. hCD45 and hCD3 proteins were

expressed more intensely in the RTKO groups than the RID groups,

but there was no significant difference. Comparing the results of all

of the RTKO groups and the RID groups, hCD3 was significantly

higher in the RTKO group (Figure 4B). hCD19 was barely detected

in all groups (data not shown).
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Measurement of human cytokine levels in
mouse serum

Human cytokine concentrations were measured to elucidate the

cause of GvHD associated with the inflammatory cell aggregation

using Human CorPlex Cytokine Panel 1 10-Plex Array (Quanterix).

Serum concentrations of hIL-8, hIL-22, and hTNFa were

significantly increased in both RTKO groups relative to the RID

groups (Figures 5A–C). In addition, the concentrations of hIL-6

and hIFNg were enhanced in the RTKO groups; however,

significant differences were only obtained when comparing all of

the RTKO groups and the RID groups (Figures 5D, E). On the other

hand, the levels of hIL-5 were significantly decreased in the RTKO

groups (Figure 5F). There were no meaningful differences in the

other cytokines (IL-1b, IL-4, IL-10, and IL-12p70; data not shown).
Discussion

In this study, we generated hCD34+ humanized mice using RID

and RTKO mice, and two pre-conditioning methods, TBI and BSF
B

A

FIGURE 3

Histopathological findings and analyses of the semi-quantitative lesion scores. (A) Hematoxylin and eosin stains of lung, liver, kidney, and skin tissues
of normal RID mice and the RTKO BSF group. Inflammatory cell aggregation was the major pathological change. Bar, 200 µm. (B) Semi-quantitative
lesion scores of lung, liver, kidney and skin tissues of RID and RTKO groups. The scores of the RTKO BSF group were the highest in all organs.
*p<0.05 and **p<0.01. RID, Rag2; IL-2rg double KO NOD mice; RTKO, CD47; Rag2; IL-2rg triple KO NOD mice; HSC, hematopoietic stem cell; BSF,
busulfan; TBI, total body irradiation.
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injection, were compared. The production of humanized mice is

generally determined as successful if the hCD45 percentage in

mouse PBMC is more than 25% (3). Considering this standard

and the health of our mice, including the body weights and survival

rates (Figures 1C, D) and histopathological analysis (Figure 3),

humanized mice were successfully generated in all groups. At 8 wpt,

the hCD45 percentage of the RTKO BSF was more than 30%, and in

the other groups, it was subsequently over 25%. The engraftment of

human leukocytes was maintained for a long period of time. Greater

than 25% of the hCD45 percentage was maintained in most groups

until 40 wpt, and those of the RID TBI group with the lowest results

were more than 20% during the same time frame (Figure 2B). After

40 wpt, the ratio of hCD45 decreased (Figure 2B) and the fatalities

increased (Figure 1D). Therefore it was decided to finish the

experiment at 48 wpt. However, it is predicted that the

experimental window of the RTKO BSF group could be extended

beyond 48 wpt, as the ratio of hCD45 was maintained at 23.0% at

the last measurement in that group (Figure 2B).

Considering the body weight ratio and the histological

evaluation, the RID BSF group had the best health condition, and
Frontiers in Immunology 08
the RTKO BSF group, which had the highest histopathological

scores, was also healthy, with a body weight increase of 156.5% by

the end of the experiment (Figures 1C, 3B). The final survival rate at

48 wpt was the lowest in the RID BSF group (50.0%), and the

highest in the RTKO TBI group (71.4%), with no significant

difference among the groups (Figure 1D). Although mortality was

observed in all groups until 48 wpt, only two animals died before 40

wpt in all groups (one mouse in each of the RID TBI and the RTKO

BSF groups) (Figure 1D). And there were no major health problems

other than skin lesions except for mortalities (Figure 3).

Considering the animal health and human leukocytes

engraftment in this study, as well as the experimental period in

other studies (21–24), the humanized mouse models of all applied

conditions in this study is expected to be suitable models for long-

term experiments.

Human leukocytes reconstructed in vivo were mostly hCD19 + B

cells at the beginning, but they gradually decreased to less than 2%

after 40 wpt. The percentage of hCD19 + B cells in the RTKO BSF

group was the highest until 20 wpt, and after that, it was the highest in

the RID BSF group until 40 wpt (Figure 2D). These results were
B

A

FIGURE 4

Expression of human leukocyte antigens. (A) Immunohistochemical staining of hCD45, hCD3, hCD19 in the lung, liver, kidney, skin, and spleen
tissues of the RTKO groups. hCD45 and hCD3 were abundantly expressed in inflammatory cells in perivascular and subcutaneous areas, and some
leukocytes were also stained with hCD19. Bar, 50 µm. (B) Western blot analysis of hCD45 and hCD3 proteins using the spleen tissues. Protein
concentrations of the RTKO groups were greater than the RID groups, and the significant differences were only observed when comparing hCD3
results of all of the RTKO groups and the RID groups. *p<0.05. h, human; RID, Rag2; IL-2rg double KO NOD mice; RTKO, CD47; Rag2; IL-2rg triple
KO NOD mice; HSC, hematopoietic stem cell; BSF, busulfan; TBI, total body irradiation.
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attributed to the earlier differentiation of human leukocytes in RTKO

mice than RID mice, resulting in an increase in hCD3+ T cells. The

percentage of hCD3+ T cells increased from 12 wpt. Human

leukocytes were differentiated more rapidly in the RTKO groups,

and the percentage of hCD3 cells exceeded 10% at 16 wpt, which was

eight weeks earlier than those of the RID groups (Figure 2F). After 16

wpt, hCD3+ T cells were higher in the RTKO BSF group, and the

percentage of hCD4 to hCD8 was also the highest in the RTKO BSF

group at almost all measurement points (Figures 2H, I). In addition,

the human immune cells in the spleen were significantly engrafted in

the RTKO groups (Figure 4B). Interpreting the results of leukocytes

engraftment and differentiation, the RTKO mouse is a more suitable

platform than the RID mouse, and BSF injection is a more

appropriate pre-conditioning method than TBI for generating the

hCD34+ humanized mice.

In histopathological analysis, GvHD lesions were prominent in

the skin, not severe in the lungs and liver (Figure 3), and there were

no life-threatening lesions except in the dead mice (Figure 1D).

Most of the immune cells aggregated in the tissues were hCD3+ T

cells (Figure 4A). The expression of hIL-6, hIL-8, hIL-22, hTNFa,
and hIFNg was increased in the RTKO mice (Figure 5). Associated

with T lymphocytes, IFNg and TNFa are core cytokines of chronic

GvHD pathogenesis (25), and IL-6 and IL-22 aggravate skin lesions

(26). IL-8 has a function of lymphocyte recruitment (27). These

results suggest that cytokines secreted by the human T cells

infiltrating tissues played a crucial role in the development of

GvHD lesions and this mainly affecting skin pathogenesis. On the

other hand, hIL-5 was decreased in RTKO mice, as hIL-5 is

decreased in a CD47 blockade (28). hIL-5, classified as a Th2-type
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cytokine (29), is known to be involved in both acute and chronic

GvHD pathogenesis, but the exact mechanism is not yet clearly

understood (30, 31). hIL-5 is produced by CD4 T cells (32) and the

enhancement of hIL-8 could reduce the activation of CD4 T cells

(33). So, it is interpreted that the increased levels of hIL-8

(Figure 5A) in the RTKO groups may reduce the activation of

CD4 T cells, thereby reducing the secretion of hIL-5 from CD4 T

cells. We also hypothesize that the intensity of GvHD might be

alleviated due to the reduction of hIL5 in RTKO, resulting in no

significant differences in the survival rate among groups.

Recently, mice modified with the CD47-SIRPA axis have been

studied to improve humanized mouse models (13, 14, 34). This is

because the CD47 deficient condition could enhance tolerance for

transplanted human leukocytes (35). However, due to the strong

affinity between human SIRPA and mouse CD47 (8), such trials

have been rarely applied in NOD mice. In this study, hCD34+

humanized mice were generated using CD47 KO NOD mice for the

first time, and the CD47 deficiency enhanced human immune cell

engraftment (Figures 2, 4B), like in studies using the C57BL/6 strain

(13, 14). Compared to humanized mice studies applying NSG mice,

it was also confirmed that the engraftment and the differentiation of

human immune cells were enhanced in RTKO mice (3, 23, 36, 37).

Considering the improvement in reproducing human immune

system and the additional benefits of rag2 gene mutation,

including irradiation tolerance and the deficiency of T/B cell

leakiness (8, 9), RTKO mice could be an alternative platform for

generating humanized mice.

There are two errors in this study. The first is an error in the

FACS analysis. The human leukocyte antigen analysis in the RTKO
A B

D E F

C

FIGURE 5

Measurement of human cytokine concentrations in mouse serum. The levels of human cytokines were analyzed using Multiplex ELISA. The sera
were collected after sacrifice, followed by assessment of the amounts of (A) hIL-8, (B) hIL-22, (C) hTNFa, (D) hIL-6, (E) hIFNg and (F) hIL-5. In the
RTKO group, the expression of hIL-6, hIL-8, hIL-22, hTNFa, and hIFNg increased, whereas the expression of hIL-5 decreased. *p<0.05 and
**p<0.01. h, human; RID, Rag2; IL-2rg double KO NOD mice; RTKO, CD47; Rag2; IL-2rg triple KO NOD mice; BSF, busulfan; TBI, total body
irradiation; IL, Interleukin; IFNg, Interferon Gamma; TNFa, tumor necrosis factor alpha.
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groups was underestimated at 44 wpt. When checking the results at

that time, we judged that it was a simple decrease, but considering

the high values at 40, 46, and 48 wpt, we expected an

underestimation of the results due to experimental error.

Therefore, it is possible that the RTKO BSF group maintained a

more stable human leukocytes engraftment until the end of the

experiment. The second error is the death of mice due to breeding

management faults. On the weekend of 44 wpt, two mice in the RID

BSF group died in the same cage due to water supply problems

(Table 2). Considering the weight change (Figure 1C) and the

clinical signs of these mice, they were expected to have survived, and

if so, the RID BSF group might have had the highest survival rate

(83.3%, n=6), and might have been the most stable model to

maintain a good health condition.

In conclusion, CD34+ humanized mouse models were

successfully established in all four groups using RID and RTKO

mice with two pre-conditioning methods, TBI and BSF. Among

them, the RTKO BSF group was identified as the most suitable

model considering the improvement of human leukocytes

reconstruction and the extended experimental window beyond 48

wpt. This model is expected to be a novel and useful platform for

various immune research, including cancer immunotherapy,

virology, hematology, and autoimmunity. However, further

studies are needed reduce the mortality and enhance the

expansion of immune cells other than B and T cells.
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