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Background: The tumor microenvironment (TME) plays a pivotal role in the

progression and metastasis of lung adenocarcinoma (LUAD). However, the

detailed characteristics of LUAD and its associated microenvironment are yet

to be extensively explored. This study aims to delineate a comprehensive profile

of the immune cells within the LUAD microenvironment, including CD8+ T cells,

CD4+ T cells, and myeloid cells. Subsequently, based on marker genes of

exhausted CD8+ T cells, we aim to establish a prognostic model for LUAD.

Method: Utilizing the Seurat and Scanpy packages, we successfully constructed

an immune microenvironment atlas for LUAD. The Monocle3 and PAGA

algorithms were employed for pseudotime analysis, pySCENIC for transcription

factor analysis, and CellChat for analyzing intercellular communication.

Following this, a prognostic model for LUAD was developed, based on the

marker genes of exhausted CD8+ T cells, enabling effective risk stratification in

LUAD patients. Our study included a thorough analysis to identify differences in

TME, mutation landscape, and enrichment across varying risk groups. Moreover,

by integrating risk scores with clinical features, we developed a new nomogram.

The expression of model genes was validated via RT-PCR, and a series of cellular

experiments were conducted, elucidating the potential oncogenic mechanisms

of GALNT2.

Results: Our study developed a single-cell atlas for LUAD from scRNA-seq data

of 19 patients, examining crucial immune cells in LUAD’s microenvironment. We

underscored pDCs’ role in antigen processing and established a Cox regression

model based on CD8_Tex-LAYN genes for risk assessment. Additionally, we

contrasted prognosis and tumor environments across risk groups, constructed a

new nomogram integrating clinical features, validated the expression of model

genes via RT-PCR, and confirmed GALNT2’s function in LUAD through cellular

experiments, thereby enhancing our understanding and approach to

LUAD treatment.
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Conclusion: The creation of a LUAD single-cell atlas in our study offered new

insights into its tumor microenvironment and immune cell interactions,

highlighting the importance of key genes associated with exhausted CD8+ T

cells. These discoveries have enabled the development of an effective prognostic

model for LUAD and identified GALNT2 as a potential therapeutic target,

significantly contributing to the improvement of LUAD diagnosis and

treatment strategies.
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1 Introduction

In the past decade, LUAD has emerged as the predominant

subtype of lung cancer, accounting for approximately 40% of all

lung cancer cases (1, 2). The incidence of this form of lung cancer is

not only increasing among chronic smokers but also shows an

upward trend in former and even non-smokers. Despite significant

advancements in treatment modalities such as the introduction of

PD-L1-targeted immunotherapies (3, 4) and targeted therapies for

specific genetic mutations like KRAS and EGFR (5, 6), LUAD

continues to pose a major public health challenge globally. The five-

year survival rate for this malignancy varies based on region,

treatment accessibility, and individual differences, generally

remaining low, typically ranging from 5% to 20% (7).

TME refers to the environment surrounding tumor cells,

encompassing nearby blood vessels, immune cells, fibroblasts, the

extracellular matrix, and secreted molecules (8). It plays a critical

role in tumor development, metastasis, and response to treatment.

In LUAD, characteristics of the TME such as immune cell

infiltration, local inflammatory responses, and interactions

between tumor cells and their surrounding environment are key

factors affecting disease progression and treatment efficacy (9).

Increasing research emphasizes the significance of the TME in

predicting cancer prognosis and responses to immunotherapy (10,

11). Understanding these aspects not only aids in deepening our

comprehension of the biological characteristics of LUAD but also

may facilitate the development of new treatment strategies, such as

the use of immunomodulatory drugs or therapies targeting specific

features of the TME.

Single-cell RNA sequencing (scRNA-seq) represents a

significant advancement over conventional bulk RNA-sequencing

(RNA-seq) by offering detailed transcriptomic analysis at the

individual cell level (12). This advanced methodology has been

transformative in tumor microenvironment research, yielding high-

resolution insights across various cancers. Studies in malignancies

such as lymphoma, melanoma, and liver cancer have utilized

scRNA-seq to uncover complex details regarding immune cell

heterogeneity, composition, and regulatory mechanisms within
02
their respective tumor microenvironments (13–15). Despite these

advancements , the explorat ion of the LUAD tumor

microenvironment using scRNA-seq is still in its nascent stage,

underscoring an urgent need for more in-depth studies in this area

to enhance our understanding.

In this study, our objective was to construct a comprehensive

single-cell atlas of LUAD by performing scRNA-seq on 29 samples

collected from 19 LUAD patients (16). Utilizing this atlas, we

meticulously analyzed the canonical immune cell types within the

LUAD microenvironment, with a focus on myeloid cells, CD4+ T

cells, and CD8+ T cells. We identified plasmacytoid dendritic cells

(pDCs) as key regulators in antigen processing and presentation via

the MHC-II signaling pathway. By integrating scRNA-seq data with

bulk RNA-seq data from LUAD patients, we successfully identified

a set of risk genes based on CD8_Tex-LAYN (exhausted CD8+ T

cells) marker genes. Subsequently, we developed a robust and

reliable Cox regression model that accurately assesses the risk

levels of LUAD patients. Based on risk stratification, we

systematically evaluated differences in prognosis, tumor

microenvironment, and mutation landscape between high-risk

and low-risk groups. Furthermore, combining clinical

characteristics and risk scores, we constructed a novel nomogram.

Lastly, we validated the expression of model genes via RT-PCR and

determined GALNT2 as a potential therapeutic target for LUAD

through a series of cellular experiments. These findings not only

enhance our understanding of the LUAD microenvironment but

also offer promising prospects for improving diagnostics and

prognosis in LUAD clinical settings.
2 Methods

2.1 Data collection of LUAD singel-
cell datasets

The original scRNA-seq data used in this study were obtained

from 19 treatment-naïve LUAD patients (16), including primary lung

tumors (tLung, n = 11), distant normal lung tissues (nLung, n = 11),
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and lymph node metastases (mLN, n = 7). These data were acquired

from the the Gene Expression Omnibus (GEO) database under the

accession number GSE131907. The training data for our prognostic

model, including the gene expression matrix(FPKM format), clinical

specifics, and mutation details for LUAD patients, were directly

downloaded from The Cancer Genome Atlas (TCGA) via the

following portal: https://portal.gdc.cancer.gov/repository.

Additionally, the external validation cohorts, comprising gene

expression and clinical data (GSE31210, GSE37745, GSE50081,

GSE68465, GSE3141), were acquired from the GEO database to

assess the model’s predictive accuracy. To make the data from TCGA

and GEO more compatible, we converted the format from FPKM to

TPM and then used the R package ‘SVA’ to correct for batch effects

between the datasets.
2.2 Evaluating data from single-cell
RNA sequencing

The gene-cell matrix for each sample was individually imported

to Scanpy (version 1.9.1) for downstream analysis. Cells with the

unusual number of UMIs (≥ 8,000), number of detected genes (≤

500 or ≥ 4,000) or mitochondrial gene percent (≥ 10%) were

excluded. The UMI count for the genes in each cell was

norma l i z ed by the “LogNormal i z e ” method as the

following formula:

The gene-cell matrix for each sample was imported into Scanpy

(version 1.9.1) (17) for downstream analysis. To ensure data quality,

cells with unusual characteristics were excluded from the analysis.

These characteristics included an abnormal number of UMIs (≥

8,000), a low number of detected genes (≤ 500) or a high number of

detected genes (≥ 4,000), as well as a high percentage of

mitochondrial genes (≥ 10%). Subsequently, the UMI count for

each gene in every cell was normalized using the “LogNormalize”

method as the following formula:

Gene A expression level = log 1 +
UMIA

UMITotal
� 105

� �

To alleviate the impact of batch effects during the clustering

process, we utilized Harmony to integrate all the samples.

Specifically, we identified 2,000 highly variable genes in each

sample using a variance stabilizing transformation. Next, we

determined anchors between the individual datasets and

computed correction vectors to create an integrated expression

matrix. This integrated matrix was then utilized for subsequent cell

clustering, enhancing the robustness and reliability of the analysis

by effectively addressing batch effects. The integrated expression

matrix was utilized to calculate the principal components (PCs).

From these PCs, a subset of significant ones was selected, and the

cells were categorized into sub-clusters using the Louvain

algorithm. To visualize the clustering results, we employed the

Uniform Manifold Approximation and Projection (UMAP)

technique. The cell type annotations for each cluster were

determined based on the expression patterns of known marker

genes using CellTypist (https://github.com/Teichlab/celltypist). The
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expression of each gene in a given cluster was compared to the rest

of the cells using the Wilcoxon rank sum test. Genes meeting the

following criteria were considered as significantly upregulated:

Firstly, they exhibited a log2(foldchange) value ≥ 1 or ≤ -1,

indicating substantial overexpression in the target cluster.

Secondly, these genes were expressed in more than 25% of the

cells within the target cluster. Finally, the adjusted p-value for each

gene was required to be less than 0.05, demonstrating statistical

significance in the differential expression analysis. Monocle3 R

package (https://cole-trapnell-lab.github.io/monocle3/) was used

for pseudotime trajectory analysis (18).
2.3 Cell-cell communication analysis

We employed the CellChat toolkit (https://github.com/sqjin/

CellChat) within the R programming environment (19). This

analysis aimed to elucidate the differential interactions and

signaling pathways among various cell types, including DC1, DC2,

pDC, Monocytes, Migratory DCs, andMast cells. CellChat, a cutting-

edge tool, enables the quantitative inference of intercellular

communication networks from scRNA-seq data. It leverages a

comprehensive database of human ligand-receptor interactions and

advanced pattern recognition techniques to predict the primary

signaling mechanisms among cells, thereby illuminating the

coordination of cellular functions. To ensure the analysis’s

relevance and accuracy, only ligand-receptor pairs exhibiting a P-

value less than 0.05 were considered, allowing for a focused

evaluation of the intricate relationships between diverse cell types.
2.4 Simultaneous gene regulatory
network analysis

To assess the transcriptional distinctions among cell clusters

(CD8_Tn-LEF1, CD8_Tem-GZMK, CD8_Trm-KLRB1, and

CD8_Tex-LAYN), based on transcription factors and their target

genes, we conducted pySCENIC (version 0.10.0) analysis on all

single cells. This approach facilitated the identification of regulons

preferentially expressed within these clusters, employing the Limma

package for calculation. Our analysis focused solely on regulons that

exhibited significant upregulation or downregulation in at least one

of the clusters, considering only those with an adjusted p-value of

less than 0.05 for further exploration.
2.5 Construction and validation of
prognostic signature

The prognostic relevance of CD8_Tex-LAYN and CD8_Tn-LEF1

as cellular biomarkers for overall survival in patients with lung

adenocarcinoma (LUAD) from the TCGA database was initially

evaluated through univariate Cox regression, pinpointing genes of

prognostic significance at a threshold of p< 0.01. Subsequently, we

refined our prognostic gene assessment using the “glmnet” R package
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(20) to implement a LASSO Cox proportional hazards model. Further

refinement was achieved by integrating this model with a multivariate

Cox regression analysis, thereby constructing a risk model that

incorporates gene expression levels weighted by their associated risk

coefficients. This composite approach yielded six principal genes

warranting additional prognostic scrutiny. To differentiate between

high and low-risk patient cohorts, a median value cutoff was applied.

The survival outcomes for these cohorts within the TCGA-LUAD

dataset and across five independent GEO datasets (GSE3141,

GSE50081, GSE68465, GSE37745, and GSE31210) were analyzed

using Kaplan-Meier survival curves, facilitated by the “survival” and

“survminer” R packages. The prognostic potency of the derived risk

score was corroborated by generating ROC curves and computing the

AUC with the “survivalROC” R package (21), thereby quantifying the

risk model’s predictive precision.
2.6 Nomogram development

In developing the nomogram, we first executed both univariate

and multivariate Cox regression analyses on the risk scores and

clinical characteristics of patients with lung adenocarcinoma

(LUAD) from the TCGA database. The objective was to pinpoint

variables that held significant prognostic weight for LUAD.

Following this, using the ‘rms’ R package (22), we constructed the

final nomogram. To evaluate its effectiveness, we employed

calibration curves and decision curve analysis (DCA).
2.7 Mutation analysis

For the analysis of mutation data and clinical details, we utilized

the ‘maftools’ R package. The function read.maf was applied to

import this information into a maf file format. We then employed

plotmafSummary to examine the mutation profile of patients with

LUAD in the TCGA dataset. For visualizing the mutation

characteristics in both high and low-risk groups, the oncoplot

function was used to create heatmaps that integrated clinical data

with mutation information. To investigate co-mutation patterns

among key genes and the top 10 most frequently altered genes in

TCGA-LUAD, the somaticInteractions function was deployed.

Tumor Mutational Burden (TMB) refers to the total number of

non-synonymous mutations within the genome of tumor cells. We

downloaded the maf files for LUAD from the TCGA database, then

assessed the TMB levels for each patient. Subsequently, we applied a

logarithmic transformation to reduce data skewness and minimize

the impact of outliers on the analysis results. Finally, we compared

the differences in TMB between the high-risk and low-risk groups,

and calculated the correlation between the risk score and TMB.
2.8 Enrichment analysis

Our study commenced with the implementation of the ‘GSVA’

algorithm (23), aiming to identify Hallmarker pathways that were

predominantly enriched in the high-risk group compared to the
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low-risk group. Following this, we employed the ‘GSEA’ algorithm

(24) to distinguish and analyze pivotal Kyoto Encyclopedia of

Genes and Genomes Pathways (KEGG) (25) in both high and

low-risk groups. The ssGSEA algorithm (26) played a crucial role in

evaluating the correlation between enrichment scores, tumor

immunity cycle, and tumor-related pathways. It also proved

instrumental in measuring variances in immune cell types and

immune functions across the high and low-risk categories.
2.9 Assessment of the
tumor microenvironment

We procured data regarding immune cell infiltration from

seven different databases via the Timer2.0 platform, accessible at

(http://timer.comp-genomics.org/) (27).Subsequently, we

conducted an analysis to compare the levels of immune cell

infiltration between high and low-risk groups. Utilizing the

‘estimate’ R package (28), we calculated the stromal, immune, and

TumorPurity scores, along with the ESTIMATE scores for each

specimen in the TCGA-LUAD dataset.
2.10 Immunotherapy response evaluation

Differences in the expression of immune checkpoint genes and

Major Histocompatibility Complex (MHC) genes were compared

between the high and low-risk groups. Correlations between central

genes, risk scores, and these immune-related genes were also

calculated. Variations in Immunophenoscoring (IPS) between the

high and low-risk groups were assessed. Additionally, the potential

for immune escape in these groups was evaluated using the tumor

immune dysfunction and exclusion (TIDE) algorithm (29).
2.11 Cultivation of cell lines

In our laboratory setting, normal human lung epithelial cells

(BEAS-2B) and LUAD cell lines (A549, H1299, H1975, H1650)

were procured from the Cell Resource Center at the Shanghai

Institute for Biological Sciences. These cells were cultured in

RPMI-1640 medium, produced by Gibco BRL, USA,

supplemented with 10% fetal bovine serum (FBS) obtained from

Cell-Box, Hong Kong, and 1% penicillin-streptomycin solution,

supplied by Biosharp, China. Cultivation of these cells was carried

out in a controlled environment, maintained at 37°C with 5% CO2

and 95% humidity.
2.12 RNA extraction and reverse
transcription PCR analysis

Total RNA was isolated from the cell lines using the TRIzol

reagent (15596018, Thermo Fisher Scientific), adhering to the

instructions provided by the manufacturer. The PrimeScriptTM

RT kit (R232-01, Vazyme) was then utilized for synthesizing cDNA.
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This was followed by quantitative RT-PCR analysis, conducted

using the SYBR Green Master Mix (Q111-02, Vazyme), with

GAPDH mRNA serving as the normalization control. The

relative gene expression levels were determined employing the 2

−DDCt method. Primers used in this study were sourced from

Nanjing Sunbio Technology Co., Ltd. (Nanjing, China), detailed in

Supplementary Table 1.
2.13 Migration and invasion analysis via
transwell assays

Migration and invasion capacities were tested using 24-well

transwell inserts, with A549 and H1299 cells seeded at 1×105 cells in

the upper chamber. In the invasion assays, we prepared the

chambers by pre-coating them with matrigel from BD

Biosciences, USA. For migration assays, however, the chambers

were left uncoated. Following the migration or invasion process,

cells located on the lower side of the membrane were fixed and

subsequently stained using crystal violet sourced from

Solarbio, China.
2.14 Assessment of cellular proliferation
using the CCK-8 method

In this procedure, cells were plated in 96-well plates at a

concentration of 3×10³ cells per well. Following cell seeding, 10

mL of CCK-8 solution (A311-01, Vazyme) was added to each well.

The plates were then incubated in the dark at 37°C for 2 hours. The

proliferation of cells was determined by measuring absorbance at

450 nm with a spectrophotometer (A33978, Thermo Fisher

Scientific) at time points of 0, 24, 48, 72, and 96 hours.
2.15 Assessment of colony formation

In this part of the study, cells were seeded at a density of 1×10³

cells per well in 6-well plates, followed by a growth period of 14

days. After this incubation, cells were washed with PBS and fixed

with 4% paraformaldehyde for 15 minutes. The colonies were then

stained with Crystal Violet, provided by Solarbio, China.
2.16 Statistical methods

Bioinformatics data were analyzed using R (version 4.3.1), while

Graphpad and ImageJ were employed for experimental data.

Intergroup differences were evaluated using the T-test or one-way

ANOVA for normal distributions, and Wilcoxon or Kruskal-Wallis

tests for non-normal data. Survival was analyzed via Kaplan-Meier

curves and Log-rank tests. Spearman’s correlation assessed

relationships between datasets. Significance was set at p< 0.05,

with *P< 0.05, **P< 0.01, ***P< 0.001 indicating varying

significance levels.
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3 Results

3.1 Construction of a scRNA-seq Atlas
for LUAD

To gain valuable insights into the cellular composition of the

tumor microenvironment in LUAD, we performed scRNA-seq

analysis on 19 treatment-naïve LUAD patients. This included

collecting samples from primary lung tumors (tLung, n = 11),

distant normal lung tissues (nLung, n = 11), and lymph node

metastases (mLN, n = 7). We carefully addressed batch effects and

annotated canonical cell markers (detailed in the Methods section),

enabling us to classify a total of 107,751 cells into seven major cell

lineages: epithelial cells, stromal cells (including fibroblasts and

endothelial cells), and immune cells (T cells, B cells, myeloid cells,

and NK cells) (Figure 1A). Notably, the cellular composition

demonstrated consistency across different patients (Figure 1B),

further validating our analysis. As anticipated, these major cell

lineages exhibited the expression of specific canonical marker genes

(Figure 1C) and formed distinct clusters (Figure 1D), affirming the

accuracy of our lineage classification. In summary, our integration

of scRNA-seq data from 19 LUAD patients successfully led to the

construction of a comprehensive single-cell atlas of LUAD. This

atlas serves as a solid foundation for our subsequent analyses, which

aim to delve into the cellular composition and function of the

LUAD tumor microenvironment.
3.2 Analysis of macrophage profiles
in LUAD

In addition to T lymphocytes, the significance of myeloid cells as

crucial components of tumor-infiltrating cells and regulators of tumor

inflammation and angiogenesis has been emphasized in numerous

studies (30, 31). To gain insights into the subsets of myeloid cells in

LUAD, we categorized a total of 33,561myeloid cells into 31 sub-clusters

using the Louvain algorithm (resolution = 1.0) (Figure 2A). These sub-

clusters were further assigned to nine major subsets based on canonical

cell markers (Figure 2B). The major myeloid subsets identified include

macrophages (alveolar Mj, monocyte-derived Mj, and interstitial Mj
perivascular), monocytes, mast cells, and dendritic cells (DC1, DC2,

pDC, and migratory DCs). The expression of gene signatures specific to

each subset confirmed the accuracy of our cell annotation (Figure 2C).

These findings contribute to the characterization of the diverse myeloid

cell populations within the LUAD tumor microenvironment, providing

a foundation for further understanding their roles in tumor progression

and immunomodulation.

Subsequently, we examined the relative proportion and cell

numbers of these myeloid cell subsets across different tissues.

Interestingly, macrophages exhibited significant variations both in

proportion (Figure 2D) and cell numbers (Figure 2E) compared to

other cell lineages. To ensure the reliability and validity of our

analysis, we specifically focused on macrophages as a distinct

population within the total myeloid cell population, in order to

explore their unique properties and functions. By re-clustering the
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22,959 macrophages using UMAP (Figure 2F) analyses, we

identified three distinct macrophage subsets: alveolar Mj,
monocyte-derived Mj, and interstitial Mj perivascular. Each of

these subsets exhibited unique gene signatures (Figure 2G).

Furthermore, KEGG pathway analysis revealed that these tumor-

associated macrophages (TAMs) in LUAD primarily participate in

immune regulation, cell proliferation, and antigen processing and

presentation (Figure 2H). These findings are consistent with the

well-established role of macrophages in shaping the tumor

microenvironment and engaging in tumor immunity (32, 33). By

investigating the distinct subsets and functions of macrophages

within the LUAD tumor microenvironment, we gain a better

understanding of their contributions to tumor progression and
Frontiers in Immunology 06
immune responses. This knowledge holds potential for targeted

therapeutic strategies aimed at modulating macrophage-mediated

immune regulation in LUAD.
3.3 Analysis of monocytes, mast cells, and
dendritic cells in LUAD

To gain further insights into the properties and functions of

myeloid cells other than macrophages, we employed UMAP and

tSNEmethods to re-cluster the remaining 10,602 myeloid cells. This

analysis resulted in the identification of seven subsets, including

monocytes, mast cells, and four types of dendritic cells (DC1, DC2,
B

C

D

A

FIGURE 1

Comprehensive LUAD single-cell atlas. (A, B) UMAP plots of 107,751 cells from 19 patients, colored by major cell lineages and patients. (C) Violin
plots for expression of canonical marker genes in each major cell lineage. (D) UMAP plots of seven major cell lineages, colored by corresponding
canonical marker genes.
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pDC, and migratory DCs) (Figure 3A and Supplementary

Figure 1A). As expected, each subset displayed specific

enrichment of corresponding cell marker genes (Figures 3B, C,

Supplementary Figures 1B, C), providing strong evidence for the

accuracy of our cell type annotation. Next, we employed CellChat

analysis (19) to explore the intercellular communication network

among these myeloid cell subsets. Intriguingly, we observed

potential intercellular communication in the MHC-II signaling

pathway network among monocytes, DC1, DC2, pDC, and
Frontiers in Immunology 07
migratory DCs (Figure 3D). Specifically, DC1, DC2, and pDC

exhibited close connections within the MHC-II signaling pathway

(Figure 3E). This finding suggests possible interactions and shared

functionalities among these subsets, supported by their similar gene

expression patterns (Supplementary Figure 1D) and distribution

within LUAD tissues (Figures 2D, E). These results shed light on the

intricate interplay and communication networks existing among

myeloid cell subsets in the LUAD tumor microenvironment.

Understanding these interactions provides valuable insights into
B

C

D E

F G

H

A

FIGURE 2

Analysis of Macrophages in LUAD. (A, B) UMAP of 33,561 myeloid cells, indicating clusters and cell types. (C) Violin plots for top threeDEGs in nine
myeloid subsets. (D, E) Comparison of proportions and cell numbers in nine myeloid subsets across nLung, tLung, and mLN. (F) UMAP of 22,959
macrophages, categorized by cell types. (G) Dot plot of marker gene expression in three macrophage subsets. (H) KEGG pathway analysis results for
three macrophage subsets.
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the regulatory mechanisms and potential therapeutic targets

associated with myeloid cells in LUAD.

To validate the significance of activated MHC-II signaling in

LUAD, we examined the contributions of 19 curated ligand-

receptor pairs to the MHC-II signaling pathway network. As
Frontiers in Immunology 08
depicted in Figure 3F, the HLA-DRA-CD4 pair emerged as a

prominent contributor to this communication network,

underscoring the pivotal role of antigen presentation in activated

MHC-II signaling in LUAD. Moreover, our analysis predicted

pDCs to be the predominant cell type in the MHC-II signaling
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FIGURE 3

Characterizing monocytes, mast cells and dendritic cells in LUAD. (A) UMAP plot of 10,602 myeloid cells, including monocytes, mast cells and
dendritic cells. (B) Dot plot for expression of top3 DEGs in six myeloid cell subsets. (C) UMAP plots of six myeloid cell subsets, colored by
corresponding marker genes. (D) The inferred MHC-II signaling network by Cell-Chat. The edge width represents the communication probability. (E)
Heatmap of the communication probability among six myeloid cell subsets in MHC-II signaling pathway. (F) Relative contributions of 19 ligand-
receptor pairs to the overall communication network of MHC-II signaling pathway. (G) Significant ligand-receptor pairs that contribute to MHC-II
signaling among the mast cell, migratory DC, monocyte and pDC. (H) Violin plot for expression of canonical MHC-II signaling genes in six myeloid
cell subsets.
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pathway network (Figure 3G). Notably, pDCs exhibited high

expression of MHC-II signaling marker genes (Figure 3H),

aligning with their crucial function in tumor antigen presentation

during tumor immunity (19, 34). Furthermore, we have discovered

that these myeloid cells engage in intercellular communication via

the macrophage migration inhibitory factor (MIF) signaling

pathway (Supplementary Figures 1E, F). This observation suggests

a critical involvement of hypoxia in regulating the LUAD

microenvironment and influencing metastatic processes (35).

These findings collectively demonstrate that dendritic cells,

particularly pDCs, heavily rely on antigen processing and

presentation in the MHC-II signaling pathway to regulate LUAD

progression. This highlights the significance of antigen presentation

and the potential involvement of pDCs in shaping the tumor

microenvironment and immune responses in LUAD.
3.4 Profiling diverse CD4+ T cell states
in LUAD

To investigate the functions of CD4+ T cells in LUAD, we

categorized a total of 15,711 CD4+ T cells into five major subsets

based on marker gene expression (Figure 4A). Specifically, the

CD4_Th17_SLC2A3 subset displayed an enrichment of genes

related to T helper 17 (Th17) cells, such as SLC2A3, SFTPC, and

C1QA. The CD4_IGKC subset exhibited high expression of

immunoglobulin-related genes, including IGKC, IHA1, and IGLC2.

The CD4_Treg_CTLA4 subset demonstrated elevated expression of

inhibitory receptors like CTLA4, FOXP3, and LAYN, representing

CD4+ regulatory T cells (Tregs). The CD4_Naive_CCR7 subset

displayed higher expression of genes associated with naïve CD4+

cells, such as CCR7, SELL, and LEAF1. Lastly, the CD4_Pro_MKI67

subset showed an enrichment of proliferation markers, including

MKI67, TUBA1B, and IDH2, indicating the presence of proliferating

cells (Figure 4B). As expected, these subsets exhibited distinct gene

expression patterns (Figure 4G), which reflect their diverse functions

and regulatory roles within LUAD.

Subsequently, we conducted pairwise correlation analysis of

gene expression levels among the five CD4+ T cell subsets.

Interestingly, we observed a relatively higher correlation between

the CD4_Pro_MKI67 and CD4_Treg_CTLA4 subsets (Figure 4C),

which is consistent with their known immunosuppressive roles in

non-small cell lung cancer (36, 37). Furthermore, pseudotime

analysis of these CD4+ T cell subsets revealed a clear transition

trend from a naïve state to an exhausted state (Figures 4D, E),

indicating an ongoing process of immune exhaustion during the

progression of LUAD (16). Importantly, we found that ten

upregulated genes (Figure 5A) in the previously mentioned

CD8_Tex-LAYN subset, particularly MKI67, TK1, MAD2L1, and

TYMS, were also highly expressed in the CD4_Pro_MKI67 subset

(Figure 4F). This implies a close collaboration between exhausted

CD4+ and CD8+ T cells in promoting tumor immunosuppression

(38) Taken together, these findings indicate that CD4+ T cells can

differentiate into distinct states with specific gene expression

patterns, and they work in concert with CD8+ T cells to regulate

tumor progression in LUAD.
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3.5 Profiling diverse CD8+ T cell states
in LUAD

CD8+ T cells are widely recognized as crucial contributors to

anti-tumor immunity across different cancer types (13, 39, 40) and

have been closely linked to immunotherapy response (14, 41, 42). In

order to enhance our understanding of the CD8+ T cell

composition in LUAD, we utilized the Louvain algorithm in

Scanpy to classify a total of 15,092 CD8+ T cells into 16 sub-

clusters (Figure 5A, left panel). Subsequently, based on the

expression of marker genes, we further categorized these cells into

four major subsets (Figure 5A, right panel). In Figures 5B, C, we

displayed the expression of marker genes for each cell type.

Importantly, the proportions (Figure 5D) and cell numbers

(Figure 5E) of these four major CD8+ T cell subsets exhibited

variations across different tissues, aligning with the complex and

dynamic composition of T cells in LUAD progression and

metastasis. To gain a deeper understanding of the characteristics

of distinct CD8+ T cell subsets in LUAD, we employed the

partition-based graph abstraction (PAGA) algorithm to construct

a cell fate map and infer transitional trajectories of these subsets. As

illustrated in Figures 5F, G, each CD8+ T cell subset displayed a

unique transitional trajectory to the other subsets. Notably, the

CD8_Tem-GZMK subset was relatively closer to the CD8_Tex-

LAYN subset compared to the CD8_Tn-LEF1 and CD8_Trm-

KLRB1 subsets (Figures 5F, G), aligning with recent studies that

highlight the transition from effector memory T cells to exhausted T

cells during tumor progression. Interestingly, the CD8_Tn-LEF1

subset, representing the group of naïve T cells, was predicted to be

located at the initial position (Figures 5H), suggesting a shared

origin among these CD8+ T cell subsets in different states.

Furthermore, we utilized the Single-Cell rEgulatory Network

Inference and Clustering (SCENIC) (43) approach to analyze the

activities of transcription factors (TFs) in the different CD8+ T cell

subsets. Consistent with marker gene expression, these subsets also

demonstrated distinct patterns of TF activity (Figures 5I, J),

emphasizing the critical role of TFs in T cell differentiation.

Overall, these findings highlight the differentiation of CD8+ T

cells in LUAD patients, showcasing distinct patterns of gene

expression and TF activity. This diversity leads to a range of cell

states and functions during tumor progression and metastasis,

underscoring the complex dynamics of CD8+ T cell subsets in the

context of LUAD (44, 45).
3.6 Development of a risk assessment
model using CD8_Tex-LAYN signatures
in LUAD

Considering the significant enrichment of CD8_Tex-LAYN

(exhausted CD8+ T cells) in tLung and mLN (Figures 2D, E), our

next objective was to explore the potential of utilizing signatures within

exhausted CD8+ T cells to accurately assess the risk of LUAD patients

and develop appropriate treatment plans. To identify relevant signatures

for risk assessment, we conducted differential expression gene (DEG)
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analysis and identified 487 genes specifically upregulated in CD8_Tex-

LAYN (Figure 6A), which are likely associated with the progression of

CD8+ T cell exhaustion. To streamline the selection of signatures,

we employed Lasso Cox regression analysis, as previously reported

(46), resulting in the identification of 12 candidate genes

(Figure 6B, left) with lambda = 0.0155, indicating the lowest

partial likelihood deviance (Figure 3B, right). Subsequently, using

multivariate Cox regression with a stepwise regression method,

we further narrowed down the selection to six final risk

signatures: polypeptide N-acetylgalactosaminyltransferase 2
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(GALNT2), methylenetetrahydrofolate dehydrogenase, cyclohydrolase,

and formyltetrahydrofolate synthetase 1 (MTHFD1), family with

sequence similarity 207 member A (FAM207A), keratin 81 (KRT81),

ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3), and

IKAROS family zinc finger 3 (IKZF3). These six risk signatures were

incorporated into a formula for classifying LUAD patients, as follows:

RiskScore = 0.454 * GALNT2 + 0.339 * MTHFD1 + 0.288 * FAM207A

+ 0.071 * KRT81 - 0.276 * ORMDL3 - 0.323 * IKZF3 (Figure 6C).

To assess the accuracy of our risk assessmentmodel, we applied the

RiskScore calculation to a cohort of LUAD bulk RNA-seq samples
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FIGURE 4

Inferred CD4+ T cell states in LUAD patients. (A) UMAP plot of 15,711 CD4+ T cells, colored by cell types. (B) Violin plot for expression of canonical
cell-type marker genes in five major CD4+ T cell subsets. (C) Correlations of gene expression among five major CD4+ T cell subsets. (D, E)
Pseudotime analysis for profiling trajectory of differentiating CD4+ T cells, colored by cell types and pseudotime. (F) Violin plots for expression of ten
CD8_Tex-LAYN signatures in five major CD4+ T cell subsets. (G) Heatmap of top3 DEGs in five major CD4+ T cell subsets.
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obtained from TCGA database. After Z-mean normalization, the

samples were divided into two distinct groups: high-risk (n = 234)

and low-risk (n = 266). Importantly, the high-risk group exhibited

significantly poorer survival outcomes (p< 0.0001) (Figure 6D, left).

Moreover, the model demonstrated promising predictive performance,

with AUC values of 0.67, 0.70, and 0.67 for 1-year, 3-year, and 5-year

survival, respectively (Figure 6D, right). To further validate the

robustness of our model, we subjected it to testing using five

additional GEO datasets (Figures 6E-I). The consistent results across

these datasets further confirm the reliability and effectiveness of our
Frontiers in Immunology 11
approach. Overall, by identifying signatures in CD8_Tex-LAYN cells,

we have successfully established an accurate and reliable model for the

risk assessment of LUAD patients, highlighting the strong association

between exhausted CD8+ T cells and poor prognosis in LUAD.
3.7 Nomogram development

We assessed the differences in clinical characteristics between

patients stratified by different risk levels, finding that those in the
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FIGURE 5

CD8+ T cells mediate immune responses during LUAD progression. (A) UMAP plot of 15,092 CD8+ T cells, colored by clusters (left) and cell types
(right). (B, C) Matrixplot and violin plot for expression of canonical cell-type marker genes in four major CD8+ T cell subsets. (D, E) Proportions and
cell numbers of four major CD8+ T cell subsets across nLung, tLung and mLN tissues. (F, G) PAGA graph of four major CD8+ T cell subsets at cell-
type and single-cell resolution. (H) Pseudotime analysis for profiling trajectory of differentiating CD8+ T cells. (I) Regulon specificity score of curated
transcription factors in four major CD8+ T cell subsets. The top 10 transcription factors with the highest scores were colored in red. (J) Activities of
immune-relevant transcription factors in our major CD8+ T cell subsets.
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low-risk group were younger, with a higher proportion of females,

and typically presented with earlier pathological stages (Figure 7A).

Both univariate and multivariate Cox analyses indicated that

pathological stage and risk score are independent risk factors for

LUAD prognosis (Figures 7B, C). Subsequently, we constructed a

nomogram for predicting the prognosis of LUAD (Figure 7D).

Calibration and decision curves demonstrated the robustness and

accuracy of the nomogram (Figures 7E, F). The ROC curve

highlighted the superior predictive performance of the nomogram

over other features(Figure 7G).
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3.8 Mutation analysis

Through an extensive mutation analysis of the TCGA-LUAD

dataset, we detailed the mutational profile of lung adenocarcinoma,

identifying the 20 most commonly mutated genes and correlating

them with clinical data across both high and low-risk patient groups

(Figure 8A). As shown in Figure 8B, in TCGA-LUAD patients, the

most common Variant Classification was Missense Mutation, the

prevalent Variant Type was SNP, and the most frequent SNV Class

was C>A. Subsequent co-mutation analysis did not reveal significant
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FIGURE 6

Construction of the risk assessment model with CD8_Tex-LAYN signatures. (A) Volcano plot for expression of differentially expressed genes
between CD8_Tn-LEF1 and CD8_Tex-LAYN cells. The six risk genes used to construct model were highlighted. (B) Plots of each independent
variable (left) and coefficient distributions for parameter selection (right). (C) The multivariate Cox coefficients for six risk genes. (D-I) Kaplan–Meier
curves (left in each panel) and ROC curves (right in each panel) for TCGA and GEO LUAD cohorts.
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co-mutations between model genes and the most commonly mutated

genes (Figure 8C). The high-risk group exhibited a higher TMB

(Figure 8D), and there was a significant positive correlation between

risk score and TMB (Figure 8E). Theoretically, tumors with a higher

TMB generate a greater number of neoantigens, which may be

recognized as foreign substances by the patient’s immune system,

thereby triggering an attack on the tumor. Survival analysis of

patients with high and low TMB demonstrated better prognosis in
Frontiers in Immunology 13
the high TMB group (Figure 8F). When combining TMB with risk

score for survival analysis, patients in the low-TMB and high-risk

category showed the poorest prognosis, while those in the high-TMB

and low-risk category had a better prognosis (Figure 8G). In

summary, these findings highlight the intricate relationship

between genetic mutations, TMB, and patient prognosis in LUAD,

underscoring the importance of comprehensive genomic profiling in

risk assessment and treatment stratification.
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FIGURE 7

Analysis of Clinical Characteristics and Risk Evaluation in the TCGA-LUAD Dataset. (A) Analysis of the distribution of different clinical attributes across
various risk groups. (B) Univariate Cox regression results indicating the relationship of clinical features with survival outcomes. (C) Evaluation of the
independent prognostic significance of clinical factors using multivariate Cox regression. (D) A nomogram was developed by integrating clinical
characteristics with the risk score. (E) Calibration plot for checking the accuracy of the prognostic model. (F) Decision curve analysis to determine
the clinical utility of the prognostic model. (G) ROC curve analysis for assessing the predictive accuracy of the model over different time points.
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3.9 Enrichment analysis

Our study comprehensively analyzed the relationship between

risk scores, tumor-related pathways, and the tumor immune cycle.

Findings revealed that risk scores were significantly positively

correlated with most tumor-related pathways, yet exhibited a

negative correlation with the majority of the tumor immune cycle

stages (Supplementary Figure 2A). Further Gene Set Variation

Analysis (GSVA) enrichment analysis indicated that high-risk

groups were primari ly associated with pathways l ike
Frontiers in Immunology 14
MYC_TARGETS_V2, GLYCOLYSIS, and MYC_TARGETS_V1

(Supplementary Figure 2B). GSEA conducted separately for high

and low-risk groups showed significant enrichment of the high-risk

group in pathways such as KEGG_CELL_CYCLE and

DNA_REPLICATION, whereas the low-risk group was mainly

en r i ched in KEGG_ALLOGRAFT_REJECTION and

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_ICA

pathways (Supplementary Figures 2C, D). In summary, these

insights reveal a close link between risk scores and tumor

biological characteristics, highlighting molecular pathway activity
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FIGURE 8

Mutation landscape analysis in LUAD. (A) Analysis of the mutation spectrum in high and low risk categories, highlighting the top 20 genes with the
highest mutation rates in the TCGA-LUAD dataset. (B) Examination of mutation details in patients from the TCGA-LUAD study. (C) Interaction
patterns between model genes and those frequently mutated. (D) Comparative assessment of Tumor Mutation Burden (TMB) across varying risk
groups. (E) Investigation of the relationship between the risk score and TMB. (F) Kaplan-Meier curves depicting survival outcomes for groups with
high and low TMB. (G) Combined multivariate Kaplan-Meier survival analysis using both TMB and risk score.
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differences in patients with varying risk levels and providing an

impo r t a n t p e r s p e c t i v e f o r u n d e r s t a n d i n g t umo r

development mechanisms.
3.10 Assessment of the
tumor microenvironment

Utilizing seven algorithms - TIMER, CIBERSORT,

CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and

EPIC, we thoroughly evaluated the differences in immune cell

infi l t rat ion levels between high and low-risk groups

(Supplementary Figure 3A). Subsequent radar charts highlighted

the disparities in immune-related functions and immune cell

infiltration (Supplementary Figures 3B, C). Overall, the low-risk

group exhibited more active immune-related functions and higher

levels of immune infiltration. Additionally, using the ‘estimate’ R

package, we assessed the differences in tumor purity between the

high and low-risk groups. The results indicated that the high-risk

group had higher tumor purity, and a significant positive

correlation was observed between risk scores and tumor purity

(Supplementary Figure 3D).
3.11 Immunotherapy response evaluation

In light of the substantial advancements in immunotherapy for

LUAD, we aimed to assess the differential responsiveness to

immunotherapy between high and low-risk groups through a

series of analyses. Initially, patients in the low-risk group

exhibited higher expression levels of immune checkpoint-related

genes (Figure 9A). There was a tendency for the risk score to be

inversely correlated with these genes, interestingly, IKZF3 showed a

significant positive correlation with them (Figure 9B). Similarly, the

expression levels of MHC-related genes were significantly higher in

the low-risk group compared to the high-risk group (Figure 9C),

with an inverse correlation observed between risk score and MHC-

related genes (Figure 9D). The detailed list of the genes mentioned

can be found in Supplementary Table 2. Based on the TIDE

database, patients in the high-risk group were found to be more

prone to immune escape (Figure 9E). Subsequent analysis of

Immunophenoscoring (IPS) differences revealed that patients in

the low-risk group, especially those positive for CTLA4, are more

likely to benefit from immunotherapy (Figure 9F). Overall, our

multi-faceted evaluation of immunotherapy sensitivity across

different groups demonstrated that the low-risk group not only

expresses higher levels of immune checkpoint and MHC-related

genes but is also more likely to benefit from immunotherapy,

particularly in CTLA4 positive patients.
3.12 Experimental validation in vitro

Given the reliance of our analysis on publicly available

databases, we undertook a series of fundamental experiments to

validate the bioinformatics findings. Initially, we collected tumor
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and adjacent normal tissue samples from eight LUAD patients who

underwent surgical resection at Tianjin Chest Hospital. RT-PCR

was employed to validate the expression of model genes

(Figures 10A-F). Our results indicated significant overexpression

of GALNT2, MTHFD1, FAM207A, KRT81, and IKZF3 in tumor

tissues, consistent with our bioinformatics analysis. No expression

difference was noted for ORMDL3 between tumor and

adjacent tissues.

With the highest risk coefficient in the risk model (0.454),

GALNT2 was further investigated for its role in LUAD using

various cellular assays. Expression levels of GALNT2 were first

examined across normal pulmonary epithelial (BEAS-2B) and 4

LUAD cell lines (A549, H1299, H1975, H1299) (Figure 11A),

revealing a significant upregulation in LUAD cells, particularly in

A549 and H1299. Post-transfection RT-PCR confirmed the

knockdown efficiency (Figures 11B, C). Transwell assays

demonstrated that GALNT2 knockdown notably inhibited the

migratory and proliferative abilities of LUAD cells (Figure 11D).

Colony formation assays showed a reduction in colony numbers

post GALNT2 knockdown (Figure 11E). Finally, CCK8 assays

confirmed that knocking down GALNT2 significantly suppressed

the proliferation of LUAD cell lines (Figures 11F–G). In summary,

our experimental validation reinforces the bioinformatics

predictions by confirming the overexpression of several risk

genes, including GALNT2, in LUAD tissues compared to adjacent

non-tumor tissues. The significant inhibitory effects on migration,

proliferation, and colony formation in LUAD cell lines upon

GALNT2 knockdown highlight its potential role as a

therapeutic target.
4 Discussion

This study aimed to construct a comprehensive single-cell atlas

of LUAD through scRNA-seq of 29 samples from 19 treatment-

naïve LUAD patients. The atlas detailed cellular compositions and

functionalities within the LUAD microenvironment, particularly

focusing on epithelial cells, stromal cells (including fibroblasts and

endothelial cells), and a variety of immune cells (comprising T cells,

B cells, myeloid cells, and NK cells). By identifying seven major cell

lineages and delving into the immune cells, we elucidated their

collaborative roles in tumor progression and immune response

regulation within TME. Furthermore, leveraging marker genes

associated with exhausted CD8+ T cells, we established a robust

prognostic model for stratifying LUAD patient risk. This model

facilitated a systematic assessment of differences in prognosis, TME,

mutation landscape, and immune therapy responses across varied

risk groups. Our findings not only deepen the understanding of

tumor immunology in LUAD but also provide new directions for

future therapeutic strategies and improvement of patient prognosis.

In this study, we elucidated the integral roles of DC1, DC2, and

pDC within the MHC-II signaling pathway in the context of the

LUAD microenvironment. It was observed that MHC-II,

predominantly expressed on antigen-presenting cells, is also

present in cancer cells, potentially correlating with improved

immunotherapy outcomes (47). Evidence from recent studies
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suggests a positive correlation between MHC-II expression in

tumor cells and the effectiveness of immunotherapeutic

interventions, underscoring its pivotal role in tumor immunology

(48). Tumor cells expressing MHC-II potentially secrete

immunostimulatory exosomes, engage in direct interactions with

CD4+ T cells to influence their polarization and activation, or

secrete antigens that are endocytosed and presented by professional

antigen-presenting cells (pAPCs). These mechanisms collectively

contribute to modulating the immune landscape within the tumor

microenvironment. Adjusting MHC-II expression in melanoma

may enhance responsiveness to immunotherapies (49).

Furthermore, our investigation revealed dynamic interactions

within the Macrophage Migration Inhibitory Factor (MIF)

signaling pathway among myeloid cell subtypes, with a notable

emphasis on the critical function of pDCs. The MIF pathway is

essential in orchestrating the immune responses within the tumor

milieu, especially in modulating cellular interactions and immune

cell activity. Overexpression of MIF in various cancer types is

associated with increased tumor aggressiveness and adverse

prognostic outcomes (50). This study also highlights the role of
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MIF in cell survival via Akt pathway activation and the involvement

of CSN5/JAB1 in the regulation of autocrine MIF activity (51).

Our scRNA-seq study revealed a dynamic shift in CD8+ T cells

from a naïve to an exhausted phenotype as LUAD progresses,

mirroring recent discoveries in other cancers such as breast and

colorectal (40, 52). Based on the marker genes of exhausted CD8+ T

cells, we constructed a risk model composed of 6 genes, namely

GALNT2, MTHFD1, FAM207A, KRT81, ORMDL3, IKZF3. The

function of GALNT2 and a series of basic experimental

validations will be discussed in the following sections. Next, we

discuss the potential roles of the remaining five model genes in the

progression of LUAD. MTHFD1 encodes a protein that plays a

critical role in the folate metabolic pathway, which is essential for

DNA synthesis, repair, and methylation (53). Alterations in folate

metabolism can contribute to carcinogenesis by affecting DNA

methylation patterns and thus gene expression (54). In the

context of LUAD, MTHFD1 could influence tumor progression

through effects on DNA synthesis and methylation, potentially

affecting cell proliferation and survival (55). Given its

classification as a risk signature gene, FAM207A may be involved
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FIGURE 9

Prediction of Immunotherapy Efficacy. (A) Differences in immune checkpoint gene expression between high and low-risk groups. (B) Correlations
between immune checkpoint gene expression, risk scores, and Hub genes. (C) Expression differences of major histocompatibility complex (MHC)
genes between risk groups. (D) Correlations of MHC-related genes and immune checkpoint genes with risk scores and Hub genes. (E) Differences in
TIDE scores across the high and low-risk categories. (F) Comparative Immune Predictive Scores (IPS) between high and low-risk groups. *P < 0.05,
**P < 0.01, ***P < 0.001.
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in processes that promote tumor growth or metastasis, possibly

through affecting cell adhesion, migration, or communication

within the TME (56). KRT81, as a member of the keratin family,

is involved in the structural integrity of epithelial cells (57). Keratins

are often implicated in cancer through their roles in epithelial cell

stability, migration, and invasion (58). KRT81 could contribute to

LUAD pathogenesis by affecting tumor cell mechanical properties,

facilitating invasion and metastasis (58). ORMDL3 is involved in

sphingolipid metabolism, which has been linked to various cellular

processes important in cancer, including cell growth, apoptosis, and
Frontiers in Immunology 17
response to therapy (59). ORMDL3’s role in modulating

sphingolipid metabolism could influence the survival and

proliferation of LUAD cells, as well as their sensitivity to

chemotherapeutic agents (60). IKZF3, as a member of the

IKAROS family of zinc-finger transcription factors, plays a role

in lymphocyte differentiation and function (61). Its involvement

in LUAD could be related to immune evasion mechanisms,

where altered expression of IKZF3 affects the immune

microenvironment’s ability to recognize and eliminate tumor

cells. Leveraging these signatures, a Cox regression model was
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FIGURE 10

PCR Validation of Gene Expression. Expression of genes GALNT2 (A), MTHFD1 (B), FAM207A (C), KRT81 (D), ORMDL3 (E), and IKZF3 (F) in tumor and
normal tissue samples. Left panels: Distribution of expression in the TCGA database. Middle panels: Expression in tumor vs. normal tissue from
Tianjin Chest Hospital. Right panels: Paired comparison between individual tumor and adjacent normal tissues. *P < 0.05, **P < 0.01, ***P < 0.001.
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formulated, demonstrating substantial predictive accuracy and

consistency, corroborated by data from the TCGA and six

additional GEO cohorts. Our findings emphasize that patients

categorized in the high-risk group, based on these gene

signatures, showed significantly worse outcomes, underscoring the

critical role of these genes in the advancement of LUAD. In

advancing our research, we have integrated risk scores with

clinical features to construct a novel nomogram. The diagnostic

efficacy of this nomogram was superior compared to other clinical

characteristics, as evidenced by its ROC curve analysis. Mutation

analysis revealed a higher mutation frequency in the high-risk

group. Furthermore, patients with high TMB exhibited markedly

better survival outcomes compared to those with low TMB. Kaplan-

Meier analysis for various factors indicated that patients in the high-

TMB and low-risk category had a more favorable prognosis. This

comprehensive approach, combining genetic risk factors with

clinical parameters, offers a more refined and predictive model for

patient outcomes in LUAD, potentially guiding more personalized

therapeutic strategies.
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Through enrichment analysis, we established a link between

risk scores and tumor-related pathways in LUAD. This revealed a

positive correlation with tumor-promoting pathways and a negative

one with tumor immune cycle stages, highlighting the complex

interplay between genetic risk and tumor environment. Distinct

molecular pathways were associated with high-risk (cell cycle and

DNA replication) and low-risk (immune-related) groups,

suggesting different tumor progression mechanisms. Additionally,

higher tumor homogeneity in high-risk groups, potentially

influencing invasiveness, was noted, with low-risk groups

showing greater potential for immunotherapy response,

particularly in CTLA4 positive cases. These findings are

crucial for understanding LUAD and developing personalized,

immunotherapy-focused treatment strategies.

Our study then shifted its focus to GALNT2, which emerged as

the gene with the highest risk score. Historically identified as a

member of the glycosyltransferase family, GALNT2 was found to

modulate adipogenesis and insulin signaling in adipocytes,

impacting metabolic processes associated with obesity and
B C

D

E

F

G

A

FIGURE 11

Experimental Validation In Vitro. (A) RT-PCR validation of GALNT2 expression across five cell lines. Post-transfection (48 hours), RT-PCR was utilized
to confirm GALNT2 RNA expression levels in (B) A549 and (C) H1299 cell lines. (D) Transwell assays were conducted to evaluate the impact of
GALNT2 knockdown on the migratory and invasive capabilities of A549 and H1299 cells. (E) Colony formation assays were performed to assess the
proliferation potential of A549 and H1299 cells post GALNT2 knockdown. CCK-8 assays detected the effects of GALNT2 knockdown on cell
proliferation abilities in (F) A549 and (G) H1299 cell lines. *P < 0.05, **P < 0.01, ***P < 0.001.
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diabetes (62). Its importance also extends to tumor development

and progression, emphasizing its role in both metabolic and

oncological pathways (63). Elevated GALNT2 levels are linked to

unfavorable outcomes in patients with glioblastoma multiforme

(GBM). In a functional context, inhibiting GALNT2 disrupts the

growth, self-renewal, and aggressive behavior of glioma stem-like

cells, primarily by downregulating CD44 expression (64). GALNT2

has been shown to contribute to the enhanced aggressiveness of

colorectal cancer cells, doing so in part by modulating the AXL

pathway (65). In this research, RT-PCR analysis revealed a marked

upregulation of GALNT2 in LUAD. Subsequent cellular assays

linked GALNT2 with enhanced proliferation and migration in

LUAD cells, indicating its potential as a viable target for LUAD

treatment strategies.

Our focus was primarily on primary lung tumors and lymph

node metastasis in LUAD, without delving into the diverse clinical

stages of the disease. More research is needed to explore LUAD’s

progression at various stages. Although we’ve pinpointed critical

genes and pathways related to LUAD, further external validation

with functional experiments is required for confirmation. Despite

these limitations, our study significantly aids in understanding

LUAD’s microenvironment and provides a solid risk assessment

model. Identifying risk genes linked to LUAD could lead to novel

treatments. Targeting these genes and pathways may enhance

treatment outcomes for LUAD patients, and we anticipate that

our findings will be valuable for personalized treatment decisions,

thereby improving LUAD’s clinical management. For hereditary

tumors or high-risk populations, based on our predictive model, we

can assess the risk of developing LUAD, thereby enabling early

screening and monitoring of high-risk groups. Additionally, we

found that the low-risk group is more likely to benefit from

immunotherapy, which can help determine the best combination

and sequence of treatment drugs to maximize efficacy and prolong

survival. At the same time, by avoiding ineffective treatment plans,

personalized treatment plans can help reduce the waste of medical

resources, thereby reducing treatment costs and improving the

efficiency and quality of medical services.
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