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Intestinal microflora promotes
Th2-mediated immunity
through NLRP3 in damp
and heat environments
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Xiangrong Feng2, Song Chen4* and Huanhuan Luo1,2*

1State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese
Medicine, Guangzhou, China, 2School of Basic Medical Sciences, Guangzhou University of Chinese
Medicine, Guangzhou, China, 3West China Hospital, Sichuan University, Chengdu, China, 4Science
and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
Background: With the worsening of the greenhouse effect, the correlation

between the damp-heat environment (DH) and the incidence of various

diseases has gained increasing attention. Previous studies have demonstrated

that DH can lead to intestinal disorders, enteritis, and an up-regulation of NOD-

like receptor protein 3 (NLRP3). However, the mechanism of NLRP3 in this

process remains unclear.

Methods: We established a DH animal model to observe the impact of a high

temperature and humidity environment on the mice. We sequenced the 16S

rRNA of mouse feces, and the RNA transcriptome of intestinal tissue, as well as

the levels of cytokines including interferon (IFN)-g and interleukin (IL)-4 in serum.

Results: Our results indicate that the intestinal macrophage infiltration and the

expression of inflammatory genes were increased inmice challenged with DH for

14 days, while the M2 macrophages were decreased in Nlrp3-/- mice. The alpha

diversity of intestinal bacteria inNlrp3-/- mice was significantly higher than that in

control mice, including an up-regulation of the Firmicutes/Bacteroidetes ratio.

Transcriptomic analysis revealed 307 differentially expressed genes were

decreased in Nlrp3-/- mice compared with control mice, which was related to

humoral immune response, complement activation, phagocytic recognition,

malaria and inflammatory bowel disease. The ratio of IFN-g/IL-4 was

decreased in control mice but increased in Nlrp3-/- mice.

Conclusions: Our study found that the inflammation induced by DH promotes

Th2-mediated immunity via NLRP3, which is closely related to the disruption of

intestinal flora.
KEYWORDS
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1 Introduction

In 2019, The World Meteorological Organization (WMO)

proposed that the temperature could rise by 3-5°C in this century

(1). Most tropical and subtropical areas experience long summers

and short winters with extended periods of sunshine. Studies have

found that the incidence of respiratory, cardiovascular and renal

diseases, as well as mortality in patients with cardiovascular disease

(2), were closely related to low-intensity heatwaves in tropical and

subtropical humid areas (3). The Lingnan region of China, located

in the east Asian monsoon region, is characterized by a subtropical

monsoon oceanic climate. Most areas in this region have long

summers and short winters with prolonged periods of sunshine. In

tropical or subtropical humid regions, there is a small temperature

difference between day and night (4, 5). Even after escaping from

the hot environment, a sustained hot climate can still cause

prolonged effects on the body for 21 to 28 days (6, 7).

The damp-heat environment (DH) can significantly impact

animals (8), leading to immunosuppression, weakened disease

resistance, and stunted growth (9, 10). It also increases heat

stress, morbidity and mortality (11). The body’s heat dissipation

is closely linked to environmental temperature and humidity (12).

High humidity can further intensify the effects of high temperature

by inhibiting the body’s heat dissipation through evaporative

cooling, which makes it difficult to regulate core body

temperature (13). Consequently, the body compensates by

undergoing metabolic reprogramming (14), which can affect

hormone metabolism, heart rate, respiratory rate, skin and

intestinal temperature, and gene expression patterns (15, 16).

These changes can result in electrolyte imbalance, endocrine

disorders, and immune suppression (17, 18).

Environmental changes can also impact the ecology and

function of the intestines. Heat stress can cause injury to the

intestinal barrier, leading to systemic inflammation (19).

The composition of the gut microbiota is closely related to the

metabolic and immune profiles of the host organisms (20, 21).

Temperature changes disrupt the diversity of enterobacteria,

making the host more susceptible to intestinal diseases (19–21).In

a previous study, we found that mice exposed to DH showed mild

enteritis (22). Furthermore, there have some studies showed the

inflammatory response of certain chronic diseases was closely

associated with the NOD-like receptor protein 3 (NLRP3)

pathway (23), which regulates the immune inflammatory

response through downstream cytokines (24). For instance,

NLRP3 inflammasome activates inflammatory cytokines such as

IL-1b and IL-18 (25). Macrophages can be phenotypically polarized

by surrounding microenvironmental stimuli and signals to mount

specific functional programs. NLRP3 inflammasome-driven

inflammation recruits inflammatory cells including neutrophils

and macrophages (26), which release cytokines that causes

macrophage polarization (27), affecting the immune inflammatory

response process.

The balanced ratio of immune cell subgroups, such as Th1/Th2

cell subgroups plays a key regulatory role and is also particularly

relevant to the cellular immune and humoral immune systems of

the body. Therefore, it is proposed that the activation of the NLRP3
Frontiers in Immunology 02
pathway caused by intestinal dysbiosis may mediate the imbalance

of the Th1/Th2 immune response, which may be closely associated

with chronic diseases caused by DH. This study conducted tests on

Nlrp3-/- mice subjected to DH intervention for 14 days, using the

16S rRNA, the transcriptome, and the protein microarray to explore

the key roles of gut microbiota, NLRP3 and immune inflammation

in DH stimulation.
2 Materials and methods

2.1 Animal and ethical approval

Male-specific pathogen-free (SPF) C57BL/6J mice and Nlrp3-/-

mice (7 weeks of age) weighing 20 ± 2 g were purchased from

Guangdong Medical Experimental Animal Center (China). This

study was performed under the supervision and assessment of the

Laboratory Animal Ethics and Welfare Committee (AEWC) of

Zhongshan Hospital of Traditional Chinese Medicine (no. AEWC-

2022062). All experimental procedures were performed by the

recommendations of the National Institutes of Health Guide for

the Care and Use of Laboratory Animals [National Research

Counci l , Guide for the Care and Use of Laboratory

Animals. (2011)].
2.2 Grouping and treatments

The mice were housed in the environment of SPF constant

temperature (23 ± 2°C) and average humidity (55 ± 5%), with a 12-

12 hour light/dark cycle. After sample size calculations, 20 SPF

C57BL/6J mice were randomly assigned to two groups according to

the random number table method: a normal environment group

(C-NC), a high temperature and high humidity environment group

(C-DH). 20 Nlrp3-/- mice were randomly divided into two groups as

the same: a normal environment group (K-NC), a high temperature

and high humidity environment group (K-DH).

Using an artificial climate box (model: RXZ-158A-LED, Ningbo

Jiangnan Instrument Factory, China) to simulate high humidity and

high-temperature environment. The DH group was exposed to 33 ±

2°C and 85 ± 5% relative humidity for two weeks. Take materials for

evaluation on the day 14. All of the mice had free access to food and

water and renewed daily.
2.3 Detection of intestinal macrophages
in mice

Intestine tissue paraffin sections of mice from each group on the

14th day were taken and baked in a 65°C oven for 2 hours. They

were then deparaffinized in xylene I and II for 10 minutes each,

followed by immersion in 100%, 95%, 80%, and 75% alcohol for 5

minutes each. The sections were washed three times with PBS

buffer, 5 minutes each time. The tissue sections were immersed in

sodium citrate buffer and heated to boiling, then kept on medium

heat for 10 min. After cooling, rinse three times with PBS as before,
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wipe the moisture around the tissue on the slice, and incubate in a

humid box with 3% hydrogen peroxide solution for 15 min. Rinse

three times with PBS as before, wipe the moisture around the tissue

on the slice, and incubate in a humid box with 10% BSA solution for

20 min. After discarding the blocking solution, slightly air dry and

add an appropriate amount of primary antibody working solution,

and incubate overnight at 4°C in a refrigerator. Then the tissue

slides were incubated consecutively with primary antibodies F4/80

(1:200, #70076, Cell Signaling, USA), CD11c (1:200, #97585, Cell

Signaling, USA), CD206 (1:200, #24595, Cell Signaling, USA).

Incubate with horseradish peroxidase-conjugated secondary

antibody, rinse three times with PBS as before. Apply DAB to

each section for 10 min, counterstain with hematoxylin, wash, and

mount the slides. Observe the positive expression in each group of

intestinal tissue under a microscope. The positive expression

appears as brown-yellow particles. Each slice randomly selects 10

unified and fixed magnification fields for counting. Record the

average as the positive data for macrophage immunohistochemistry

in the mice’s intestinal tissue.
2.4 Mice intestinal microbiota detection

Using the CTAB/SDS method, extract total genomic DNA from

fecal samples. Use 1% agarose gel to determine the concentration

and purity of DNA samples. Based on the concentration results,

dilute the DNA concentration uniformly to 1 ng/ml using DEPC

water. Amplify the 16S rRNA gene using barcode-specific primers.

All PCR reactions are carried out in a 30 mL reaction, with 15 mL of

Phusion High-Fidelity PCR Master Mix (New England Biolabs), 0.2

mM forward and reverse primers, and approximately 10 ng of

template DNA. The program is as follows: 98°C/1 min, 98°C/10

sec for 30 cycles, then 50°C/30 sec, 72°C/60 sec, 72°C/5 min. Mix the

carrier buffer containing SYB Green with the PCR product in equal

volumes and perform agarose gel electrophoresis on a 2% agarose

gel. Select samples with suitable brightness for the main band (400-

450 bp) for the next experiment. Mix the samples of equal density

and purify the mixed PCR products using a AxyPrepDNA Gel

Extraction Kit (AXYGEN). Quantify the PCR recovery products

using a fluorescent quantitation system according to the

preliminary quantification results shown by electrophoresis, and

mix them according to the sequencing requirements of different

samples (NEB Next®Ultra™DNA Library Prep Kit for Illumina,

NEB, USA). Follow the manufacturer’s instructions and add the

index codes according to the standard procedure. The library

quality is evaluated using the Qubit@ 2.0 Fluorometer (Thermo

Scientific) and Agilent Bioanalyzer system. Finally, the sample

library is sequenced using the Illumina Miseq 600 platform to

generate corresponding paired reads (250 bp).

Each segment of the original DNA fragment is paired-end read,

and each sample is assigned paired-end reads based on the unique

barcode of each fragment. OTU clustering and species annotation

sequence analysis are performed using the UPARSE software

package. The a diversity of the samples is analyzed using an

internal Perl script. The same OTUs are assigned to a collection

of sequences with a similarity of 97% or higher. The OTU table is
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rarefied, and two indices, including Shannon and Simpson indices,

are calculated to measure a diversity. The relative abundance of

bacterial diversity from phylum to species level is represented by a

percentage bar chart.
2.5 Intestinal gene transcriptome

Total RNA extraction from the organization was performed.

The A260/A280 absorbance ratio of the RNA samples was

measured (Nanodrop ND-2000, Thermo Scientific, USA), and the

RIN value of the RNA was determined to ensure the quality of the

RNA samples included in the experiment (Agilent Bioanalyzer

4150, AgilentTechnologies, CA, USA). The PE library was

prepared according to the instructions of the mRNA-seq Lib Prep

Kit (ABclonal, China). Oligo (dT) magnetic beads were used to

purify mRNA from 1mg of total RNA, followed by fragmentation of

the mRNA using first strand synthesis buffer. Subsequently, using

mRNA fragments as templates, the first strand of cDNA was

synthesized using random primers and reverse transcriptase

RNase H. Then, the second strand of cDNA was synthesized

using DNA polymerase I, ribonuclease H, buffer, and dNTPs. The

synthesized double-stranded cDNA fragments were ligated with

adapter sequences and amplified using PCR. After quality

inspection and evaluation of the purified PCR products,

sequencing was performed using the PE150 read length

sequencing platform.

Using the sequencing results generated data for bioinformatics

analysis (Illumina). The raw data in Fastq format were processed

using Perl scripts to remove adapter sequences, filter out low-

quality data where the number of bases with a quality score of

less than or equal to 25 accounted for 60% or more, and data with a

proportion of undetermined bases (N) greater than 5%, to obtain

qualified data for subsequent analysis. The qualified data were

aligned to the reference genome using HISAT2 software (http://

daehwankimlab.github.io/hisat2/) to obtain mapped reads for

further analysis. Feature Counts (http://subread.sourceforge.net/)

were used to calculate the mapping of reads to each gene and the

FPKM value of each gene based on the gene length. DESeq2 (http://

bioconductor.org/packages/release/bioc/html/DESeq2.html) was

used to analyze the differential expression of genes between groups.

GO and KEGG enrichment analysis were performed on the

differentially expressed genes to assess their functional enrichment

and to explain the differences between samples at the gene

functional level. The R package clusterProfiler was used to

analyze and plot the results of GO functional enrichment and

KEGG pathway enrichment.
2.6 Cytokines detected by protein
microarray chip

The slide chip was taken out from the kit (QAM-INF-1-2,

RayBiotech, Inc., USA) and allowed to equilibrate at room

temperature for 20 to 30 minutes. The sealing package was

torn open and the sealing strip was peeled off, and the chip
frontiersin.org
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was placed at room temperature to dry for 1 to 2 hours. 100 µL

of sample dilution solution was added to each well and incubated

at room temperature on a shaker for 1 hour to block the

quantitative antibody chip. Cytokine standards were diluted in

gradients according to the instructions, with 6 gradients and one

negative control, and prepared for use. After removing the buffer

from each well and air drying slightly, 100 µL of standard

solution and sample dilution solution were added to the

marked wells (100 µL of 2-fold diluted serum), and incubated

overnight on a shaker at 4°C. First, dilute the 20× washing

solution 1:20 with deionized water. Clean with the diluted 1×

washing solution, adding 250µL to each well and shaking at high

intensity for 10 seconds, repeating this process 10 times. During

the waiting period, dilute the 20× washing solution for the second

washing solution with deionized water. Then switch to the 1×

washing solution for the second washing, adding 250µL to each

well and shaking at high intensity for 10 seconds, repeating this

process 6 times. After centrifuging the vial containing the

antibody mixture for detection, add 1.4ml of sample diluent,

mix well and centrifuge again. Add 80µL of detection antibody to

each well and incubate at 37°C on a shaker for 2 hours. Follow

the same washing steps as before. After centrifuging the vial

containing Cy3-streptavidin, add 1.4ml of sample diluent, mix

well and centrifuge again. Add 80µL of Cy3-streptavidin to each

well, cover the slide with a light-shielding paper and incubate at

37°C on a shaker for 1 hour. Follow the same washing steps

as before.

Remove the slide frame and use a laser scanner Cy3 or the green

channel (excitation frequency=532nm) to collect data signals

(InnoScan 300 Microarray Scanner, Innopsys, France). The raw

data obtained from chip scanning is processed for background

subtraction and inter-chip normalization using Raybiotech

software. Take the average of the standard data and normalize it.

Take the double logarithm and perform linear regression with

R2>0.9, and list the data and graphs of the standard curve. Take

the average of the data from all samples, normalize it, and calculate

the concentration of each cytokine in each sample group based on

the standard curves of each factor.
2.7 Statistical analysis

One-way ANOVA or Kruskal-Wallis multi-comparisons test was

used to compare differences across the four experimental groups, and

continued to use Tukey’s method or Bonferroni correction for further

analysis (SPSS Statistics 26 software, IBM Software, USA). Data of

16S rRNA amplicon sequencing, transcriptomics, and protein

microarray data were analyzed using moderated t-statistics and the

Benjamini Hochberg method to control the false discovery rate. The

STAMP software (http://kiwi.cs./Software/STAMP) and LEfSe

(http://galaxy.biobakery.org/) were used to confirm differences in

the abundances of individual taxonomy. DESeq2 (http://

bioconductor.org/packages/release/bioc/html/DESeq2.html) was

used for the statistical analysis of differential gene data. Statistical

significance for all data was set at P<0.05. Data are presented as mean

± standard error of the mean (SEM).
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3 Results

3.1 Nlrp3 deficiency alleviates the
characteristic changes of animals and
reduces ileal M2 macrophages in DH

The DH environment modeling caused characteristic changes

in control mice with the DH model (C-DH) group from the 14th

day, such as increased tendency to be inactive, greasy and dirty fur

(Supplementary Figure S1A), and decreased appetite for oily food

(Supplementary Figure S1B). Compared to the characteristic

changes observed in C-DH mice, Nlrp3-/- mice with the DH

model (K-DH) group showed improved mental state and almost

normal fur (Figure 1A). The body weight of the K-DH group was

lower than that of the C-DH group (Figure 1B).

Using the immunohistochemistry method recognizes

endogenous levels of the marker protein to detect intestinal

macrophages. F4/80 marking total macrophage count. CD11c

marking M1 macrophages. CD206 marking M2 macrophages. On

the 14th day of modeling, the total number of macrophages in the

ileum tissues of the C-DH group significantly increased (P<0.05),

while the K-DH group had slightly fewer macrophages than the C-

DH group (P>0.05) (Figure 1C). Both M1 (P<0.01) and M2

(P<0.001) macrophages in the C-DH group showed a significant

increase (Figures 1D, E), while the positive expression of M2

macrophages in the ileum tissues of the K-DH group was

s ignificant ly reduced compared to the C-DH group

(P<0.001) (Figure 1E).
3.2 DH reduces gut microbiota structure
and species diversity through Nlrp3

On the 14th day of modeling, Principal Component Analysis

(PCA) shows that the inter-group clustering is well-distinguished

(Figure 2A). In the C-DH group, the Shannon and Simpson indexes

of gut microbiota significantly decreased (P<0.05), while the

Shannon and Simpson indexes in the K-DH group remained at a

higher level (Figures 2B, C).

The gut microbiota species structure can be affected by a DH,

and Nlrp3 plays an important role in this process. The ratio of

Firmicutes/Bacteroidetes was increased in the C-DH group

(Figures 2D, G, H, Supplementary Table S1), while Proteobacteria

was slightly increased in Nlrp3-/- mice (Figures 2D, I,

Supplementary Table S1). The C-DH group of mice had fewer

Bacteroidales, while Nlrp3-/- mice had more Bacteroidales

(Figure 2E). The K-DH group had more Clostridiales in the gut

compared to the other three groups (Figure 2E). The genus

Lactobacillus was significantly reduced in the K-DH group

(Figure 2F). The genera Clostridium, Proteus, and Eubacterium

showed an increasing trend in the C-DH group, but there was no

significant decrease in the K-DH group (Figures 2J-L,

Supplementary Table S2). Methanobrevibacter, Bacteroides, and

Escherichia increased in the K-DH group compared to the C-DH

group (Figures 2M-O, Supplementary Table S2).
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The Cluster of Orthologous Groups (COG) of gut microbiota

are mainly enriched in four primary functions: cellular processes

and signaling, information storage and processing, metabolism, and

unidentified functions. These four primary functions encompassed

25 secondary functions. The gut microbiota in the K-DH group was

associated with carbohydrate transport, and metabolism, energy

production and conversion and metabolism. The gut microbiota in

the C-DH group was associated with nucleotide transport and

metabolism (Supplementary Figure S2).

The Kyoto Encyclopedia of Genes and Genomes (KEGG) of gut

microbiota (Figure 3) are mainly enriched in eight primary

pathways: cellular processes, environmental information

processing, genetic information processing, human diseases,

metabolism, organismal systems, and two unidentified pathways.

Within these eight pathways, 41 secondary pathways were

identified. The gut microbiota in the K-DH group was closely
Frontiers in Immunology 05
associated with pathways related to the digestive system and

immune system. The gut microbiota in the C-DH group showed

enrichment in pathways related to infectious diseases, tumors,

immune system diseases, and metabolic diseases (Figure 3C).
3.3 The Nlrp3 promotes humoral immunity
and Th2 immune-inflammation in
DH modeling

Evaluating the correlation of gene expression level from each

group samples to assess the reliability of the experiment and the

rationality of sample selection. The correlation coefficient (R-value)

approaching 1 indicates a higher similarity in gene expression

patterns between samples, and all R values of the samples in our

research are greater than 0.8 (Supplementary Figure S3).
B

C

D

E

A

FIGURE 1

The characterization of mice and ileum macrophages in damp and heat environments (DH). (A) Fur changes in mice on day 14. (B) Weight changes
in mice from each group. (C-E) Immunohistochemical staining of macrophages in intestinal tissues. C57 mice model of humid and hot environment
(C-DH). C57 mice in the normal control environment (C-NC). Nlrp3-/- mice model of humid and hot environment (K-DH). Nlrp3-/- mice in the
normal control environment (K-NC). F4/80 marking total macrophage count. CD11c marking M1 macrophages. CD206 marking M2 macrophages.
*P<0.05. **P<0.01. ***P<0.001.
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The results of mice intestinal transcriptomics showed that there

were 915 genes with significantly altered expression levels in the K-

DH group compared to the C-DH group, including 608 upregulated

genes and 307 downregulated genes. The expression of genes such

as Ccn3, Rad54, F2rl3, and Kif4 was lower in the K-DH group

(Figures 4A–D).

The Gene Ontology (GO) enrichment analysis results of

differentially expressed genes showed that Nlrp3 is involved in
Frontiers in Immunology 06
biological processes such as humoral immune response,

complement activation, phagocytosis, recognition, as well as

molecular functions such as immunoglobulin receptor binding,

antigen binding, and transmembrane transport protein activity

(Figures 4E–H). The analysis of KEGG enrichment pathways

suggest that Nlrp3 is closely related to malaria, inflammatory

bowel disease, type 1 diabetes, JAK-STAT signaling pathway, etc.

in DH (Figure S4A).
B C

D E F

G H I J

A

K L M N O

FIGURE 2

Differential gut microbiota induced by DH. (A) Principal Component Analysis of mice. (B, C) Shannon and Simpson index of intestinal microbiota in mice.
(D-F) Comparison of phylum, class, and genus levels of intestinal microbiota in mice. (G-O) Comparison of species abundance of Firmicutes and other
bacteria in mouse gut. C57 mice model of humid and hot environment (C-DH). C57 mice in the normal control environment (C-NC). Nlrp3-/- mice
model of humid and hot environment (K-DH). Nlrp3-/- mice in the normal control environment (K-NC). *P<0.05. **P<0.01. ***P<0.001.
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3.4 Nlrp3 deficiency leads to weakened
immune function and relatively increased
Th1-mediated immunity inflammation

Results as shown by the legend of PCA (Supplementary Figure S5),

all the clusters marked definitely between groups (Figures 5A-D).

Compared with the C-NC group, the levels of KC、CD30L、TCA-3

and GM-CSF in the C-DH group were significantly increased (P<0.05)

(Figure 5B). Compared with the C-DH group, the levels of TARC、IL-
Frontiers in Immunology 07
2、BLC、MCSF、IFN-g、IL-4、GM-CSF、KC、IL-5、IL-10、

IL-6、IL-12 p70、IL-3、CD30L、IL-17、PF4、TCA-3 in the K-DH

group were significantly decreased (P<0.05) (Figure 5A). The

comparison of the IFN-g/IL-4 ratio among the groups only showed a

tendency to have more TH1 cytokines of the K-DH (Figure 5E), while

the IL-4/IL-10 value of the K-DH group significantly decreased

compared to the K-NC group (P<0.05) (Figure 5F).

The KEGG enrichment results showed the association of Nlrp3

with asthma, inflammatory bowel disease, the intestinal immune
B

C

A

FIGURE 3

Functional analysis of differential intestinal bacteria. (A-C) Enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in mice
intestinal microbiota. C57 mice model of humid and hot environment (C-DH). C57 mice in the normal control environment (C-NC). Nlrp3-/- mice
model of humid and hot environment (K-DH). Nlrp3-/- mice in the normal control environment (K-NC).
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network for IgA production, Th1 and Th2 cell differentiation, T cell

receptor signaling pathway, IL-17 signaling pathway, JAK-STAT

signaling pathway and autoimmune thyroid disease (Figures 5G–J).
4 Discussion

Gut microbiota is not only a sensor for environmental changes

(22) but also an effector that helps the body adapt to environmental

changes. The gut microbiota of immigrants will show similar

compositional characteristics to local residents (28), and the gut
Frontiers in Immunology 08
microbiota of mice will show structural differences in different

seasons (29). The disruption of the organism’s native gut

microbiota structure implies that the colonization resistance of

the gut microbiota barrier is compromised, and the susceptibility

risk of the organism increases (30).

Previous research results from our research group on the gut

microbiota of animal models in humid environments have shown

that high humidity leads to a decrease in gut microbiota diversity

in mice (31), and DH can also lead to similar decreasing trends

(22). In addition, the gut microbiota diversity and abundance of

Nlrp3-/- mice are higher (32). In this experiment, the ratio of
B C D

E F

G H

A

FIGURE 4

Differential genes and functional analysis in mice transcriptome. (A-D) Volcano plot representing differentially expressed genes in mice gut. (E-H) Enrichment
of GO functions in differentially expressed genes in mice gut. C57 mice model of humid and hot environment (C-DH). C57 mice in the normal control
environment (C-NC). Nlrp3-/- mice model of humid and hot environment (K-DH). Nlrp3-/- mice in the normal control environment (K-NC).
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Firmicutes/Bacteroidetes in the C-DH group was increased on the

14th day of the experiment, indicating that the gut microbiota

structure of mice was significantly disrupted under the stimulus of

a DH (33). The F/B ratio of Nlrp3-/- mice was generally lower than

that of control mice. In addition, Proteobacteria in Nlrp3-/- mice

increased slightly as a whole, which may be related to the decrease

in Firmicutes (34). The C-DH mice overall had fewer Bacteroidales

(35), which can maintain the gut barrier. The genus Lactobacillus

in the K-DH group was significantly reduced, indicating that the
Frontiers in Immunology 09
Nlrp3 gene may be closely related to the immunosuppressive

regulation of Treg cells mediated by gut microbiota (36, 37). It

has been found that gut microbiota in Nlrp3-/- and Asc-/- mice

were different from that in IL-18-/- and wild-type mice, which

suggests that the Nlrp3 cascade reaction also has different

regulatory effects on gut microbiota (38). The abundance results

of gut microbiota suggest that DH may promote the immune

inflammatory response of the body by affecting the mutual

regulation between gut microbiota and Nlrp3.
B

C D

E

F

G H

I J

A

FIGURE 5

Differential cytokines and analysis function in mice serum. (A-D) Principal Component Analysis of serum cytokines in mice. Heatmap clustering of
significantly different cytokines in mice serum. (E, F) Comparison of IFN-/IL-4 and IL-4/IL-10 ratios in mice serum. (G-J) Enrichment of KEGG pathways
in differentially expressed cytokines in mouse serum. C57 mice model of humid and hot environment (C-DH). C57 mice in the normal control
environment (C-NC). Nlrp3-/- mice model of humid and hot environment (K-DH). Nlrp3-/- mice in the normal control environment (K-NC). *P < 0.05.
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The interaction between the body’s immune response and gut

microbiota is an important pathway for maintaining physiological

activities. Gut microbiota can regulate the transmission between

microbes and hosts through microbe-associated molecular patterns

(MAMPs), such as activating TLRs/NLRs pathway-mediated

immune inflammatory responses (39). Excessive activation of

inflammasomes can cause pathological inflammation, such as

NLRP3, NLRC4, NLRP12 and IL-10 (40). Case reports have

shown significantly decreased the expression levels of NLRP1,

NLRP3, NLRC4, AIM2, and other inflammasomes in patients

with colorectal cancer compared to healthy controls (41). These

contradictory results suggest that NLRP3 inflammasome plays a

complex and multifaceted role in intestinal immune function.

Intestinal tissue macrophages are important gatekeepers for

maintaining normal physiological functions. Mucosal macrophages

tolerate food antigens and combat bacterial invasion in the digestive

tract, while muscle macrophages located in neurons protect

gastrointestinal motility (42), all of which are essential for

maintaining normal digestive tract function. IL-4 can be produced

by activated CD4+ T cells, CD4+ NK1.1+ natural killer T (NKT) cells,

group 2 innate lymphoid cells (ILC2s), macrophages, eosinophils,

basophils, and mast cells. IL-4 plays a significant role in regulating

immune activity and is crucial for the development of Th2-mediated

responses (43). Previous studies have found that NLRP3 protein can

activate Th2 cells (44) through IL-4 and promote M2 macrophage

polarization (45). NLRP3 in dendritic cells is involved in mediating

Th2 and Treg cell responses (46) to resist parasitic infections (37).

DH modeling may induce dysbiosis in intestinal bacteria, regulate

NLRP3 protein to promote TH2-type immunity, and thus polarize

local macrophages in the mouse intestine towards M2-type. NLRP3

can also interact with the intestinal microbiota. Through positive
Frontiers in Immunology 10
regulation of antimicrobial peptides, it can directly induce Treg cells

to regulate intestinal tissue immune function.

Th cell-mediated immune response-related cytokines can

induce macrophage polarization towards M1 or M2 type, and

polarized macrophages also can influence Th cell differentiation

(47, 48). Currently, many studies have confirmed the close

relationship between NLRP3 inflammasome activation and M1

macrophage polarization (49, 50). Some researchers proposed that

NLRP3 can avoid degradation of NLRP3 protein that has not

formed inflammasome by binding to interferon regulatory factor

4 (IRF4) (51), and then promote macrophage polarization towards

M2 type through IL-4 (52). This provides a pathway and method for

NLRP3 to participate in Th2 immune responses. This section’s

experimental results suggest that in the context of DH modeling

stimulation, mice ileal tissue promotes M2 macrophage polarization

through the NLRP3 pathway, and may be involved in promoting

Th2 immune differentiation.

Transcriptomic analysis of mouse intestines confirmed the anti-

inflammatory effect of Nlrp3 in DH modeling. For example, there is

cross-regulation between Erdr1 and IL-18. Meanwhile, Nlrp3

inhibiting Erdr1 may be involved in intestinal inflammation.

Reg3b can counteract Salmonella enteritis, and the decreased level

of Reg3b in the K-DH group indicates that upregulation of Nlrp3-

Reg3b may be an adaptive protective mechanism against the

pathogenic risk of Salmonella contamination in DH (53).

Cytokine reflected the close association ofNlrp3with inflammation

induced by DH, and its important role in Th immune cell

differentiation. Compared with C-DH, all significantly changed

cytokines in K-DH were reduced, indicating that the overall immune

response in Nlrp3-/- mice was restricted. Among the 17 significantly

decreased cytokines, 6 cytokines including IFN-g were involved in Th1

immune response, and 9 cytokines including IL-4 were involved in Th2

immune response. The most pronounced differences in fold change

were observed in TARC and IL-2, which promoted the differentiation

of Treg cell subsets, suggesting that the Th2 immune response function

in the K-DH group was greatly reduced. The proportion of IL-4 in the

K-DH group was reduced, indicating that under the stimulation of DH

modeling conditions, the mice body might induce a Th2 immune

response through Nlrp3, leading to an imbalance in the Th1/Th2 ratio.

The Th2 immune-promoting role of Nlrp3 in DH-induced disease

deserves attention and exploration.

Nlrp3-regulated Th2 immune response not only mediates

humoral immunity and inflammatory reactions but also correlates

with the differentiation of Treg cells. Treg cells are often generated

during the late stage of immune response and inhibit immune

responses, which may promote immune tolerance. Engulfing

specific apoptotic cells can lead to macrophage reprogramming

(54) towards M2 polarization and can inhibit the TLR4/NF-kB
pathway, and secrete cytokines such as TGF-b to induce an increase

in Treg cells (55), mediating immune suppression.

Immune regulatory functions represented by Th1/Th2 balance

are of great significance for maintaining the health of the body, and

immune balance is the basis for maintaining homeostasis. The Th1

immune inflammatory damage caused by excessive activation of

NLRP3 inflammasomes is equally important as the Th2 immune

function promoted by Nlrp3. Currently, research on NLRP3 mostly
FIGURE 6

Possible mechanisms of NLRP3 and gut microbiota regulation of
Th1/Th2 immunity in DH.
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focuses on its involvement in Th1 immune response through

inflammasome formation, with less attention paid to its Th2

immune role. Taking the Th2 immune regulation function of

Nlrp3 as a starting point may provide new insights into the

mechanism of pathogenesis in DH (Figure 6).
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