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Dietary galactose exacerbates
autoimmune neuroinflammation
via advanced glycation
end product-
mediated neurodegeneration
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and Ralf A. Linker1
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Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg,
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Background: Recent studies provide increasing evidence for a relevant role of

lifestyle factors including diet in the pathogenesis of neuroinflammatory diseases

such as multiple sclerosis (MS). While the intake of saturated fatty acids and

elevated salt worsen the disease outcome in the experimental model of MS by

enhanced inflammatory but diminished regulatory immunological processes,

sugars as additional prominent components in our daily diet have only scarcely

been investigated so far. Apart from glucose and fructose, galactose is a common

sugar in the so-called Western diet.

Methods: We investigated the effect of a galactose-rich diet during

neuroinflammation using myelin oligodendrocyte glycoprotein-induced

experimental autoimmune encephalomyelitis (MOG-EAE) as a model disease.

We investigated peripheral immune reactions and inflammatory infiltration by ex

vivo flow cytometry analysis and performed histological staining of the spinal

cord to analyze effects of galactose in the central nervous system (CNS). We

analyzed the formation of advanced glycation end products (AGEs) by

fluorescence measurements and investigated galactose as well as galactose-

induced AGEs in oligodendroglial cell cultures and induced pluripotent stem cell-

derived primary neurons (iPNs).

Results: Young mice fed a galactose-rich diet displayed exacerbated disease

symptoms in the acute phase of EAE as well as impaired recovery in the chronic

phase. Galactose did not affect peripheral immune reactions or inflammatory

infi ltration into the CNS, but resulted in increased demyelination,

oligodendrocyte loss and enhanced neuro-axonal damage. Ex vivo analysis

revealed an increased apoptosis of oligodendrocytes isolated from mice

adapted on a galactose-rich diet. In vitro, treatment of cells with galactose

neither impaired the maturation nor survival of oligodendroglial cells or iPNs.

However, incubation of proteins with galactose in vitro led to the formation
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AGEs, that were increased in the spinal cord of EAE-diseased mice fed a

galactose-rich diet. In oligodendroglial and neuronal cultures, treatment with

galactose-induced AGEs promoted enhanced cell death compared to

control treatment.

Conclusion: These results imply that galactose-induced oligodendrocyte and

myelin damage during neuroinflammation may be mediated by AGEs, thereby

identifying galactose and its reactive products as potential dietary risk factors for

neuroinflammatory diseases such as MS.
KEYWORDS

galactose, advanced glycation end products, neuroinflammation, MOG-EAE,
oligodendrocytes, human induced primary neurons, multiple sclerosis
Background

Multiple sclerosis (MS) is an autoimmune disease of the central

nervous system (CNS) characterized by neuroinflammation and

neurodegeneration. Although some progress has been made in

understanding its pathogenesis, the mechanisms underlying its

neurodegenerative aspects remain largely unclear. In the recent

years, it has been shown that neuroinflammatory processes may be

influenced by environmental, dietary, and life-style factors,

contributing to incidence and disease activity of MS (reviewed in

(1, 2)). Since the initial suggestion in the 1950s that diet may have

detrimental effects on the course of MS (3), several studies have

been published supporting this approach.

We and others could recently demonstrate that a high salt

intake promotes neuroinflammation, with in vivo experiments

showing a worsened course of experimental autoimmune

encephalomyelitis (EAE), the murine disease model of MS (4–8).

This was associated with enhanced T helper (Th) 17 immunity (4–6,

9, 10) as well as an impaired regulatory T cell (Treg) phenotype and

function in high salt conditions (11). Apart from T cells, myeloid

cells are also affected by high salt concentrations, leading to an

exaggerated activation of pro-inflammatory M1 macrophages while

the ability of regulatory M2 macrophages to suppress effector T cell

proliferation is reduced (8, 12–15). The clinical relevance of high-

salt intake as a risk factor for MS, however, is controversially

discussed. While one study revealed an increased disease activity

in people with MS due to high salt intake (16), others observed no

correlation between salt intake and the risk of MS (17, 18).

An additional dietary factor influencing neuroinflammation are

fatty acids. We were able to show that saturated long-chain fatty

acids promote the activation of pro-inflammatory Th1 and Th17

cells, resulting in aggravated neuroinflammation during EAE (6,

19). In contrast, the supplementation of the short-chain fatty acid

propionic acid (PA) induces an anti-inflammatory milieu in the gut

and spleen of EAE diseased mice, increasing the number and
02
functionality of Treg cells (19, 20). This is also clinically relevant

as supplementation of PA in therapy-naive MS patients and as an

add-on to MS immunotherapy significantly increases functionally

competent Treg cells. In line with this observation, MS patients

receiving PA show a reduced annual relapse rate together with

reduced brain atrophy and a stabilization of disability (21).

Another common element of our so-called Western diet is dairy

products, which contain proteins that potentially exert negative

effects on neuroinflammatory diseases. Immunization of mice with

casein, a protein contained in bovine milk, led to demyelination in

the spinal cord, and serologic analyses showed a cross-reactivity of

antibodies for casein and myelin-associated glycoprotein, that was

also shown to be relevant for patients with MS (22). A similar

antibody cross reactivity has been reported for the milk protein

butyrophilin and myelin oligodendrocyte glycoprotein (MOG) (23,

24). Besides milk proteins, sugars contained in dairy products might

be relevant for pathological processes during neuroinflammation.

Here, galactose is of high interest, since it is commonly used in

rodent aging models to induce neurodegeneration. To do so,

galactose is typically administered intraperitoneally or

subcutaneously chronically for up to 16 weeks (25). However, the

impact of dietary galactose on neuroinflammatory disease models

with a neurodegenerative pathogenesis has not been investigated so

far. In fact, there are only few studies investigating the impact of

other dietary sugars in the EAE mouse model, such as glucose and

sucrose. The intake of these sugars worsened the clinical outcome of

EAE, what was attributed to an increased differentiation of Th17

cells (26, 27).

Given the known neurodegenerative effects of galactose

treatment in aging models and the potential impact of dietary

hexoses on neuroinflammation, we aimed to examine the effect of

dietary galactose in the EAE model. Our results demonstrate that a

galactose-rich diet exacerbates the disease course in mice by

enhancing oligodendrocyte apoptosis and increasing neuro-axonal

damage without effects in the immune system.
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Material and methods

Animal experiments and diet

C57BL/6N mice were bred and housed at the Franz-Penzoldt-

Zentrum (FPZ), the animal care facility of the University Erlangen-

Nuremberg (Germany), under a 12 h day-night-cycle and

standardized environmental conditions receiving normal chow

(ssniff V1534-300) and tap water ad libitum. All experiments

were in accordance with the German laws for animal protection

and were approved by the local ethic committees (AZ 55.2 DMS-

2532-2-27). For a sugar-rich diet, mice received normal chow (ssniff

V1534-300) and tap water containing 10% of D-galactose ad

libitum 14 days prior to EAE induction and throughout the

observation period. Control mice received normal tap water

throughout the adaption and observation period. Otherwise, the

galactose-rich and control diet were completely similar.
EAE induction

10–12 weeks-old mice were anesthetized and subcutaneously

injected with 200 mg myelin oligodendrocyte glycoprotein (MOG35–

55; Charité, Berlin) and 200 mg Complete Freund’s Adjuvant (Difco)

containing 4 mg/ml Mycobacterium tuberculosis (H37RA). Mice

received 200 ng Pertussis toxin (List, Germany) intraperitoneally on

the day of immunization and two days later. Clinical symptoms

were assessed daily according to a 5-point scoring system (4). Body

weights of mice receiving either a control or a galactose-rich diet

were monitored starting 14 days prior to active immunization and

during the course of MOG-EAE.
Histological analysis

After perfusion with 4% paraformaldehyde (PFA) on days 16

and 34 post immunization (p.i.), spinal cord tissue was embedded in

paraffin after 3 h post-fixation in 4% PFA. 4 µm-thick cross sections

were deparaffinized in xylene and rehydrated in decreasing

concentrations of ethanol before antigen retrieval in 1mM

ethylenediaminetetraacetic acid (EDTA) or citrate buffer.

Antigens were blocked with 10% BSA/PBS (bovine serum

albumin in phosphate-buffered saline) before incubation with the

primary antibody overnight at 4°C. Biotinylated secondary

antibodies were applied for 60 min at room temperature followed

by peroxidase-coupled avidin-biotin complex (ABC Kit, Vector

Laboratories, Inc. Burlingame, CA). Reactivity was visualized with

diamino-3,3 ’benzidine (DAB, Vector Laboratories, Inc.

Burlingame, CA). Slides were counterstained using Mayer´s

hemalaun solution (Merck, Darmstadt, Germany). The following

antibodies were used: anti-CD3 1:200 (CD3-12, BIO-RAD

Laboratories), anti-Mac-3 1:200 (M3/84, BD Pharmingen), anti-

neurite outgrowth inhibitor A (NogoA) 1:200 (polyclonal; Santa
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Cruz Biotechnology), anti-oligodendrocyte transcription factor 2

(Olig2) 1:500 (rabbit polyclonal, Merck Millipore), anti-2’,3’-cyclic

nucleotide 3’ phosphodiesterase (CNPase) 1:1000 (SMI-91; 1:7500,

Sternberger Monoclonals via Covance, Princeton, USA) and anti-

NeuN 1:100 (MAB2300, Merck Millipore). For analysis of axonal

densities, Bielschowsky silver impregnation was used as described

recently (20). Spinal cord cross sections were analyzed by a blinded

observer using a BX-51 light microscope. Cellular infiltrates were

counted in three lesions within each spinal cord segment (cervical,

thoracic and lumbar) at 200x magnification within the margin of a

stereological grid and quantified per square millimeter of white

matter. Analysis of demyelinated areas in the white matter was

performed semi-automatically with the help of CellP software.

Axonal density was quantified in silver impregnated sections by

counting on a 100 µm diameter grid. Data on axons are presented as

relative axonal densities per grid (28).
Electron microscopy

EAE diseased mice were perfused with 4% PFA for 30 min

followed by removal of the spinal cord. Segments of the lumbar

spinal cord were immediately fixed overnight at 4°C in 4%

glutaraldehyde/4% PFA in 0.1 M phosphate buffer/cacodylate

buffer, pH 7.2. After washing with phosphate buffer, the tissue

was post-fixed in phosphate buffer containing 1% osmium tetroxide

and KaFECN(III) followed by washing with distilled water.

Specimens were dehydrated in ascending concentrations of

ethanol, embedded in epon and polymerized at 65°C for 72 h.

Embedded spinal cord samples were cut at 80 nm with an ultra-

microtome and analyzed using a Zeiss EM 906 transmission

electron microscope (Carl Zeiss, Jena, Germany).
Isolation of splenocytes

Spleens of mice receiving a galactose-rich diet or control diet

were removed on day 10 or day 16 of EAE and disrupted with a 5 ml

glass homogenizer. Cells were filtered through a 100 µM cell

strainer followed by erythrocyte lysis. Cells were washed with cold

Dulbecco’s Phosphate Buffered Saline (DPBS; Gibco via Life

Technologies, Darmstadt, Germany) and used for flow cytometry

analysis or the MOG35-55 restimulation assay.
Isolation of CNS leukocytes

Spinal cord tissue was removed on day 16 of EAE after

perfusion with cold DPBS and disrupted with a 5 ml glas

homogenizer. Cells were transferred to a Percoll™ (GE

Healthcare, Solingen, Germany) density gradient and centrifuged

at 800g for 20 min without break. Cells at the interphases were

collected, washed with cold DPBS and analyzed by flow cytometry.
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In vitro MOG35-55 restimulation assay

Splenocytes were seeded at a density of 3x106 cells/cm2 in Re-

medium. MOG35-55 (20 µg/ml) was added for stimulation and the

cells were cultured for 48 or 72 hours at 37°C. Supernatants were

harvested after 48h and analyzed by enzyme-linked immunosorbent

assay (ELISA) for the secretion of IL-17A and IFN-g (ELISA

DuoSet, R&D) according to the manufacturer’s protocol. To

assess the proliferation capacity, splenocytes were labelled with

e450 proliferation dye (eBioscience) according to the

manufacturer’s protocol and cultured in the presence or absence

(control) of MOG35-55. Proliferation was analyzed 72h later by

flow cytometry.
Flow cytometry

Ex vivo obtained CNS leukocytes and splenocytes were

analyzed by extra- and intracellular staining. Dead cells were

excluded by a fixable viability dye eFluor®780 (0.2 ml/test,
eBioscience). Nonspecific Fc-mediated interactions were blocked

by addition of 0.5 ml anti-CD16/32 (93, eBioscience) for 10 min.

For surface staining, cells were stained with the respective

fluorochrome- conjugated antibodies for 30 min in PBS. For

intracellular cytokine staining, cells were stimulated for 4 h with

ionomycin (1 µM; Sigma-Aldrich) and phorbol-12-myristate-13-

acetate (PMA; 50 ng/ml; Sigma-Aldrich) in the presence of

monensin (2 mM; eBioscience). Cells were stained for surface

marker and made permeable by saponin buffer or Fix/Perm

(eBioscience) according to the manufacturer’s protocol.

Intracellular cytokines were stained with the respective

fluorochrome conjugated antibodies for 30-45 min. The

fol lowing antibodies were used: aCD4-FITC (RM4-5,

eBioscience), aCD11b-APC/PE (M1/70, Biolegend), aCD11c-
FITC/Pe-Cy7 (HL3, BD Pharmingen), aCD25-APC/BV421

(PC61, BioLegend), aCD44-PE (IM-7, Biolegend), aCD69-

BV421 (H1.2F3, Biolegend), aFoxP3-PE/Pe-Cy7 (FJK-16s,

eBiosciences), aIL-17A-PE/Pe-Cy7 (eBio17B7, eBioscience),

aIFN-g-APC (XMG1.2, BD Biosciences). Cells were measured

with FACSCanto II from BD Biosciences and data were analyzed

using FlowJo software (BD Biosciences).
Preparation of galactose-derived AGE-BSA

Glycation was performed as described previously (29). Shortly,

10 mg/ml BSA, 500 mM galactose, 1 U/ml penicillin/streptomycin

and 1 mM EDTA were dissolved in PBS and filtered through a 0.22

µm pore filter before incubated under sterile conditions at 37°C in

the dark over a period of 12 weeks. To check for changes over time,

aliquots were taken weekly. Until further analysis, solutions were

stored at -20°C. Finally, all aliquots were dialyzed against PBS at 4°C

to stop the reaction by removal of unbound sugars. AGEs then were

stored in sterile tubes at 4°C. For the preparation of control-BSA,

this procedure was performed without the addition of galactose.
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Measurement of AGE autofluorescence

Given the special fluorescence characteristics and absorption

spectra of some AGE products, auto-fluorescence of pentosidine, a

common AGE variant was determined to evaluate the formation of

AGEs. Therefore, total protein content was determined by BCA

assay (Thermo Scientific) and sample concentrations were adjusted

to 1 mg/ml. Arbitrary fluorescent units were measured with a

fluorescence plate reader (Victor Multilabel plate reader, Perkin

Elmer) at an excitation wavelength of 355 nm and an emission wave

length of 460 nm. Fluorescence of PBS alone was subtracted from

each data set and results are presented as fluorescent units.
Oligodendroglial cell apoptosis

O4+ cells were isolated via magnetic cell separation (MACS)

from brains of C57BL/6N mice on day 20 of EAE either receiving

control or a galactose-rich diet. The cells were stained with the

fixable viability dye eFluor®780 (0.2 ml/test, eBioscience) for 20 min.

Nonspecific Fc-mediated interactions were blocked by addition of

0.5 ml anti-CD16/32 (93, eBioscience) for 10 min before the

addition of aO4-APC (130-109-153, Milteniy Biotec) for 30 min.

The cells were then labeled with Annexin-V FITC (Invitrogen)

according the manufacturers’ instruction. The frequency of

Annexin-V+ apoptotic cells in O4+ cells was analyzed by

flow cytometry.
Isolation and culture of mixed glial cells

After dissection of cortices from day 1-2 postnatal mouse pups,

MGC were isolated using the Neural Tissue Dissociation Kit

(Miltenyi Biotech) according to the manufacturer’s protocol.

Obtained MGC were re-suspended in 500 µl MGC media

containing DMEM (Gibco) supplemented with 1% penicillin/

streptomycin (PAN-Biotech GmBH) and 10% heat inactivated

horse serum per brain. Cells were seeded in 10 cm-culture dishes

pre-coated with poly-D-lysine/laminin (Sigma) and incubated at

37°C and 5% CO2. Media was replaced every 2 days. After 14 days in

culture, MGC were processed for isolation of oligodendrocytes.
Isolation and culture of oligodendrocytes

After 14 days in culture, MGC were harvested and labelled with

aO4-antibody (Miltenyi Biotech) for separation via magnetic cell

sorting (MACS) according to the manufacturer’s instructions. For

immunocytochemical analysis, O4+ cells were plated on poly-D-

lysine -coated cover slips at a density of 5-8 x 105 cells per 4-well

chamber and kept at 37°C and 5% CO2. Half of the media

containing MACS Neuro-Medium (Miltenyi Biotech)

supplemented with 2% MACS NeuroBrew-21 (Miltenyi Biotech),

1% L-Glutamine (PAN-Biotech GmBH), 1% penicillin/

streptomycin, fibroblast growth factor (FGF, 10 ng/ml, Miltenyi
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Biotech) and platelet-derived growth factor-aa (PDGF-AA, 10 ng/

ml, PeproTech) was changed every other day. Cells were either

treated with 1.5 mM galactose for 72 h, or with 50 µM AGE-BSA or

control-BSA for 72 h.
Immunocytochemical analysis

Oligodendrocytes were washed in PBS and fixed in 1% PFA for

30 min at room temperature. After blocking with 10% BSA+0.1%

Triton-X, cells were incubated with primary antibodies over night at

4°C. Cells were incubated with secondary antibodies for 1 hour in

the dark at room temperature followed by counterstaining with

DAPI (1:20.000 in PBS) for 5 min. Antibodies used include ms/rb

anti-Olig2 (AB9610; 1:500; Millipore), ms anti-Ki67 (550,609; 1:75,

BD Biosciences) and rb anti-Casp3 (1:300, Cell Signaling) as well as

rb/gt anti-ms-Alexa488, gt anti-ms Alexa555 and gt anti-rb

Alexa647 conjugated secondary antibodies (1:1000, Invitrogen,

ThermoFisher Scientific). For negative controls, cells were

incubated with the secondary antibody only. Pictures were taken

with Zeiss Observer at a 20x magnification. Quantitative analysis

was performed with the help of ImageJ by counting at least 300

Olig2-positive cells in at least 10 different visual fields.
Generation of human induced
primary neurons

iPNs were generated as previously described (30). In brief, renal

proximal tubule epithelial cells (RPTECs) were isolated from the

urine of participants. After cultivation, RPTECs were transfected via

electroporation with the episomal plasmids pCXLE-hOCT3/4-

shp53-F, pCXLE-hSK and pCXLE-hUL (Addgene). Resulting

induced pluripotent stem cell (iPSC) colonies were transferred

into a free-floating state, forming embryoid bodies (EBs).

Differentiation into meso- and entoderm was inhibited by using

10 µM SB431542 (Biozol) and 5 µM dorsomorphin (Sigma). After

inhibition, EBs were transformed into adherent state again by

transferring EBs on 0.002% poly-L-ornithine (Sigma) and 10 µg/

ml laminin (Sigma) coated dishes. For the induction of the

formation of neural rosettes, EBs were cultivated in neural stem

cell (NSC) medium (DMEM/F12 GlutaMAX™ (Thermi Fisher

Scientific), supplemented with 20 µg/l insulin (Sigma), 1.6 g/l L-

glucose (Applichem), 1 µl/ml B27™ supplement (Life

Technologies), 1 µl/ml N2 supplement (Life Technologies), 10 ng/

ml basic fibroblast growth factor (PAN Biotech), 10 ng/ml

epidermal growth factor (PAN Biotech). After the emergence of

neuronal rosettes, neuronal progenitor cells (NPCs) were isolated

from donut-shaped structures and transferred to another dish. For

the differentiation of NPCs to iPNs, medium was changed to

neuronal differentiation medium composed of DMEM/F12

GlutaMAX™, supplemented with 50 µg/ml L- ascorbic acid (Carl

Roth), 50 µg/ml apo-transferrin (Sigma), 2x B27™-, and 2x N2-

supplement, and cells were initially treated with 500 ng/ml sonic

hedgehog (SHH; Peprotech) and 2 µM retinoic acid (RA; Sigma) for

the induction of differentiation. Afterwards, neuronal medium was
Frontiers in Immunology 05
supplemented with 10 ng/ml brain-derived neurotrophic factor

(BDNF; Peprotech) and 20 ng/ml glial-derived neurotrophic

factor (GDNF; Peprotech) for maintenance and maturation. iPNs

were used for experiments at the age of 21-23d.
Cell death analysis of iPNs

8,000-10,000 cells/well were plated onto a 96-well plate, 14-16

days after induction of neuronal differentiation. Cells were treated

with 1.5 mM galactose for 24 h, 48 h, or 72 h or with 50 µM AGE-

BSA or control-BSA for 48 h. For cell death analysis, cells were

treated, except for the control condition, with 5 µM H2O2 for 2 h.

For this time neuronal medium was replaced with DPBD+/+.
Staining of iPNs

Staining was performed after treatment incubation by changing

the medium to DMEM F12/Glutamax (Gibco) + 4 µg/ml Höchst

(Thermo Fisher) for 1.5 h to stain the nuclei. A subsequent staining

of dead cells by 5 µl/ml 7AAD (eBiosciece) in DMEM F12/

Glutamax was executed for 10 min at 37°C. After incubation, the

well plate was analyzed under an inverse fluorescence microscope.

Images were acquired at 20,000 x magnification. Randomly, three

visual fields were obtained per well. Per condition a minimum of

three wells was analyzed. Total cell amount per visual field (Höchst

+) and dead cells (Höchst+/7AAD+) were manually counted using

the cell counter tool from ImageJ.
Microglia isolation and analysis

Microglia were isolated from brain tissue of EAE diseased mice

(d20 p.i.) via magnetic cell separation (MACS, Miltenyi Biotech)

using CD11b microbeads. Microglia were identified as CD11b

+CD45- cells via flow cytometry and analyzed for CD69 and

MHCII expression. Cells were cultured in MACS Neuro-Medium

(Miltenyi Biotech) supplemented with 2% MACS NeuroBrew-21

(Miltenyi Biotech) at a density of 2x10^5 cells/well in poly-L-Lysine

(0.01%, Sigma) coated 12 well plates for 24 h. Supernatants were

analyzed for the secretion of IL-1b, IL-6 and TNFa (ELISA

DuoSet, R&D).
mRNA expression analysis

Spinal cord tissue was homogenized in RLT buffer with an

Ultra-Turrax for 30s. Total RNA was isolated using the RNase Mini

Kit #A2791 (Qiagen) following the manufacturer’s instructions.

Reverse transcription was performed by using the GoScript Reverse

Transcription Mix Oligo(dT) (Promega). PCR reactions were

performed at a 5 ml scale on a qTower 2.0 real time PCR System

(Analytic Jena, Germany) in triplicates. Relative quantification was

performed by the DDCT method, normalizing target gene

expression on b-Actin as housekeeping gene. The following
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primer (TaqMan®, Thermo Fisher Scientific) were used: Ager

Mm01134790_g1, Nos2 Mm00440502_m1, Nrf2 (Nfe2l2)

Mm00477784_m1, Actb Mm00607939_s1.
Statistical analysis

Statistical analysis was performed using GraphPad Prism

(GraphPad Software Inc., La Jolla, CA). All in vitro and ex vivo

data were analyzed by one-way ANOVA followed by Tukey’s post-

test, unpaired t-test or Wilcoxon rank sum test after checking for

normal distribution (unless indicated otherwise in the legends).

EAE data were analyzed by Mann–Whitney U test. Data are

presented as mean ± SEM; *p< 0.05, **p< 0.01, or ***p<0.001

were considered to be statistically significant.
Results

A diet rich in galactose exacerbates the
clinical symptoms in MOG-EAE

To examine the impact of a galactose-rich diet on the course of

EAE, young C57BL/6N mice were administered a diet consisting of

a 10% galactose in drinking water. This diet was started 14 days

prior to active induction of MOG35-55-EAE and disease severity was

compared to control mice receiving normal drinking water. The

galactose-rich diet significantly worsened disease symptoms in the

effector phase and impaired the recovery in the chronic phase of

EAE compared to controls (Figure 1A). No major differences

between both groups were observed in terms of disease incidence

(Table 1) or mortality (data not shown). As changes in the diet may

affect physical and metabolic parameters, mice were also monitored

for changes in body weight and blood sugar levels. A galactose-rich

diet was neither associated with significant body weight changes

during the 14-day adaptation period prior to EAE induction nor in

the period after immunization compared to the control (Table 1).

Blood glucose levels were similar in both groups prior to EAE

induction and at the maximum of the disease (Figure 1B).
A galactose-rich diet significantly
increased demyelination and impaired the
neuro-axonal integrity during MOG-EAE

To analyze potential mechanisms of galactose-action in MOG-

EAE, we performed histopathological analyses on spinal cord cross

sections from control treated mice and mice receiving a galactose-

rich diet during the chronic phase of the disease on day 34 post

immunization (p.i.). In accordance with the observed exacerbation

of clinical symptoms, CNPase staining revealed a more pronounced

demyelination in mice receiving a galactose-rich diet (Figure 2A).

Moreover, NogoA+ mature oligodendrocytes were significantly

reduced by high galactose intake (Figure 2B). Further histological

analysis showed a significant loss of NeuN+ neurons in the anterior

horn of these mice (Figure 2C). We next studied the effect of a
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galactose-rich diet on the neuro-axonal integrity during EAE.

Bielschowsky’s silver impregnation of spinal cord cross sections

revealed a reduced axonal density in mice receiving a galactose-rich

diet compared to the control group (Figure 2D). Using electron

microscopy, we further analyzed the effect of galactose on axonal

integrity and detected an increased number of axolytic axons

(Figure 2E). In order to exclude an effect of a galactose-rich diet

on CNS cells in the absence of autoimmune processes, we also

histologically analyzed spinal cord tissue of naïve young mice (11.2

weeks ± 5 days) receiving a galactose-rich diet for 7 weeks. No

obvious differences in the number of oligodendrocytes, neurons or

astrocytes were observed as compared to naïve mice fed a normal

diet (Supplementary Figure 1).
A galactose-rich diet does not affect
immunological processes during MOG-EAE

In contrast to the evident effects of galactose on the

oligodendroglial and neuronal compartment, no changes in

numbers of infiltrating CD3+ T cells and Mac-3+ macrophage/

microglia were observed at the maximum of EAE (Figures 3A, B).

Further flow cytometry analysis of spinal cord infiltrating cells at

day 16 of EAE revealed no obvious differences between mice on a

galactose-rich diet and controls. There were neither effects on the

frequencies of Th1, Th17 and Treg cells (Figure 3C) nor on

CD11b+/CD11c+ antigen-presenting cells (Figure 3D). Additional

analysis of T cell activation also revealed no differences in CD44+

and CD25+ expression (Figure 3E). CD69 expression in CNS

infiltrating macrophages and brain resident microglia also

revealed no differences in galactose fed mice compared to the

controls (Figure 3F). To additionally investigate potential effects

of galactose on the immune system, we also performed flow

cytometry analysis of splenic cells prior to the onset of EAE

symptoms on day 10 p.i. as well as during acute stages of the

disease on day 16 p.i. A galactose-rich diet did not affect the

frequency of splenic Th1, Th17 or Treg cells (Figure 3G), T cell

activation (Figure 3H) or CD11b+/CD11c+ antigen-presenting cells

(Figure 3I) prior to disease onset or at later stages (data not shown).

Moreover, upon antigen-specific restimulation of splenocytes in

vitro, neither the proliferation of lymphocytes (Figure 3J) nor the

secretion of the pro-inflammatory cytokines IFNg and IL-17

showed any difference between cells from mice receiving a control

or galactose-rich diet (Figure 3K).
Galactose enhances the formation of AGEs
that affect neuronal and oligodendroglial
cell viability in vitro

Our histopathological observations suggested that galactose

might impair the neuro-axonal integrity during MOG-EAE by

decreasing oligodendrocyte and neuron numbers. Additional

analysis of ex vivo obtained oligodendrocytes from EAE diseased

mice revealed an enhanced Annexin-V uptake in cells isolated from

galactose-fed mice compared to the controls, suggesting a potential
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effect of increased galactose concentrations on cell apoptosis

(Figure 4A). We therefore investigated a potential direct effect of

elevated galactose concentrations in in vitro culture assays. The

addition of 1.5 mM galactose, mimicking a high yet still

physiological blood concentration, the proliferation of isolated

O4+ oligodendrocytes as assessed by Ki67 staining (Figure 4B).

Moreover, human iPNs derived from iPSCs were cultured in the

presence of 1.5 mM galactose for one to three days. Yet, the

addition of galactose did not impact on cell survival in iPNs as

compared to H2O2 treatment as a positive control (Figure 4C).

Given our findings on the missing effect of galactose on CNS cells in

vitro, we hypothesized that not galactose itself, but some reactive

products may be responsible for the exacerbation of clinical

symptoms and the neuroglial damage in the EAE model.

Galactose is a reducing sugar and during protein glycation,

amino groups of proteins may react with these sugars in a non-

enzymatic reaction (31). Indeed, incubation of 10 mg/ml BSA with

0.5 M galactose at 37°C for up to 12 weeks resulted in the formation

of advanced glycation end product (AGE)-coupled BSA as

measured by auto-fluorescence of pentosidine as a common AGE

variant (Figure 4D). While relative fluorescent units of control-BSA

were at about one to two after 12 weeks of incubation, relative

fluorescent units of BSA incubated with galactose were 20-fold

higher after 5 weeks of incubation and reached almost 50 units after
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12 weeks of incubation, demonstrating an increased AGE

production due to galactose addition (Figure 4D). Interestingly,

fluorescence measurements of spinal cord protein isolated from

EAE diseased mice on the maximum of EAE also revealed higher

fluorescent units in mice receiving a galactose-rich diet compared

to the controls (Figure 4E). These data imply an increased

concentration of fluorescent AGEs in the spinal cord of

galactose-treated mice, indicating a potential role of AGEs in the

observed neuropathological effects during MOG-EAE. We

therefore tested the impact of AGE treatment on cell survival in

human iPSC-derived iPNs and murine oligodendroglial cell

cultures. iPSC-derived iPNs were treated with H2O2 to induce

cell death. While the combined addition of H2O2 and control-

BSA did not further increase neuronal cell death compared to H2O2

treatment alone, the addition of H2O2 together with galactose-

induced AGEs significantly aggravated cell survival compared to

H2O2 treated neurons (Figure 4F). Yet, the difference on neuronal

cell death between H2O2+BSA and H2O2+AGE-BSA treated cells is

not statistically significant when comparing all four groups

(p=0.0507). However, the frequency of dead cells in H2O2+BSA

treated cultures is comparable to the frequency of dead cells in

H2O2 cultures (H2O2: 36.8 ± 3.7% vs. H2O2+BSA: 37.5 ± 3.8%). In

contrast, the treatment with H2O2+AGE-BSA increased the cell

death to 48.5 ± 3.4%. Hence, H2O2+AGE-BSA treatment increases

neuronal cell death by around 32% compared to H2O2 or 29%

compared to the H2O2+BSA treatment. Similar to the deleterious

effect of galactose-induced AGEs on neuronal cell viability in vitro,

oligodendrocytes cultured in the presence of galactose-induced

AGEs showed enhanced apoptosis compared to control-BSA

treated cells. More precisely, treatment of O4+ oligodendrocytes

with galactose-induced AGEs for 72 h resulted in a more

pronounced cell apoptosis compared to BSA treatment as

assessed by counting Olig2+ cells with shrunken cell nuclei

(Figure 4G) or caspase-3 positive Olig2+ cells (Figure 4H). Twice

as many cells presented features of apoptosis in comparison to

control-BSA treated cells, strengthening our concept that galactose-

induced AGEs adversely affect neuronal and oligodendroglial cell
FIGURE 1

A diet rich in galactose exacerbates the clinical symptoms in MOG-EAE. C57BL/6N mice with an age of 11.9 weeks ± 4 days were adapted to a
galactose-rich diet 14 days prior to active immunization and during MOG-EAE. (A) Clinical course of MOG-EAE (controls: n=5, galactose-diet: n=6).
Mice were daily scored for clinical signs on a 5-point scale. (B) Blood glucose levels were measured after 14 days of galactose feeding prior to active
immunization (d0) and at the maximum of MOG-EAE (d21; n=3 mice per group and time point). All data are represented as mean ± SEM;
(A) ***p<0.001 using a Mann-Whitney test, (B) data were analyzed by two-way ANOVA.
TABLE 1 A diet rich in galactose does not affect disease incidence or
weight change during MOG-EAE.

control Gal

EAE incidence [sick/total] 5/6 6/7

body weight d-14 [g] mean ± SEM 24.8 ± 1.2 26.9 ± 0.8

body weight d0 [g] mean ± SEM 25.9 ± 0.9 27.5 ± 1.3

body weight d33 [g] mean ± SEM 25.5 ± 1.1 27.8 ± 1.9
Body weights of mice receiving either a control or a galactose-rich diet were monitored
starting 14 days prior to active immunization and during the course of EAE. Mean weight ±
SEM is given for d-14, the day of immunization (d0) and d33 post immunization.
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viability in vitro and during MOG-EAE. We performed additional

experiments to identify a potential mechanism of enhanced

oligodendrocyte apoptosis due to increased galactose intake. Yet,

we observed no differences in the expression of the receptor for
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AGEs (RAGE) in the CNS or in oligodendroglial cells during

MOG-EAE (Supplementary Figures 2A, B). The analysis of nitrite

levels, nitric oxide synthase 2 (Nos2) and Nuclear factor erythroid

2-related factor 2 (Nrf2) as markers for oxidative stress revealed no
FIGURE 2

A galactose-rich diet significantly increased demyelination and impaired the neuro-axonal integrity during MOG-EAE. C57BL/6N mice were adapted
to a galactose-rich diet 14 days prior to active immunization and during MOG-EAE. Histological analyses were performed on spinal cord cross
sections from control or galactose-treated (Gal) mice suffering from chronic EAE (34 days p.i., control n=5, Gal n=6) for (A) demyelination with
CNPase staining, IHC-staining of (B) oligodendrocytes, (C) anterior horn neurons, and (D) axonal densities determined by Bielschowsky silver
staining. (E) Analysis of axolytic axons using electron microscopy (n=5 per group). Left: Scale bars depict mean ± SEM. Right: Representative images
of the respective staining. Scale bars are 400µm in (A, B), 200µm (C, D) and 5µm in (E). White arrows show the demyelinated regions in (A), positive
cells in (B, C), axons in (D) or axolytic axons in (E). *p<0.05, **p<0.01 using an unpaired t-test.
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FIGURE 3

A galactose-rich diet does not affect immunological processes during MOG-EAE. C57BL/6N mice were adapted to a galactose-rich diet 14 days
prior to active immunization and during MOG-EAE. (A, B) Histological analysis of spinal cord cross sections for (A) CD3+ T cells and (B) Mac3+
macrophages/microglia at the maximum of EAE (16 days p.i., control n=5, Gal n=6). Right: Representative images. Scale bars are 200µm. White
arrows mark positive cells. (C, D) Flow cytometry analysis of spinal cord infiltrating cells isolated on day 16 of EAE for IFNg+ Th1 cells, IL-17A+ Th17
cells and FoxP3+ Treg cells and (D) CD11b+/CD11c+ APCs (Th1, Th17, CD11b, CD11c control n=9, Gal n=10; Treg control n=5, Gal n=6). (E)
Activation of spinal cord infiltrating CD4+ T cells was analyzed by flow cytometry analysis of CD44 and CD25 expression in CD4+ T cells (n=5 per
group). (F) Activation of spinal cord CD11b+/CD11c+ cells was analyzed by flow cytometry analysis of CD69 expression in CD11b+/CD11c+ cells in
the spinal cord in day 16 p.i. (n=5 per group). (G, H) Flow cytometry analysis of splenic cells isolated on day 10 of EAE for (G) IFNg+ Th1 cells, IL-17A
+ Th17 cells and CD25+FoxP3+ Treg cells and (H) CD11b+/CD11c+ APCs. (n=5 per group). (I) Activation of splenic CD4+ T cells was analyzed by
flow cytometry analysis of CD44 and CD25 expression in CD4+ T cells (n=5 per group). (J, K) Splenocytes were isolated on day 10 of EAE from
control and galactose treated mice and in vitro restimulated with MOG peptide for 48h and 72h. (J) Proliferation of CD4+ T cells, IFNg secreting Th1
cells or FoxP3 expressing Treg cells was analyzed via flow cytometry as fold increase of proliferating cells upon antigen re-stimulation compared to
control treated cells after 72h. (n=5 per group). (K) Cytokines in cell culture supernatants were measured by ELISA after 48h. All data are presented
as mean ± SEM. Scale bars depict mean ± SEM. Data were analyzed by unpaired t-test or two-way ANOVA.
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differences in galactose-fed mice compared to the controls

(Supplementary Figures 2C-E). Moreover, the analysis of

microglia cells isolated from EAE-diseased mice receiving either

control or a galactose-rich diet demonstrated no differences in both

groups, arguing for a direct effect of galactose or galactose induced

AGEs on oligodendroglial cells during neuroinflammation.
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Discussion

In this study, we show that a galactose-rich diet exacerbates

EAE severity in its acute phase and leads to impaired recovery in

the chronic phase of neuroinflammation. Interestingly, flow

cytometry analysis revealed that this was not accompanied by
FIGURE 4

Galactose enhances the formation of AGEs that affects neuronal and oligodendroglial cell viability. (A) C57BL/6N mice were adapted to a galactose-
rich diet 14 days prior to active immunization and during MOG-EAE. Oligodendrocytes (O4+) were isolated via magnetic cell separation on day 20 of
EAE and stained with Annexin-V and viability dye for the analysis of cell apoptosis. The frequency of Annexin-V+ cells in O4+ cells was analyzed by
flow cytometry (control n=5, Gal n=8). (B) Percentage of Ki67+ Olig2+ proliferative cells in oligodendroglial cell cultures after incubation with or
without 1.5 mM galactose for 3 days determined by immunofluorescence staining (n=3). (C) Percentage of apoptotic cells in human neuronal iPSCs
cultures treated with 1.5mM galactose for 24h, 48h and 72h (n=3-4 from two independent experiments). (D) Incubation of BSA (10 mg/ml) without
galactose (control) or with 0.5 M D-galactose (AGE-BSA) and weekly determination of the formation of AGE-BSA over a 12 week (w) period after
dialysis by measurement of autofluorescence (n=3, one representative experiment is shown). (E) Determination of fluorescent AGEs in protein
isolated from spinal cord on day 16 of MOG-EAE of control diet mice compared to mice on a galactose-rich diet (control n=8; Gal n=5).
(F) Percentage of apoptotic cells in human neuronal iPSCs cultures treated with H2O2, H2O2+BSA or H2O2+50 µg/ml AGE-BSA for 48 h (n=4 from
two independent experiments). (G) Percentage of Olig2+ cells with apoptotic nuclei in oligodendrocyte cultures after treatment with 50 µg/ml AGE-
BSA or BSA alone for 72 h assessed by immunofluorescence staining (n=4) and representative images (arrows indicate Olig2+ cells with shrunken
nuclei). (H) Percentage of Caspase-3+ cells in oligodendroglial cell cultures after treatment with 50 µg/ml AGE-BSA or BSA alone for 72 h assessed
by immunofluorescence staining (n=4). Scale bars depict mean ± SEM; *p<0.05, **p< 0.01, ***p<0.001 using an unpaired t test in (A, B, E) or an
ordinary one-way ANOVA in (C, D, F–H).
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enhanced immunological responses in the spleen, neither in the

pre-clinical phase of EAE nor at the disease maximum. In line

with this observation, galactose induced EAE severity was not

mediated by increased immune cell infiltration in the spinal cord

at the maximum of the disease as assessed histologically and via

flow cytometry, suggesting that the observed differences in the

course of disease are not primarily driven by quantitative changes

in immunological processes but rather due to early axonal loss (32,

33). Of note, histological analyses revealed that a galactose-rich

diet significantly increased demyelination and impaired neuro-

axonal integrity as evident from reductions in proportions of

myelinated area, numbers of neurons and axonal densities as well

as an increased proportion of axolytic axons and oligodendrocyte

apoptosis. However, galactose treatment of iPSC-derived human

iPNs did not affect cell survival in vitro. Additionally, galactose

treatment of oligodendroglial cells did not cause an altered

proliferation capacity in vitro, indicating that the observed in

vivo effects of galactose on myelin and neuro-axonal integrity may

not be primarily driven by the sugar itself. We suggested that

galactose may lead to the formation of advanced glycation end

products (AGEs). These heterogeneous macromolecules are

formed by glycation in vitro and in vivo in the so called non-

enzymatic Maillard reaction between reactive sugars such as

galactose and amino groups, lipids or nucleic acids (34, 35).

AGEs also play a key role in galactose-mediated aging models:

Rodents treated chronically with galactose have been described to

develop a phenotype resembling features of the natural aging

process, including cognitive dysfunction, neurodegeneration and

shortened life span (36). Therefore, this model is commonly used

for age research and drug testing (36, 37). However, for aging

models, galactose is given subcutaneously or intraperitoneally for

up to 16 weeks. In contrast, we here assessed the impact of a

galactose enriched diet applied orally via the drinking water for only

5 to 7 weeks. The mechanism leading to the features of aging is not

completely understood, but there is accumulating evidence for an

important role of oxidative stress and AGEs (35, 37). AGEs are

known to physiologically accumulate throughout the body with

increasing age and have been proposed to contribute to age-related

stiffening of heart, tendons, skeletal muscle and blood vessels (35).

They are also associated with a number of neurodegenerative

diseases, as there is evidence on increased beta-amyloid formation

by AGEs in Alzheimer’s disease (38), increased aggregation of

alpha-synuclein, and increased AGE-levels in the frontal cortex of

Parkinson’s disease patients (39). Some clinical studies also

implicate AGEs in EAE and MS pathogenesis and suggest their

potential use as biomarker. One study reported an increase of AGE

levels in the plasma and brain of MS patients (40, 41). In addition,

Wetzels and co-workers showed increased AGE levels in MS lesions

and AGE production by astrocytes which may affect microglia

(42).By incubation of BSA with galactose, we were able to

generate AGEs in vitro as assessed by fluorescence measurement,

which is well in line with previous findings (43). Furthermore, we

showed a time-dependent increase in AGE concentration during

the incubation period. To check whether a galactose rich diet leads

to increased AGE-levels during neuroinflammation in vivo, protein

was isolated from spinal cords of EAE diseased mice. Here, we
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found higher AGE-associated fluorescence in galactose-treated

animals compared to controls. Next, the effect of galactose-

derived AGEs was tested on iPSC-derived neurons and in

oligodendroglial cell cultures. In line with previous studies,

reporting a toxic effect of AGEs on rat cortical neurons (29, 44),

we found an increased rate of cell death in AGE-treated neuronal

cells as well as oligodendroglial cultures. Regarding the role of AGEs

in oligodendrocyte culture, to our knowledge, no data have been

published so far. However, there are studies supporting the

relevance of receptors of AGEs (RAGE) to oligodendrocyte

function and neuronal regeneration in spinal cord injury (45),

which describe surface expression of RAGEs on oligodendrocytes

as well as its shedding upon oxidative stress (46).

Increased neuronal and oligodendroglial cell death by AGE

treatment and galactose diet, respectively, may be mediated by

RAGE signaling. RAGE is expressed on monocytes/macrophages,

neurons, neutrophils, lymphocytes, vascular endothelial cells and

oligodendrocytes (46, 47). Its expression can be induced by

accumulation of ligands such as AGEs, amyloid b peptide, DNA-

binding protein high mobility group box-1 (HMBG1) and S100/

calgranulins as well as in the presence of inflammatory mediators

(48). The toxic effects of AGEs on neurons were mainly attributed to

increased oxidative stress after binding to RAGE (29, 49).

Downstream signaling of RAGE leads to NF-kB activation,

proposing a role of AGE-RAGE interaction in inflammation and

immunological processes (50). The relevance of RAGE in the

context of MS and EAE was supported by an upregulation of

RAGE in active MS lesions as well as in spinal cord tissue in the

EAE model. Blockade of RAGE with soluble RAGE (sRAGE), the

cleaved variant of RAGE, was able to prevent activation of

membrane-bound RAGE and partially protected animals from

EAE (51). Accordingly, sRAGE levels were reduced in the serum

and CSF of MS patients (52, 53).

The observed increased damage in oligodendroglial and neuronal

cells upon AGE treatment as well as dietary galactose, may be

attributed to a RAGE-mediated increase in oxidative stress and

NF-kB activation followed by secretion of pro-inflammatory

cytokines. Yet, we detected no differences in RAGE expression in

the spinal cord of EAE diseased mice receiving either a control or

galactose-rich diet. Moreover, oligodendrocytes isolated from EAE-

diseased mice demonstrated a similar RAGE expression in both

groups, suggesting no significant involvement of RAGE expression

during galactose-induced oligodendroglial apoptosis (Supplementary

Figures 2A, B). The analysis of nitric oxide synthase 2 (Nos2/iNOS) as

a key enzyme involved in the production of nitrogen species, as well

as Nuclear factor erythroid-2-related factor 2 (Nrf2) as a key regulator

of anti-oxidant pathways revealed no differences in galactose fed mice

compared to the controls during MOG-EAE. Coinciding with this,

we detected comparable nitrite levels in the serum of EAE diseased

mice either receiving galactose in control, suggesting no relevant

involvement of oxidative stress in our experiments (Supplementary

Figures 2C-E). However, a RAGE-specific blockade in vitro or anti-

RAGE treatment during MOG-EAE may yield even more conclusive

results. Another detrimental mechanism may include activation of

microglia by AGEs (54) leading microglia-driven oligodendrocyte

damage (55). Yet, we detected no differences in the activation status of
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microglia isolated from EAE diseased mice receiving either a control

or galactose-rich diet. We observed comparable levels of CD69 and

MHCII expression as well as inflammatory cytokine secretion,

suggesting no involvement of microglia activity here

(Supplementary Figures 2F-K). Yet, additional experiments will be

necessary to identify a conclusive mechanism of enhanced

oligodendrocyte apoptosis due to increased galactose intake.

In summary, combining our findings with those from other

groups, we assume that not galactose itself, but rather AGEs are

responsible for enhanced EAE severity in vivo after a galactose-rich

diet. We were able to correlate increased disease severity with

reduced axonal and neuronal density in the spinal cord, as well as

increased demyelination, while immunologic parameters in spleen

and spinal cord remained unaltered. Although the precise

mechanisms of galactose-driven EAE severity remain unclear, we

suggest a detrimental effect of galactose-induced AGEs on

oligodendrocytes and neuronal cells, leading to loss of myelin

integrity and axons in vivo and increased cell apoptosis in vitro

and ex vivo. The present study links neurodegeneration observed in

galactose-induced aging with enhanced neuronal and

oligodendroglial damage following galactose rich diet in

neuroinflammation. Moreover, it provides support for a role of

AGE in susceptibility for neuronal damage. Hence, it appears

promising to conduct further investigations into the effects of

AGEs on MS and other neurodegenerative diseases, especially in

light of high consumption of dairy products, and escalating

consumption of processed foods with substantial quantities of

AGEs (35). Ultimately, this may open up new avenues for

establishing dietary guidelines or dietary supplements for patients

serving as additional therapeutic measures in neurological diseases.
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