
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Monica Neagu,
Victor Babes National Institute of Pathology
(INCDVB), Romania

REVIEWED BY

Liyan Cui,
Peking University Third Hospital, China
Hai Fang,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Xiaozhou Liu

commandlxz@163.com

Jun Liu

13776698080@139.com

†These authors have contributed equally to
this work

RECEIVED 07 January 2024
ACCEPTED 05 March 2024

PUBLISHED 19 March 2024

CITATION

Zhao W, Fang P, Lai C, Xu X, Wang Y, Liu H,
Jiang H, Liu X and Liu J (2024) Proteome-
wide Mendelian randomization identifies
therapeutic targets for ankylosing spondylitis.
Front. Immunol. 15:1366736.
doi: 10.3389/fimmu.2024.1366736

COPYRIGHT

© 2024 Zhao, Fang, Lai, Xu, Wang, Liu, Jiang,
Liu and Liu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 19 March 2024

DOI 10.3389/fimmu.2024.1366736
Proteome-wide Mendelian
randomization identifies
therapeutic targets for
ankylosing spondylitis
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Background: Ankylosing Spondylitis (AS) is a chronic inflammatory disorder

which can lead to considerable pain and disability. Mendelian randomization

(MR) has been extensively applied for repurposing licensed drugs and uncovering

new therapeutic targets. Our objective is to pinpoint innovative therapeutic

protein targets for AS and assess the potential adverse effects of

druggable proteins.

Methods: We conducted a comprehensive proteome-wide MR study to assess

the causal relationships between plasma proteins and the risk of AS. The plasma

proteins were sourced from the UK Biobank Pharma Proteomics Project (UKB-

PPP) database, encompassing GWAS data for 2,940 plasma proteins. Additionally,

GWAS data for AS were extracted from the R9 version of the Finnish database,

including 2,860 patients and 270,964 controls. The colocalization analysis was

executed to identify shared causal variants between plasma proteins and AS.

Finally, we examined the potential adverse effects of druggable proteins for AS

therapy by conducting a phenome-wide association study (PheWAS) utilizing the

extensive Finnish database in version R9, encompassing 2,272 phenotypes

categorized into 46 groups.

Results: The findings revealed a positive genetic association between the

predicted plasma levels of six proteins and an elevated risk of AS, while two

proteins exhibited an inverse association with AS risk (Pfdr < 0.05). Among these

eight plasma proteins, colocalization analysis identified AIF1, TNF, FKBPL, AGER,

ALDH5A1, and ACOT13 as shared variation with AS(PPH3+PPH4>0.8), suggesting

that they represent potential direct targets for AS intervention. Further

phenotype-wide association studies have shown some potential side effects of

these six targets (Pfdr < 0.05).
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Conclusion: Our investigation examined the causal connections between six

plasma proteins and AS, providing a comprehensive understanding of potential

therapeutic targets.
KEYWORDS

plasma proteins, ankylosing spondylitis, Mendelian randomization, phenome-wide
association study, drug target
1 Introduction

Ankylosing Spondylitis (AS) is a chronic inflammatory

autoimmune disease that primarily affects the spine, sacroiliac

joints and their adjacent soft tissues (1). In the progression of the

disease, it can lead to fibrosis and calcification, ultimately leading to

ankylosis of the spine and joints (2). AS has a prevalence ranging

from 0.2% to 0.5% and is most commonly observed in young males,

with a male-to-female ratio of 3:1 (3). Current treatments, primarily

non-steroidal anti-inflammatory drugs (NSAIDs) and biologics like

TNF inhibitors, mainly focus on symptommanagement and are not

universally effective for all patients (4, 5). Furthermore, these

treatments can have serious side effects and do not halt disease

progression or address the underlying causes of AS (6). Therefore, it

is crucial to seek more effective strategies that not only alleviate

symptoms but also target the underlying pathophysiology of AS,

aiming to prevent progression, reduce complications, and improve

the quality of life for affected individuals.

Recently, Mendelian randomization (MR) analysis has become

a prevalent tool for repurposing licensed drugs and uncovering new

therapeutic targets (7, 8). Genome-wide association studies

(GWAS) have identified specific single nucleotide polymorphisms

(SNPs) on chromosomes that regulate the expression of proteins.

These SNPs are proportional to the quantitative traits of protein

abundance and are also referred to as protein quantitative trait loci

(pQTL) (9). MR uses these PQTL to act as instrumental variables to

explore potential causal associations between exposure and

outcome to screen for drug targets and biomarkers (10, 11).

Compared to observational studies, MR helps alleviate the impact

of confounding factors, thereby enhancing the reliable assessment

of causal relationships (12). Additionally, with the application of the

phenome-wide association study (PheWAS), it is possible to predict

the adverse reactions associated with these targets (13).

Plasma proteins play crucial roles in diverse biological processes

such as signaling, transportation, growth, repair, and immune

defense. Their dysregulation is common in various diseases,

making them significant targets for drug development (14).

Hence, we conducted an extensive proteome-wide MR

investigation to pinpoint potential therapeutic targets for AS.

Initially, a two-sample MR analysis was employed to gauge the

causal impacts of plasma proteins on AS. Subsequently, we

conducted colocalization analyses to validate the reliability of the
02
findings. Lastly, we evaluated the potential adverse effects associated

with the identified druggable proteins for AS treatment

through PheWAS.
2 Methods

2.1 Ethical approval and study design

In this research, we utilized extensive GWAS summary data

from original studies where all participants provided informed

consent. Given our reliance solely on aggregate statistical data, no

further ethical clearance was needed. The study’s comprehensive

design is depicted in Figure 1.
2.2 Plasma pQTLs

Plasma pQTLs, extracted from the UK Biobank-PPP database,

originated from the plasma proteomic profiles of 54,219 UK

Biobank participants (https://www.synapse.org/#!Synapse:

syn51365303). A thorough mapping of pQTLs was conducted for

2,940 proteins (15). pQTL’s genomic position in relation to a

specific protein is often in close proximity to the corresponding

gene. Practically speaking, a pQTL near its cognate gene is referred

to as a “cis-pQTL,” under the assumption that the pQTL exerts its

influence through the cognate gene. Conversely, if a pQTL is

situated far from the cognate gene (or on a different

chromosome), it is termed a “trans-pQTL,” with the assumption

that it operates through an intermediate gene (9). Various studies

have employed distinct distance cutoffs to distinguish cis-pQTLs

from intrachromosomal trans-pQTLs, with common thresholds

being 500 kb or 1,000 kb (16, 17). In the proteome-wide MR

study focused on drug targets, we opted for pQTLs as instrumental

variables, applying specific selection criteria. These criteria are

outlined as follows:1.The SNP within a vicinity of ±1 Mb around

the gene region (cis-acting pQTLs); 2.A genome-wide significant

threshold of P<5×10-8 to identify highly correlated SNPs with

plasma proteins; 3. To guarantee the inclusion of independent

SNPs and mitigate the influence of linkage disequilibrium (LD)

on the outcomes, we set a threshold of 0.001 for the linkage

disequilibrium parameter (r2) and a genetic distance of 10,000 kb;
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4. F-value greater than 10 to exclude weak instrumental variable

bias (18, 19).
2.3 GWAS statistics of AS

AS genetic association research data is sourced from the R9 version

of the Finnish database(https://r9.finngen.fi/). The diagnosis of this

condition is determined based on the ICD-10 (International

Classification of Diseases, 10th edition) code M45, as well as the

codes 7200 from ICD-9 (9th edition) and 7124 from ICD-8 (8th

edition). The dataset comprises information from 2,860 patients and

270,964 controls.
2.4 MR analysis

In this study, we conducted a two-sample MR analysis with

plasma proteins as the exposure and AS as the outcome. The

selection criteria for pQTLs remained consistent with the

standards outlined earlier. For the MR analysis, we utilized the R

package “TwoSampleMR” V.0.5.6. When only one SNP was

available for a particular protein, we applied the Wald ratio

method. Conversely, if there were two or more SNPs available, we

employed the inverse variance-weighted (IVW) method (20).

Considering our repetitive calculations, we employed the False

Discovery Rate (FDR) method for P-value correction. A Pfdr value

below 0.05 was considered statistically significant.
2.5 Colocalization analysis

Colocalization analysis aims to confirm the presence of shared

causal genetic variants between the exposure and outcome,
Frontiers in Immunology 03
providing further validation of the MR results. For proteins with

positive MR results, we conducted colocalization analysis,

examining SNPs within ±1MB range upstream and downstream

of the genes corresponding to these proteins (cis-pQTLs), and their

colocalization with AS (21). The colocalization analysis involves five

hypotheses: H0 indicates that the selected SNP within the locus is

unrelated to both protein A and disease B; H1 suggests that the SNP

within the selected locus is associated with protein A but not with

disease B; H2 implies that the SNP within the selected locus is

related to disease B but not to protein A; H3 states that the SNP

within the selected locus is associated with either protein A or

disease B, but the two are independent SNPs; H4 signifies that the

SNP within the selected locus is concurrently associated with both

protein A and disease B, and is a shared SNP. Due to limited power

in the co-localization analysis, we focused our examination on genes

with a combined posterior probability of association (PPH3+PPH4)

equal to or greater than 0.8 (22).
2.6 Phenome-wide association study

PheWAS, also known as reverse GWAS, is a method utilized

to explore associations between SNPs or phenotypes and a wide

array of phenotypes spanning the entire phenome (23, 24).

This approach is particularly valuable for investigating potential

side effects related to drug targets (22, 25). In this study, the

exposure was derived from plasma proteins exhibiting positive

MR results, and the screening criteria for instrumental variables

remained consistent with those described previously. The

outcome involved obtaining phenotypic data from the Finnish

database in version R9, encompassing 2272 phenotypes

categorized into 46 groups. This extensive dataset was employed

for phenome-wide MR analysis. A Pfdr value below 0.05 was

considered statistically significant.
FIGURE 1

Flowchart of the study design.
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3 Results

3.1 Plasma proteins related to AS

Upon strict adherence to the instrumental variables screening

criteria in this study, eventually a total of 1908 plasma proteins were

included in the MR analysis. Relevant SNP information can be

found in Supplementary 1. It is worth noting that, among the subset

of 1908 plasma proteins, the MR analysis, based on IVW or Wald

ratio results (Pfdr<0.05), revealed positive causal associations with

AS for six plasma proteins—TNF(tumor necrosis factor), FKBPL

(FK506-binding protein-like),AGER(advanced glycation end

product-specific receptor),NFKB1(nuclear factor NF-kappa-B

p105 subunit), ALDH5A1(succinic semialdehyde dehydrogenase,

mitochondrial),and GPIHBP1 (Glycosylphosphatidy inositol-

anchored high-density lipoprotein-binding protein 1). The odds

ratios and 95% confidence intervals for these associations are 23.893

(95%CI:13.472-42.374), 73.094 (95%CI:73.094-246.038), 14.020

(95%CI:6.203-31.688), 2.366 (95%CI: 1.494-3.745),2.084(95%

CI:1.461-2.972) and 1.454(95%CI:1.208-1.750) respectively. In

contrast, two plasma proteins—AIF1(allograft inflammatory

factor 1) and ACOT13 (acyl-CoA thioesterase 13)—exhibited

negative causal associations with AS. The odds ratios and 95%

confidence intervals for these associations are 0.067(95% CI:0.041-

0.107) and 0.207(95% CI:0.087-0.499). For comprehensive details,

please refer to Figures 2, 3 and Supplementary 2.
3.2 Sensitivity analysis for plasma proteins
associated with AS

For these 8 plasma proteins, we conducted gene colocalization

analysis within a range of ±1MB upstream and downstream of their

respective genes to explore potential associations with AS. The

results indicate that AIF1, TNF, FKBPL, AGER, ALDH5A and

ACOT13 may share a causal variant in this region (PPH3

+PPH4>0.8), while GPIHBP1 and NFKB1 may not share a causal
Frontiers in Immunology 04
variant with AS in this region (PPH3+PPH4<0.8). For detailed

information, please refer to Figure 4 and Supplementary 3. This

suggests that these 6 plasma proteins may serve as potential targets

for treating AS.
3.3 phenome-wide associations analysis for
6 plasma proteins linked to AS.

To evaluate the potential beneficial or deleterious effects of the 6

plasmaproteinsassociatedwithASonotherphenotypes,weconducteda

phenome-wide association analysis, screening 2279 phenotypes across

46 categories from the Finnish database (version R9).We observed

significant causal associations between AIF1 and 36 phenotypes across

18 categories (Pfdr<0.05), TNF and 40 phenotypes across 16 categories

(Pfdr<0.05), FKBPL and 73 phenotypes across 18 categories (Pfdr<0.05),

AGER and 16 phenotypes across 11 categories (Pfdr<0.05), ALDH5A1

and 3 phenotypes across 3 categories (Pfdr<0.05), and ACOT13 and 6

phenotypes across 4 categories (Pfdr<0.05).For detailed data, please see

Figure 5 and Supplementary 4. These phenotypes may be therapeutic

objects or deleterious effects for the target protein.
FIGURE 2

Volcano plot of MR results: Causal relationship between plasma
proteins and AS.
FIGURE 3

Forest plot of the MR results: Effects of 8 plasma proteins on AS. CI:
confidence interval; OR: odds ratio.
FIGURE 4

Circle plot of results of MR and colocalization analysis: Causal
relationship between plasma proteins and AS.
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4 Discussion

AS is a chronic inflammatory disease primarily affecting the

spine and sacroiliac joints, potentially leading to spinal stiffness and

deformity. In recent years, the emergence of new treatment

approaches for AS, especially therapeutic monoclonal antibodies

targeting TNF-a and IL-17A, has revealed crucial pathological

pathways (26). However, fewer than half of the patients

experience substantial improvement in their condition after using

TNF-a or IL-17A inhibitors (27). It is worth noting that, since AS

currently lacks a cure, the majority of patients require ongoing

medication, which may have side effects, to control symptoms (6).

Therefore, the identification of new therapeutic targets is

paramount for improving patient outcomes.

Plasma proteins with positive correlation with AS in this study

were TNF, FKBPL, AGER, and ALDH5A1.TNF is a crucial cytokine

playing a key role in the human immune response, involving

various inflammatory and autoimmune diseases in their onset

and development. Its involvement in AS has been extensively

studied. Drugs inhibiting TNF, such as adalimumab, golimumab,

infliximab, certolizumab pegol, and etanercept, have shown

significant effectiveness in the treatment of AS (5, 28). This

further establishes the reliability of our study that TNF as a drug

target for the treatment of AS. However, TNF inhibitors still present

some challenges, including variability in responsiveness, cost issues,

and adverse reactions (6). The PheWAS results of this study appear

to support these relatively more serious adverse effects, including

basal cell carcinoma, cutaneous malignancies, and chronic nephritis

syndrome. Therefore, attention should be paid to these potential

adverse reactions when using tumor necrosis factor inhibitors and

regular reviews should be performed to ensure early detection and
Frontiers in Immunology 05
management (6, 29–32). Although observational studies do not

appear to support an increased risk of malignancy with tumor

necrosis factor inhibitors (33). FKBPL is a newly discovered protein

known to be closely associated with anti-angiogenic processes (34).

Although its direct association with AS has not been extensively

studied, a possible negative correlation can be hypothesized on the

basis of available indirect evidence. This hypothesis is based on the

central role of angiogenesis in the pathogenesis of AS, particularly

its promotion of pathological ossification (35, 36). However, our

recent preliminary results from a MR show that there appears to be

an unexpected positive correlation between variants in FKBPL and

the risk of AS. This finding suggests that the relationship may be

more complex than expected, and further in-depth studies are

needed to explain this paradox and to fully understand the role of

FKBPL in the pathogenesis of AS. Tacrolimus is an inhibitor of

FKBPL and functions as an immunosuppressor by binding to the

pro-immunoglobin FKBP-12 (FK506 binding protein), creating a

new complex that reduces peptidyl-prolyl isomerase activity (37,

38). Besides, based on the results of PheWAS, the potential benefits

of FKBPL inhibitors for the treatment of ankylosing spondylitis

appear to be much lower than the side effects they may cause

(FKBPL inhibitors may cause up to 58 adverse reactions, including

tumors, endocrine system, gastrointestinal system, and other related

disorders, with a therapeutic effect in only 5 diseases).

AGER, also known as RAGE, is a member of the

immunoglobulin superfamily and is characterized by its type 1

transmembrane pattern recognition receptors. Its primary role is to

serve as a receptor for advanced glycosylation end products (AGEs)

(39). Upon binding of AGEs to AGER, an enhanced inflammatory

response is triggered, leading to the upregulation of various pro-

inflammatory cytokines, including NF-kB, TNF-a, IFN-g, IL-22,
FIGURE 5

Manhattan plot of result of PheWAS analysis of associations between 6 AS-associated plasma proteins and other disease outcomes.
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IL-6, IL-4, and IL-1b (40–42). Moreover, AGEs have the capability

to induce macrophage polarization towards the M1 type through

activation of the RAGE/ROS/TLR4/STAT1 signaling pathway (40).

The M1-type macrophages, known for their pronounced pro-

inflammatory properties, significantly contribute to the initiation

and progression of AS. Therefore, AGER is poised to become a

novel therapeutic target for AS. sRAGE is a soluble form of AGER,

which is a variant of AGER produced by shear or protease

degradation, and is considered a natural AGER antagonist that

modulates AGER-mediated biological effects (41, 43). In addition,

according to the findings of the PheWAS study, the utilization of

AGER inhibitors may elevate the risk of nine diseases, including

heart failure, non-small cell lung cancer, and adrenocortical

insufficiency, among others. ALDH5A1 also known as SSADH

(succinic semialdehyde dehydrogenase) is an enzyme involved in

the metabolic pathway of gamma-aminobutyric acid (GABA) (44).

In GABA metabolism, GABA is first converted to succinic

semialdehyde by GABA transaminase, and then ALDH5A1

further oxidizes succinic semialdehyde to succinate, which enters

the tricarboxylic acid cycle and participates in cellular energy

metabolism (45). It plays a role in a variety of biological processes

and is particularly associated with neurological disorders in the

brain. Although ALDH5A1 is primarily associated with

neurological function, it cannot be completely ruled out that it

may indirectly affect inflammatory diseases such as AS. For

example, alterations in metabolic pathways sometimes affect

immune system responses and inflammatory processes (46).

However, more scientific studies are needed to clarify about the

causal link between ALDH5A1 and AS. Sodium valproate has been

found to inhibit ALDH5A1 and is also a non-competitive direct

inhibitor of brain microsomal long-chain fatty acyl coenzyme A

synthetase. This inhibition reduces available amygdalenyl coenzyme

A, which in turn reduces inflammatory prostaglandin production

(47–49). Thus, one of the possible mechanisms for valproate

treatment of AS is similar to that of NSAIDs commonly used in

migraine treatment, as they are also capable of inhibiting

prostaglandin production. Furthermore, the results of the

PheWAS study showed that inhibition of ALDH5A1 function did

not cause potential adverse effects. Therefore, ALDH5A1 is

expected to be a relatively perfect target for the treatment of AS.

In contrast, plasma proteins that are negatively associated with AS

in this study are AIF1 and ACOT13.AIF1 is a 17 kDa cytoplasmic

protein with the ability to bind calcium and actin. AIF1 is known to

induce the production of pro-inflammatory molecules, including the

inflammatory factors IL-6 and TNF-a, and cause elevation of reactive

oxygen species (ROS) (50). Furthermore, it has been shown that the

role of AIF1 in macrophages is critical for maintaining their survival

and promoting inflammatory activity (51, 52). Based on these

properties, it is reasonable to assume that there may be a positive

correlation between AIF1 and AS, which is an immune-mediated

disease characterized by chronic inflammation. However, our results

obtained through a MR study unexpectedly show a negative

association between AIF1 and AS. This finding challenges our

conventional understanding of the role of AIF1 in AS and suggests

that the role of AIF1 in the complex network of inflammation and
Frontiers in Immunology 06
immune regulation may be more complex than expected. Thus, this

result highlights the importance of further in-depth studies on the

mechanism of AIF1’s role in AS to reveal its true impact in disease

onset and progression. According to the literature currently available,

no activators of AIF1 have been identified. Moreover, in the PheWAS

analysis, activation of AIF1 showed potential benefits for the

treatment of 13 diseases, including AS, but was accompanied by 23

adverse effects. Therefore, we need to carefully weigh the benefits and

risks. ACOT13 is a key enzyme class in the human body belonging to

the aldehyde dehydrogenase family. This enzyme plays a role in fatty

acid oxidation by hydrolyzing fatty acyl-coenzyme A (Acyl-CoA) to

produce free fatty acids (FFA) and coenzyme A (CoA) (53). Studies

have shown that regulatory T cells (Tregs) tend to use fatty acid

oxidation (FAO) as their main energy source and that fatty acids and

their oxidation processes not only provide energy but also promote

the differentiation of Tregs (54). Tregs, in turn, play a crucial role in

maintaining the balance of the immune system, which is important

for the prevention of autoimmune diseases by suppressing the

immune response and ensuring that the response to foreign

antigens and self-antigens is kept in moderation (55). In view of

this ACOT13 is expected to be a new therapeutic target for AS. Base

on the literature currently available, no activators of ACOT13 also

have been identified. Furthermore, in the PheWAS analysis, activation

of ACOT13 was shown to be potentially beneficial for the treatment of

five diseases, including AS, andwas not associated with adverse effects.

So ACOT13 is also a relatively perfect therapeutic target.

This proteome-wide MR analysis combining pQTL and AS

GWAS data reinforces the causal relationship between plasma

proteins and risk of AS, providing new insights into the treatment

of AS. The significant strengths of the study are the use of MR

design to reduce potential confounders and bias from reverse

causality, followed by the inclusion of cis-pQTLs to improve the

level of evidence (cis-pQTL>trans-pQTL>eQTL), and then gene

colocalization analyses to improve statistical efficacy, thus

enhancing the credibility of the findings. Finally full phenotypic

association analysis allowed us to explore the side effects of potential

drug targets in greater depth. We are also keen to encourage other

researchers to adopt the PheWAS approach to dig deeper into the

potential side effects of drug targets to enrich the knowledge base of

the field as a whole. However, there are some limitations in this

study: 1. all GWAS participants were of European origin, which

may affect the generalizability of its results; 2. although the UKP-

PPP data contained 2,940 plasma proteins, only 1,908 plasma

proteins were ultimately included in the MR study due to the

limitation of the instrumental variables; 3. due to the limited power

of the colocalization analyses, we focused our study on the cases

where the joint posterior association probability (PPH3+PPH4) was

equal to or greater than 0.8; 4. It may not be possible to supplement

cell and animal experiments due to realistic conditions, and we will

consider including these experiments in our research program or in

collaboration with other laboratories to advance research in this

area; 5. This study screened for causal associations between plasma

proteins and AS using a MR approach but it did not utilize a

genetics-led drug target prioritization method (Priority index, PI) to

prioritize under-explored targets (56–58).
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5 Conclusion

Our investigation examined the causal relationship between six

plasma proteins, including AIF1, TNF, FKBPL, AGER, ALDH5A

and ACOT13, and AS, providing new targets for the treatment of

AS. We look forward to exploring these drug targets and their

potential therapeutic approaches, as well as their impact on the

treatment of ankylosing spondylitis, in more depth in future studies.
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