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MICA+ tumors
Elisha R. Verhaar1,2, Anouk Knoflook1, Novalia Pishesha3,4,
Xin Liu1, Willemijn J. C. van Keizerswaard1,
Kai W. Wucherpfennig5 and Hidde L. Ploegh1,2*

1Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States, 2Department of Cell
and Chemical Biology, Leiden University Medical Centre, Leiden, Netherlands, 3Division of
Immunology, Boston Children’s Hospital, Boston, MA, United States, 4Department of Pediatrics,
Harvard Medical School, Boston, MA, United States, 5Department of Cancer Immunology and
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MICA and MICB are Class I MHC-related glycoproteins that are upregulated on

the surface of cells in response to stress, for instance due to infection or

malignant transformation. MICA/B are ligands for NKG2D, an activating

receptor on NK cells, CD8+ T cells, and gd T cells. Upon engagement of MICA/

B with NKG2D, these cytotoxic cells eradicate MICA/B-positive targets. MICA is

frequently overexpressed on the surface of cancer cells of epithelial and

hematopoietic origin. Here, we created nanobodies that recognize MICA.

Nanobodies, or VHHs, are the recombinantly expressed variable regions of

camelid heavy chain-only immunoglobulins. They retain the capacity

of antigen recognition but are characterized by their stability and ease of

production. The nanobodies described here detect surface-disposed MICA on

cancer cells in vitro by flow cytometry and can be used therapeutically as

nanobody-drug conjugates when fused to the Maytansine derivative DM1. The

nanobody-DM1 conjugate selectively kills MICA positive tumor cells in vitro.
KEYWORDS

MICA, NKG2D, NKG2D ligands, cancer, nanobodies, VHHs, immuno-oncology,
nanobody drug conjugate
1 Introduction

The Class I MHC-like molecules MICA and MICB are stress-induced surface

glycoproteins, absent from healthy cells but upregulated on virus-infected or malignantly

transformed human cells (1). MICA/B are ligands for NKG2D, an activating receptor on NK

cells, CD8+ T cells, and gd T cells (2). Upon engagement of NKG2D, these cytotoxic cells can

eradicate MICA-positive targets, assisted by secretion of cytokines (3–5). Elevated levels of

MICA/B occur in hematopoietic malignancies, as well as in epithelial solid tumors such as

colorectal cancer (6), ovarian cancer (7), cervical cancer (8), breast cancer (9), pancreatic
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cancer (10), melanoma (11) and cholangiocarcinoma (12). MICA/B

are thus considered possible targets for immunotherapy.

Nanobodies, a registered trademark, are also referred to as VHHs.

They are the smallest immunoglobulin fragments that retain the

capacity of antigen binding. They are the recombinantly expressed

variable regions of camelid heavy chain-only immunoglobulins (13).

Nanobodies have a short circulatory half-life, are poorly

immunogenic, and show excellent tissue penetration compared to

conventional full-sized immunoglobulins (14, 15). Many nanobodies

do not require disulfide bonds for their stability, nor do they depend

on glycosylation for expression. They are therefore easily and

affordably produced in prokaryotic cells (16–18). Nanobodies have

proven valuable as the point of departure for the construction of PET

imaging agents (19–24), nanobody-drug conjugates (25–27), and

chimeric antigen receptors in cell-based therapies (28–38).

Because MICA is expressed on stressed and cancerous cells, the

ability to detect such aberrations in vivo would be an important

diagnostic tool to detect premalignant and malignant lesions. Here,

we report the generation of nanobodies that recognize MICA, and

apply these nanobodies to detect surface-boundMICA in vitro by flow

cytometry. Fused to the microtubule inhibitor Maytansine (DM1),

these nanobodies can be used therapeutically as nanobody-

drug conjugates.
2 Materials and methods

2.1 Alpaca immunization and phage
library construction

We immunized an alpaca with 250 ug of the purified

extracellular portion of MICA*009 (obtained by baculovirus

expression in the lab of K.W. Wucherpfennig (39)) comprising

the a1, a2, and a3 domains in alum adjuvant, followed by 3 booster

injections at 2-week intervals. Immunizations were carried out by

Camelid Immunogenics. The immune response of the animal was

checked by immunoblot (Supplementary Figure 1). Briefly, 1 mg of
antigen was resolved by SDS PAGE and transferred to a PVDF

membrane. The membrane was incubated with at 1:5000 dilution of

alpaca serum collected 2 weeks after the last boost. HRP-linked

goat-anti-llama (0.05 mg/mL; Bethyl, NC9656984) was used as the

secondary antibody. Membranes were developed with ECLWestern

Lightning Plus. Mononuclear cells from peripheral blood of the

immunized alpaca were isolated by Ficoll gradient separation. The

VHHlibrarywas generated according toanestablishedprotocol (Maas

et al., 2007). Briefly, RNAwas extracted (RNeasyRNApurification kit,

Qiagen) and cDNAwasprepared (Superscript IIIfirst-strand synthesis

system, Invitrogen). The DNA sequences from conventional and

heavy-chain only Ig genes are not distinguishable based on the use of

specific primers, but two distinct hinge regions are generated between

the VHH domain and the CH2 region. We amplified the VHH

repertoire from the alpaca using VHH-specific primers that target

these hinge sequences (Supplementary Table 1). We pooled the VHH

PCR products and ligated them into a phagemid vector in-frame with

the pIII gene of the M13 phagemid to construct a phagemid library
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display. We performed two rounds of panning against MICA*009

immobilized on an ELISA plate, following previously described

protocols (40).
2.2 Production of recombinant VHHs and
sortase reactions

DNA from positive clones was sequenced and 9 clones were

selected for further characterization. The relevant VHH sequences

were subcloned into a pHEN6 expression vector with C-terminal

modifications, so that each nanobody sequence included an LPETG

motif recognized by sortase A, followed by a (His)6-tag to facilitate

recovery and purification. Briefly, VHH sequences were amplified from

the phagemid vector by PCR (primers in Supplementary Table 1) and

the pHEN6 vector was linearized using the NcoI and BstEII restriction

enzymes. Gibson assembly was performed following manufacturer’s

directions (Gibson Assembly® Master Mix, NEB). Positive VHH

clones were expressed in WK6 E.Coli in terrific broth and

periplasmic protein expression was activated by induction with

isopropyl b-D-thiogalactopyranoside (1 mM) at an OD600 of 0.6.

VHHs were harvested from the periplasm by osmotic shock. The C-

terminal (His)6-tag allows purification of the recombinant proteins

using Ni-NTA agarose beads (Qiagen), followed by FPLC purification

on an S75 column by FPLC (ÄKTA, Cytiva Life Sciences). Sortase

reactions were performed by incubating each nanobody with a 10-fold

molar excess of GGG-nucleophile in the presence of 25 µM Sortase 7M

(41) overnight at 4°C. Because the LPETG sequence is cleaved during

transpeptidation, the (His)6-tag immediately C-terminal of the LPETG

motif is lost. This allows enrichment of the desiredmodified product by

depletion of His-tagged sortase and unreacted nanobody on a NiNTA

matrix, while the unbound fraction contains the modified nanobody.
2.3 Competitive ELISA and estimation of
binding affinity

An ELISA was performed to determine the concentration at

which each biotinylated nanobody showed ~80% binding to

recombinant MICA*009 (5 mg/mL) immobilized on an ELISA

plate. Biotinylated nanobody at a concentration that yielded 80%

of the maximum attainable binding value was then mixed with a

500-fold excess of unlabeled competitor nanobody and allowed to

compete for binding to 5 mg/mL MICA*009 coated on an ELISA

plate. Plates were incubated with streptavidin-HRP (0.00025 mg/
mL) for 45-60 minutes at room temperature. After addition of TMB

substrate, absorbance was read out at 450 nm on a Spectramax iD5

plate reader (Molecular Devices). If the unlabeled nanobody binds

to an epitope distinct from that recognized by the biotinylated

nanobody, no diminution of the signal at 450 nm is expected.

Nanobodies that recognize the same epitope as that seen by the

biotinylated nanobody will show a reduction in the signal at 450nm.

We estimated the binding affinity of VHH-A1 and VHH-H3 by

performing an ELISA as previously described (42). Briefly, we

incubated plates coated with 100mL PBS containing 2.5 mg/mL
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recombinant MICA*009 or GFP as negative control with

biotinylated VHH-A1 and VHH-H3 in various concentrations

(10-fold serial dilutions; 0.000001 nM – 1000 nM). Streptavidin-

HRP at 0.00025 mg/mL was used as detection agent. After addition

of TMB substrate, absorbance was read at 450 nm on a

Spectramax iD5 plate reader (Molecular Devices). Binding affinity

was estimated by calculating the IC50 obtained from three

experimental replicates with each sample added in duplicates.

Recombinant MICA*009 was produced by transfection of EXPI-

293 cells with pcDNA3.1(+) vector encoding for extracellular

MICA*009 containing a C-terminal LPETG sortase motif

followed by a His (6)-tag to facilitate recovery and purification on

a NiNTA matrix (Supplementary Figure 2). EXPI-293 cells were

transfected using the ExpiFectamine™ 293 Transfection Kit,

according to manufacturer’s directions (Gibco).
2.4 Cell culture

B16F10 and EL-4 cells and their MICA+ transfectants were a gift

from the lab of Kai Wucherpfennig. B16F10 cells were cultured in

complete DMEM (DMEM with 4.5 g/L glucose, substituted with

10% Fetal Bovine Serum (FBS) and 100 U/mL penicillin/

streptomycin). EL-4 cells were cultured in complete RPMI 1640

(RPMI 1640, substituted with 10% FBS and 100 U/mL penicillin/

streptomycin). Cells were maintained at optimal densities in a

humidified 5% CO2 incubator at 37°C.
2.5 Flow cytometry

EL-4 WT and MICA+ cells, or B16F10 WT and MICA+ cells,

were stained with biotinylated VHH-A1 and VHH-H3 for 30

minutes on ice, washed, and incubated with a cocktail of

Streptavidin-conjugated PE at 0.0025 mg/mL (Invitrogen) and 2

mg/mL propidium iodide (Life technologies) for EL-4 or LIVE/

DEAD™ Fixable Violet Dead Cell Stain Kit (Invitrogen) for

B16F10, both according to manufacturer’s directions for 30

minutes on ice. Cells were analyzed on an LSR Fortessa flow

cytometer (BD Biosciences). Gating strategies were based on cell

lines stained with the appropriate controls, where single cells and

live cells were appropriately selected.
2.6 VHH-drug conjugate creation and in
vitro cytotoxicity assays

VHH-DM1 was produced in a sortase-mediated transpeptidation

reaction. Briefly, 500-1000 mg of VHH containing a C-terminal

LPETG-motif was mixed with a 10-fold molar excess of GGG-

DM1 and incubated with 25 mM Sortase for 16 hours at 4°C.

GGG-DM1 was produced in-house by modifying a GGG-peptide

linker to contain a maleimide group and allowing it to react with the

thiol group on DM1 (Broadpharm) (Supplementary Figure 3A).

Unreacted VHH and Sortase, both containing a (His)6-tag, were

depleted by incubation with NiNTA agarose (Qiagen or
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Prometheus). Excess free GGG-DM1 was removed by desalting on

a PD-10 desalting column (Cytiva). We plated 4000 cells/well in a 96-

well plate and incubated cells with serial 3-fold dilutions of VHH-

drug adduct or free DM4 (Broadpharm), a structural analog of DM1

(Supplementary Figure 3B) at 37°C in a humidified 5% CO2

atmosphere. After 72 hours, we measured cell viability by CellTiter

GloTM assay according to the manufacturer’s directions (Promega).

For co-culture experiments, MICA expression was determined after a

72-hour incubation. Each treatment was performed in duplicate. For

flow cytometry, the duplicate wells of each condition were combined,

and the cell mixture was stained with 0.0006 mg/mL biotinylated anti-

human MICA/B antibody (Clone 6D4, Biolegend) for 30 minutes on

ice. Cells were washed and incubated with Streptavidin-conjugated

PE at 0.0025 mg/mL (Invitrogen) and LIVE/DEAD™ Fixable Violet

Dead Cell Stain Kit according to manufacturer’s directions

(Invitrogen) for 30 minutes on ice. Cells were washed and viability

and MICA positivity were determined by flow cytometry on an LSR

Fortessa flow cytometer (BD Biosciences).
2.7 Statistical analysis

All statistical analysis was performed with GraphPad Prism 8.

Flow cytometry data was analyzed with FlowJo (v10.8.1 and v10.9.0).
3 Results

3.1 Alpaca immunization and phage display
panning yields MICA-specific nanobodies

We immunized an alpaca with purified recombinant MICA*009

in alum adjuvant, followed by 3 booster injections at 2-week

intervals. We checked the immune response of the animal by

immunoblot using serum samples collected prior to each boost.

Having recorded a positive response after the 3rd boost,

construction of a phage display library, followed by screening for

MICA-reactive hits, yielded positive clones. DNA from positive

clones was sequenced and 9 clones were selected for further

characterization. Because nanobodies interact with their antigen

mainly via their CDR3 region, and to a lesser extent via the

germline-encoded CDR1 and CDR2 (43), we chose clones that

were unique in their CDR3. A detailed comparison of the nanobody

clones based on sequence similarity in the framework and CDR

regions is described in the caption of Figure 1.

Relevant VHH sequences were subcloned into a pHEN6

expression vector to encode a VHH product with C-terminal

modifications, so that each VHH sequence included an LPETG

motif at its C-terminus, recognized by sortase A, and a (His)6-tag to

facilitate recovery and purification (Figure 1). This arrangement

enables the installation of fluorophores, biotin, and other

substituents by a site-specific and efficient sortase-catalyzed

transpeptidation reaction (41). Because the LPETG sequence is

cleaved during transpeptidation, the (His)6-tag immediately C-

terminal of the LPETG motif is lost. This allows enrichment of

the desired modified product by depletion of His-tagged sortase and
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unreacted nanobody on a NiNTA matrix, while the unbound

fraction contains the modified nanobody.
3.2 Nanobodies recognize recombinant
MICA and surface-exposed MICA on
cancer cells

To determine whether the isolated MICA-specific nanobodies

recognized similar or distinct epitopes on MICA, we performed

cross-competition experiments by ELISA. Competition of unlabeled

nanobodies with a biotinylated nanobody for binding to MICA

showed that this set of nanobodies recognizes two distinct epitopes,

one defined by the H3 nanobody and the second by all the other

nanobodies. None of the nanobodies compete for binding with the

7C6 monoclonal antibody, an agent that inhibits shedding of MICA

(45) (Figure 2A). Typically, not all nanobodies are suitable for use in

immunoblotting experiments, but the biotinylated versions of A1

and H3 yielded a strong and specific signal in immunoblots on

recombinant MICA (Figure 2B). The binding affinities of VHH-A1

and VHH-H3 are both in the nanomolar range, at ~0.2 and ~0.4

nM for A1 and H3 respectively (Figure 2C), as estimated by ELISA

assay. By examining the binding of the A1 and H3 nanobodies to a

subset of MICA/B allelic products, available in purified form, we
Frontiers in Immunology 04
conclude that the A1 and H3 nanobodies recognize the MICA*008

andMICA*009 alleles (Figure 2D) which, combined, cover 51.1% of

the Caucasian population (46). To verify that A1 and H3 also

recognize surface-disposed MICA, we used B16F10 transfectants

that express MICA*009, and EL-4 transfectants that express

MICA*008, with B16F10 and EL-4 wild type cells serving as

negative controls. Both A1 and H3 showed excellent staining of

the MICA transfectants by flow cytometry and yielded no signal for

the untransfected parental cell lines (Figure 2E) with a significant

difference determined by mean fluorescence intensity (MFI)

(Figure 2F). Gating strategies are shown in Supplementary Figure 4.
3.3 Anti-MICA nanobodies fused to
Maytansine (DM1) for targeted cytotoxicity
of MICA+ cancer cells

The reactivity of VHH-A1 and VHH-H3 make them appealing

candidates for the construction of nanobody-drug conjugates. To test

this, we ligated the Maytansine derivative DM1, a microtubule

disrupting agent, to VHH-A1 or to a VHH that targets mouse

MHC-II (VHHMHC-II) (47) as a negative control via a sortase-

mediated transpeptidation reaction (Figure 3A) and confirmed

successful ligation with SDS-PAGE (Figure 3B). We performed an in
FIGURE 1

Alpaca immunization and nanobody panning. After construction of a phage display library and screening for positive clones with plate-based
panning, nanobody sequences were determined and 9 unique clones were selected. Neutral amino acid substitutions attributable to somatic
hypermutations are underscored. Unique substitutions in framework regions are highlighted in blue and in CDR’s are highlighted in red. Nanobodies
harboring such mutations are more likely derived from different germline V regions rather than somatic hypermutation. The framework regions of
nanobodies D8 and C12 are identical. The alpaca IGHHV-3-3*01 gene is the possible germline version of these nanobodies (44). The single
difference of VHH A1 with D8 and C12 in its framework regions is an L2V substitution. A1 may thus be derived from the same germline V gene as D8
and C12 by a single (somatic) point mutation. The framework regions of nanobodies 2A9 and 2D5 are mostly identical to each other, with a single
S49A substitution between them. Nanobody E9 has both a D29E and a R45Q substitution, indicating that E9 may be derived from a different V gene.
In comparison with the other MICA-specific nanobodies, H3 has the largest number of differences in its framework regions and is clearly derived
from a different germline V gene, likely the alpaca IGHHV3-1*01 (44). The CDR1 and CDR2 regions are mostly conserved. The most obvious
deviation is a deletion at position 53 in VHH C12, B11, 2A9, 2D5, and E9. The MICA-specific nanobodies have CDR3 regions of 13-16 amino acids,
but H3 has a 31-residue CDR3. Except for VHH H3, A1 and 2B5, the remaining CDR3 regions are enriched for the sequence “AxDCLSSxWRx”. The
VHH sequences were subcloned into the pHen6 expression vector and modified at the C-terminus to contain an LPETG motif and (His)6 tag.
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vitro cytotoxicity assay by titration of VHHMHC-II-DM1, VHHA1-

DM1, or free DM4 (a functional analog of DM1) on EL-4 WT and

MICA+ cells. EL-4 MICA+ cells were sensitive to VHHA1-DM1, with a

stronger cytotoxic effect at lower doses of the VHH-drug conjugate

compared to VHHMHC-II-DM1, as estimated by IC50. The IC50 of

VHHA1-DM1 treated EL-4MICA+ cells was comparable to that of cells

treated with free DM4. Similarly treated WT cells showed no obvious

reduction in viability with either nanobody-drug conjugate (Figure 3C).

To further validate selectivity of VHHA1-DM1 for MICA+ cells, we

co-cultured EL-4 WT and EL-4 MICA+ cells at a 1:1 ratio, and added
Frontiers in Immunology 05
VHHMHCII-DM1, VHHA1-DM1, or free DM4 at different

concentrations. We determined the ratio of viable EL-4 WT and EL-

4 MICA+ cells after 72 hours by flow cytometry using a live/dead cell

stain. We stained the MICA+ cells in the co-culture with a biotinylated

aMICA mAb, using streptavidin-conjugated PE as secondary reagent.

Gating on live cells and MICA+ cells showed specific elimination of

MICA+ cells at adduct concentrations between 1.71 nM and 416 nM

for VHHA1-DM1. A difference in ratio between WT and MICA+ cells

was not observed in cells treated with VHHMHCII-DM1 or free DM4.

BecauseWT cells proliferate slightly faster thanMICA+ cells in culture,
A B

D

E F

C

FIGURE 2

Characterization of MICA-specific VHHs. (A) Cross-competition ELISA shows that VHH-A1 and VHH-H3 recognize distinct epitopes on MICA.
Neither VHH cross-competes for binding with the monoclonal antibody 7C6. (B) VHH-A1 and VHH-H3 recognize MICA in immunoblot. 500 ng
recombinant MICA*009 in non-specific E. coli whole cell lysate (WCL) was separated by SDS-PAGE and transferred to a PVDF membrane. Blots were
stained with 1 mg/mL biotinylated VHH-A1 or VHH-H3 respectively. Detection with strep-HRP (0.3 ng/mL) shows a clear signal for both VHHs.
(C) Binding affinity as estimated by ELISA coated with 2.5 mg/mL recombinant MICA*009, or GFP as the negative control. Estimated Kd values are
0.22 nM and 0.37 nM for VHH-A1 and VHH-H3 respectively. (D) ELISA coated with different recombinant MICA alleles shows that VHH-A1 and VHH-
H3 both recognize MICA*008 and MICA*009. (E) Flow cytometry with biotinylated VHH-A1 and VHH-H3, using streptavidin-conjugated PE as
secondary agent, shows a clear signal in the PE channel for MICA+ EL-4 and B16F10 cells, but not for the WT cells, indicating recognition of
membrane-disposed MICA on the surface of cells by both nanobodies. Gating strategies for flow cytometry are shown in Supplementary Figure 4.
(F) We calculated the MFI after flow cytometry. The MFI of B16F10 WT cells was 394 for VHH-A1 and 299 for VHH-H3. The MFI of B16F10 MICA+

cells was 23430 for VHH-A1 and 27411 for VHH-H3. The MFI of EL-4 WT was 310 for VHH-A1 and 511 for VHH-H3. MFI of EL-4 MICA+ cells was
7955 for VHH-A1 and 6417 for VHH-H3. We averaged the MFI from the WT or MICA+ cells and determined a significant difference in nanobody
staining of WT versus MICA+ cells (p = 0.00713 for B16F10; p = 0.0128 for EL-4, calculated by multiple T-test).
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the distribution shifted to ~65% WT and 35% MICA+ cells after 72

hours in culture. Thus, numbers were normalized according to the

percentage of cells of either line in the untreated (“0 nM”) group

(Figure 3D). Gating strategies are shown in Supplementary Figure 5.

Tumor cells can downregulate surface expression of MICA

through shedding, mediated by proteolytic cleavage at the a3
domain. Increased levels of soluble MICA (sMICA) in the serum
Frontiers in Immunology 06
of patients are associated with poor prognosis and worse disease

progression (10, 48–50). To address the possible competition of

sMICA for binding with the anti-MICA nanobody, we performed

an in vitro cytotoxicity assay. EL-4 WT and MICA+ cells were

incubated with VHHMHCII-DM1, VHHA1-DM1, or free DM4 at a

fixed concentration of 2.5 nM, in the presence of sMICA at various

concentrations (serial 2-fold dilutions; 0-5 nM/0-170 ng/mL). We
A B

D

E

C

FIGURE 3

Anti-MICA VHHs as nanobody-drug conjugate with the Maytansine derivative DM1. (A) We ligated the microtubule inhibitor Maytansine GGG-DM1 to
VHH-A1 or VHHMHC-II as non-targeting control through sortase-mediated transpeptidase reaction. (B) Because GGG-DM1 has a slight positive
charge, the modified VHHs will migrate slightly lower on the SDS-PAGE gel compared to the unmodified VHHs. (C) The in vitro cytotoxicity assay
was performed with limited dilutions of VHHMHC-II-DM1, VHHA1-DM1, or free DM4 on EL-4 WT cells and their MICA+ counterparts. After incubation

for 72 hours, we measured cell viability by CellTiter Glo™ assay. MICA+ cells treated with VHHA1-DM1 showed a significant reduction in IC50, and
thus a reduction in viability with smaller amounts of drug added, compared to similarly treated WT cells, or cells treated with the non-targeting
VHHMHCII-DM1. (D) We co-cultured EL-4 WT and EL-4 MICA+ cells at a 1:1 ratio and added VHHMHCII-DM1, VHHA1-DM1, or free DM4 at different
concentrations. Viability of EL-4 WT and MICA+ cells was determined using a live/dead cell stain. MICA+ cells were stained with a biotinylated anti-
MICA mAb, using streptavidin-PE as secondary agent. Gating on live cells and PE showed elimination of MICA+ cells at VHH-drug adduct
concentrations between 1.71 nM and 416 nM for VHHA1-DM1. A difference in [WT : MICA] was not observed in cells treated with VHHMHCII-DM1 or
free DM4. Gating strategies for flow cytometry are shown in Supplementary Figure 5. (E) We incubated EL-4 WT and MICA+ cells with 2.5 nM of
VHHMHCII-DM1, VHHA1-DM1, or free DM4 in the presence of sMICA (two-fold dilutions; 0-5 nM/0-170 ng/mL) for 72 hours. We measured viability by

CellTiter Glo™ assay. We did not observe a decreased effect on cytotoxicity of VHHA1-DM1 on MICA+ cells with addition of sMICA in the medium.
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observed no reduction in cytotoxicity of VHHA1-DM1 on MICA+

cells upon addition of sMICA to the medium (Figure 3E).

Publications report concentrations of sMICA in the serum of

MICA+ patients in the range of 0.1-15 ng/mL (51–53) which is at

least 10-fold lower than the sMICA concentration in our

competition assay. We thus expect little to no impact of sMICA

in patients’ serum on the ability of these nanobodies to target

membrane-bound MICA in vivo.
4 Discussion

MICA and MICB are Class I MHC-related proteins expressed on

stressed and cancerous cells. Their presence can serve not only as a

diagnostic marker but may also be exploited as a target for therapy.

While the typical immunoglobulins exert their functional properties

through Fc effector functions, their size compromises efficient tissue

penetration. Nanobodies offer an appealing alternative to

immunoglobulins for the purpose of launching an immune attack on

MICA-positive tumors. Nanobodies are characterized by their small

size, showing superior tissue penetration compared to intact

immunoglobulins, and ease of production and modification (14, 15,

17, 18). Lastly, nanobodies are poorly immunogenic, presumably

because of their considerable sequence homology with human VH

regions (44). Because nanobodies lack an Fc portion, for them to exert

cytotoxic activity they require functionalization, for example with a

cytotoxic drug creating a nanobody-drug conjugate, as done here for

the VHH-DM1 adducts. Compared to antibody-drug conjugates using

conventional immunoglobulins, the small size of the nanobody allows

superior penetration into tumor tissue. Furthermore, owing to the

relatively short circulatory half-life, the nanobody-drug conjugate that

is not bound to its target will be eliminated more quickly from the

circulation, resulting in less systemic cytotoxicity by slow release of the

drug attached to the antibody-drug conjugate.

We produced and characterized in further detail two nanobodies,

A1 and H3, that recognize the MICA alleles *008 and *009 with nM

affinities. An analysis of the MICA-specific nanobodies shows that

they are unique sequences, thus the isolated nanobodies were likely

derived from a few different germline V genes (see Figure 1 and

legend). The germline sequences of the V genes of the (outbred)

alpaca used for immunization are not known. We can only compare

the sequences of the MICA-specific nanobodies with each other, and

with reference germline sequences from unrelated alpacas.

The alpaca IGHHV-3-3*01 gene is the possible germline version of

the D8 and C12 nanobodies (44). The single difference of VHH A1 with

D8 and C12 in its framework regions is an L2V substitution, thus A1

may be derived from the same germline V gene as D8 and C12 by

somatic mutation. Nanobody E9 has a D29E and an R45Q substitution,

indicating that E9may be derived from a different V gene. In comparison

with the other MICA-specific nanobodies, H3 has the largest number of

differences in its framework regions and is clearly derived from a different

germline V gene, likely the alpaca IGHHV3-1*01 (44).

Highly similar CDR regions, specifically CDR3, imply

recognition of related antigens (54–57). For the MICA-specific

nanobodies, the CDR1 and CDR2 regions are mostly conserved.

The most obvious deviation in the CDR2 region is a deletion at
Frontiers in Immunology 07
position 53 in VHH C12, B11, 2A9, 2D5, and E9. Somatic

hypermutation can produce deletions and insertions in V genes

(58–60) but given the overall similarity in framework regions, the

use of a distinct V gene that lacks residue 53 is the more plausible

explanation. Except for H3, A1 and 2B5, the remaining CDR3

regions are enriched for the sequence “AxDCLSSxWRx”.

We show that these nanobodies bind to surface-disposed MICA

on cells and can thus be used for diagnostic and therapeutic purposes.

The specific targeting of MICA+ cells make them suitable candidates

as diagnostic markers, as building blocks for nanobody-drug

conjugate, or for the construction of chimeric antigen receptors

(29, 30, 37, 61). MICA and MICB are highly polymorphic in the

human population, with hundreds of alleles for MICA and MICB

identified so far (46, 62). The isolated nanobodies were tested for

recognition of the MICA alleles *002, *008 and *009, andMICB allele

*005. Of the tested alleles, the nanobodies recognize MICA*008 and

MICA*009, which together cover over 50% of the investigated

German population (46). Expanding the nanobody pool to cover a

larger portion of the alleles ofMICA andMICB should be considered.

We recognize the limitations of using a MICA+ cell line obtained by

transfection. The availability of a suitable patient-derived cell line that

expresses the correct alleles of MICA is a limiting factor, an issue

worth exploring in future research.

We created a nanobody-drug conjugate by conjugating the

microtubule inhibitor DM1 to VHH-A1. We show increased

cytotoxicity of MICA+ tumor cells compared to WT tumor cells

in vitro, with efficacy comparable to that of free drug but with much

higher specificity for MICA+ cells. The production of these

nanobody adducts should be scaled up for testing on in vivo

tumor models. The creation of different VHH-drug combinations,

for example by inclusion of DNA damaging agents or other

cytotoxic drugs (63, 64), or even radiopharmaceuticals for

targeted radiotherapy (65, 66), deserves consideration as well.

Cleavage of the a3 domain involving the disulphide isomerase

ERp5 and ADAM-type proteases such as ADAM10 and ADAM17

(48–50, 67, 68), and thus shedding of the MICA/B from the cancer

cell surface, may lead to immune evasion and failure to be recognized

by NKG2D-positive cytotoxic cells. The monoclonal antibody 7C6

inhibits the shedding of MICA/B, and thus increases the density of

MICA/B proteins on the surface of tumor cells (45) Although we saw

no reduction in efficacy of VHHA1-DM1 on MICA+ cells upon

addition of sMICA to the medium, the combination of anti-MICA

nanobody adducts with the 7C6 antibody might therefore be

therapeutically more attractive than either treatment alone.
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