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Atherosclerosis poses a significant threat to human health, impacting overall

well-being and imposing substantial financial burdens. Current treatment

strategies mainly focus on managing low-density lipids (LDL) and optimizing

liver functions. However, it’s crucial to recognize that Atherosclerosis involves

more than just lipid accumulation; it entails a complex interplay of immune

responses. Research highlights the pivotal role of lipid-laden macrophages in the

formation of atherosclerotic plaques. These macrophages attract lymphocytes

like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory

response. gd T lymphocytes, with their diverse functions in innate and adaptive

immune responses, pathogen defense, antigen presentation, and inflammation

regulation, have been implicated in the early stages of Atherosclerosis. However,

our understanding of the roles of gd T cells in Atherosclerosis remains limited.

This mini-review aims to shed light on the characteristics and functions of gd T

cells in Atherosclerosis. By gaining insights into the roles of gd T cells, we may

uncover a promising strategy to mitigate plaque buildup and dampen the

inflammatory response, thereby opening new avenues for effectively managing

this condition.
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Introduction

Atherosclerosis contributes significantly to coronary artery disease, a leading cause of

death worldwide (1). At its core, an imbalance in lipid metabolism leads to the formation of

cholesterol-laden macrophages (foam cells) that are present in artery walls and greatly

contribute to the development and rupture of atherosclerotic plaques (2). a diverse array of

immune cells, including macrophages and T cells, infiltrate the intima of the plaque,

playing a significant role in the progression of atherosclerosis. In many instances, the

presence of lipid abnormalities leads to the apoptosis of endothelial cells, causing the release

of inflammatory cytokines that attract circulating immune cells like monocytes to the sites
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of inflammation (3). Furthermore, T cells accumulate in the

adventitia, particularly in arterial segments during the progression

of atherosclerosis (4). These immune cells that are attracted to the

site attempt to clear the apoptotic cells, but they encounter an

abundance of surrounding lipids. Consequently, they uptake these

lipids, leading to the formation of foam cells. These foam cells, in

turn, continue to attract more immune cells, further contributing to

the buildup of the atherosclerotic plaque.

T cells are characterized by surface markers, specifically the T-

cell receptor (TCR), which plays a crucial role in adaptive

immunity. Most T cells in humans are called ab T cells, which

can further be subdivided into subsets like CD4 T cells and CD8 T

cells. These two subsets have been found to play a role in the

progression and regression of atherosclerosis. Recent findings

suggest that CD4 T cells can recognize peptides derived from

apolipoprotein B in atherosclerosis models (5–7). On the other

hand, CD8 T cells show a higher prevalence in the circulating blood

and atherosclerotic lesion areas (8, 9). Compared to ab T cells, gd T
cells express a unique TCR consisting of gamma and delta chains,

which grants them diverse capabilities in engaging both innate and

adaptive immune responses. gd T cells represent a subset of T

lymphocytes that comprise a relatively small fraction of peripheral

blood (1%–5% of circulating lymphocytes) (10). However, they

form the predominant subset of T cells residing in mucosal tissues

and skin, serving a unique and crucial role in immune defense that

sets them apart from other lymphocytes. Recent findings suggest a

pathogenic role of gdT cells in the early stages of atherogenesis in

ApoE KO mice. These cells produce IL-17 instead of INF-g,
resulting in elevated circulating neutrophils (11). However, our

understanding of the specific functions of gd T cells, particularly

their roles in the innate and adaptive immune responses in

atherosclerosis conditions, remains limited. In this mini-review,

we aim to uncover the roles of gd T cells in atherosclerosis and

explore potential therapeutic pathways utilizing gd T cells for the

treatment of atherosclerosis.
T lymphocytes in atherosclerosis

Macrophages have been the predominant focus of immune cell

research in the context of atherosclerosis formation over the past

decades. These cells are essential in clearing apoptotic cells via

efferocytosis and digestion in a normal lipid environment. However,

disrupted lipid metabolism of innate immune cells (e.g.,

macrophages) could form foam cells in artery walls, a key

contributor to atherosclerotic plaque development (2, 12, 13).

When innate immune cells cannot effectively clear accumulated

lipids in the lesion area, foam cells will attract additional adaptive

immune cells to the site. In the later stages of atherosclerosis, the

influx of adaptive immune cells, particularly T lymphocytes (abT
and gdT lymphocytes), participate in the inflammatory response in

the plaque area.

ab T cells are the predominant type of lymphocyte in both

murine and human peripheral circulation. They can be further
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categorized into two major subsets based on their cell surface

markers: CD4+ and CD8+ T cells. In atherosclerosis conditions,

these subsets of abT cells play crucial roles in the immune response,

contributing differently to the overall detection and defense against

lipid abnormalities in the body. CD4+ T cells, which represent the

major population of abT cells, have also been identified in

atherosclerotic plaques. Th1 and Th17 cells, both subpopulations of

CD4+ T cells, have been recognized as pro-atherogenic, whereas Th2

cells function in an anti-atherogenic capacity (7, 14). In mouse

studies, Th1 cells within plaques exhibit high CC-chemokine

receptor 5 (CCR5) expression and robustly produce pro-

inflammatory cytokines, including IFNg, IL-2, TNF, and the T-bet

transcription factor. These factors can potentially stimulate the

production of pro-inflammatory macrophages, thereby amplifying

the inflammatory response (15–17). Compared with Th1 cells, Th2

cells are generally regarded as anti-inflammatory in atherosclerotic

conditions. Clinical studies have demonstrated that individuals with a

higher number of Th2 cells in peripheral blood mononuclear cells

(PBMCs) exhibit a lower burden of subclinical atherosclerosis, as

indicated by reduced common carotid intimal media thickness, in

comparison to those with lower numbers of Th2 cells (18, 19).

Furthermore, Th2-secreted cytokines, such as IL-5 and IL-13, have

exhibited an atheroprotective role in both human and murine studies

(20–22). Th17 is another subpopulation of CD4+ T cells identified as

a major source of IL-17 secretion and exhibits distinct plasticity in

various inflammatory contexts (23–25). Most studies have

demonstrated that IL-17A is a pro-atherogenic cytokine in Apoe-/-

mice studies (26–28). However, some results indicate that IL-17 may

have opposing effects or no significant impact on atherosclerosis (27–

30). Therefore, the roles and functions of Th17 cells in atherosclerosis

need further exploration.

Furthermore, there is a divergence in research findings regarding

the contribution of Treg cells to the advancement of atherosclerosis.

Treg cells are known to release IL-10 and TGF-b, both of which have

exhibited a protective effect on the progression of atherosclerosis, as

demonstrated in both animal and clinical studies (31, 32). They can

reduce atherosclerosis by modulating lipoprotein metabolism (33).

However, it has been observed that when Treg cells lose FoxP3

expression, they may transform into T follicular helper (Tfh) cells,

potentially intensifying the progression of atherosclerosis (34, 35).

Additionally, another subset of CD4+ T cells, the Natural Killer T

(NKT) cells, has been found to play a pro-atherogenic role in mouse

models (36–38). The roles of other T cell subpopulations, such as Th9

and Th22, in atherosclerotic conditions remain unclear.

CD8+ T cells are prominent participants in antiviral and

antitumor responses.

Notably, in the context of atherosclerosis, both patients and

mouse models have demonstrated the accumulation of CD8+ T

cells. These CD8+ T cells are known to secrete IFNg, which can

trigger inflammation and recruit monocytes, thus accelerating the

atherosclerotic condition. This, in turn, leads to an enhanced

presence of CD8+ T cells in both the circulation and

atherosclerotic plaques (8, 39, 40). Furthermore, single-cell RNA

sequencing data from the progression of human atherosclerotic
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plaques revealed two distinct gd T cell clusters expressing TRGC1,

TRGC2, and TRDC. Interestingly, this expression profile is similar

to that of CD8 T cells, suggesting a potential exacerbation of

atherosclerosis by these gd T cell clusters (41).
The roles and functions of gd T
lymphocytes in innate and adaptive
immune responses

gd T cells are yet another subset of T lymphocytes characterized

by the presence of the gd T cell receptor (TCR) on their cell surface.

Although only a small population of these cells is found in

peripheral blood (1%–10% of CD3+ T cells) (42), this type of cell

constitutes the major subset of resident T cells in mucosa and skin.

It plays a distinct role in immune protection compared with other

lymphocytes (43). gd T cells are particularly enriched in epithelial

tissues, such as the reproductive tract, skin epidermis, and

gastrointestinal tract, responding to potential danger or cellular

stress signals. gd T lymphocytes are composed of several subsets. In

human or higher primates, gamma delta T cells are categorized

based on TCRdelta usage, denoted by Vd1+, Vd2 + and Vd3, etc
(44, 45). In murine models, classification is determined by

TCRgamma usage, indicated by Vg1, Vg4, Vg5, Vg6, and Vg7
(46–50).

As T lymphocytes, gd T cells also have multiple functions. These

cells play different roles in the immune response, such as cytokine

production, antigen presentation, killer cell activity enhancement,

and immune cell regulation (43). In contrast to abT cells, gdT cells

are not limited by APCs, which have the ability to recognize danger

signals and then activate targeted cells (51, 52). Crowley et al. found

that mouse gdT cells could recognize MHC IB antigens, such as T10

and T22 (53). In a human study, gdT cells, such as APCs, can also

directly activate CD8+ gdT cells (54); therefore, gdT cells may trigger

the immune response without any help from APCs and recruit

other immunocytes to inflammation sites. When infection occurs,

gdT cells will secrete cytokines (IFN-g, IL-17, and others), thus

promoting the recruitment of neutrophils to participate in the early

stage of inflammatory responses (55). In addition to differences in

cytokine repertoire, gdT cells exhibit diversity in homing and

antibody production, such as migration to lymph node follicles,

to help B cells by promoting antibody production in B cell follicles

(56–58). In addition, various subsets of gdT cells have shown anti-

inflammation and immunoregulatory activities as well as repair

functions (43) (Figure 1).

Similar to ab T cells, gdT cells can differentiate into gd1, gd2,
gd17, and others (43, 59) (Figure 1). Moreover, unlike other IL-17-

producing cells that require initiation gdT cells can directly secrete

IL-17 under certain inflammatory conditions (60). Roark et al.

demonstrated that IL-17-producing gdT cells could differentiate and

develop differently than Th17 cells to mount a quick response for

protection against infection (61). Interestingly, responses of IL-17-

producing cells are important for the host defense against
Frontiers in Immunology 03
microorganisms, particularly extracellular bacteria (62, 63). IL-17,

produced by gdT cells, may trigger a positive feedback loop that

further attracts Th17 and Th1 cells, dendritic cells, and neutrophils,

amplifying host inflammatory responses. Moreover, unlike other

IL-17-producing cells that require initiation, gdT cells can directly

secrete IL-17 under certain inflammatory conditions (60). gd T cells

emerge as the principal reservoir of IL-17-producing cells, promptly

engaging with antigens within mucosal tissues to fortify the body’s

defense against infections. These results suggest that gd T cells have

great potential in antigen recognition and pathogen elimination,

potentially fulfilling a distinctive role within the immune system.

Several studies have demonstrated that gdT cells, as the body’s

first barrier, play a vital role in the mucosal immune response (64).

In a mouse model infected with Streptococcus pneumoniae, the

number of gd T cells significantly increased in the lungs at 3, 6, and

12 hours post-infection. However, the recruitment of neutrophils

sharply declined in TCR-Vg4-/- mice. The bacterial clearance ability

was impaired in TCR-Vg4-/- mice compared to WT mice. This

result demonstrates the critical role of gdT cells in neutrophil-

mediated host defense against S. pneumoniae infection (65). In a

study of oral Yersinia pseudotuberculosis, bacteria presented earlier

invasion of the liver and spleen in gdT cell-deficient mice compared

to WT mice (66). In addition, some studies found that gd T cells

were the predominant IL-17-producing cells that eliminated

bacteria-induced pathogens, such as E. coli or S. aureus. gdT cells

were found to be the primary producers of IL-17 after E. coli

infection; antibody depletion of gdT cells led to a decline of IL-17

production and less neutrophil infiltration to the peritoneum (67).

Cho et al. found that gdT cell-deficient mice were much more

susceptible to S. aureus infection and presented impaired neutrophil

recruitment than WT mice. Furthermore, our previous result

showed that gdT cells, especially gd17 cells, play an essential role

in S. aureus-induced chronic mastitis (68). Interestingly, gdT cells

could directly recognize lipoteichoic acid (LTA) by the scavenger

receptor CD36 (69). Thus, Long-chain fatty acids may also activate

gdT cells via CD36 receptor ligands (70, 71). These results

demonstrated that gdT cells might protect the body against

pathogen invasion and provide protection in the early stage of

infection. Interestingly, certain bacteria could also promote the

progression of atherosclerosis (72). However, the role of gdT cells

during this process remains unknown, potentially providing a new

direction for atherosclerosis research.

gdT cells have diverse functions in physiological and

pathological processes during infection. These cells release

cytotoxicity effector molecules, such as perforin and granzyme, to

kill infected cells and to directly or indirectly activate immunocytes

and epithelial cells to participate in pathogen elimination (73, 74).

gdT cells also secrete bacteriostatic or lytic molecules to directly

clear pathogens in mucosal immunity (59). In addition, a variety of

pathogens could induce gdT cells to produce different cytokines, for

instance, TNF-a and IFN-g were the major secretions in viral or

intracellular bacterial infection; IL-17 was the main product in

extracellular bacterial or fungal infection; IL-4, IL-5 and IL-13 were

the primary cytokines produced upon extracellular parasite
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stimulation (43, 59). Additionally, gdT cells can produce

immunosuppression cytokines such as TGF-b or IL-10 to regulate

innate or adaptive immunity and promote tissue repair and

epithelial cell regeneration (59, 75). Previous results indicated that

gd T cells could directly mediate host infection and bridge innate

and adaptive immune responses (Figure 1).

gd T cell also demonstrate their reparative role by playing a

pivotal role in tissue repair by producing cytokines and growth

factors. Normal wound closure was restored by supplementing

rapamycin-treated mice with skin gdT cells released elements

(76). In corneal friction impairment, CCR6+ IL-17+ gd T cells

rapidly migrate to the basal layer of the corneal stratum to

contribute to epithelial healing; however, the process of epithelial

healing was notably impaired in TCRgd-deficient mice (77). gdT
cells are also involved in adaptive immunity-mediated

inflammation. In an inflammatory bowel disease (IBD) mouse

model, gdT cells exacerbate colitis in TCRgd-/- mice probably by

promoting Th1 and Th17 differentiation (78). gdT cells could also
Frontiers in Immunology 04
cooperate with gdT cells to participate in the inflammatory response

and migrate to lymph nodes to help B cells produce antibodies for

pathogen elimination (59) (Figure 1).
gd T cells in atherosclerosis

ab T cells primarily participate in adaptive immune responses,

recognizing peptides through antigen-presenting cell MHC. On the

other hand, the recognition process of gdT cells is independent of

MHC and includes non-peptide antigens like phospholipids and

organic molecules. Additionally, gdT cells exhibit the ability to

process environmental information more rapidly than ab T cells.

These findings suggest that under atherosclerotic conditions, gdT
cells may exhibit enhanced efficiency in lipid processing,

highlighting the need for further exploration.

In high lipid environments, gd T cells have been observed to

promote inflammation and insulin resistance significantly. This is
FIGURE 1

Schematic Illustration of the Roles of gd T Cells in a High Lipid Environment. These schematic figures aim to illustrate the potential interactions
between gd T cells and other immune cells in a high-lipid environment. gd T cells have proven their capacity to offer immune defense against
bacterial and tumor threats. These cells perform various functions upon activation, including aiding B cells in antibody production, activating ab T
cells, promoting monocyte differentiation, recruiting neutrophils, and supporting tissue repair—an essential process for wound healing. In the
context of atherosclerosis, gd T cells may exhibit similar actions. Moreover, gd T cells possess the capability to polarize into various subpopulations,
including gd1, gd17, and gdreg, each playing distinct roles based on environmental stimuli. gd17 cells, known for producing inflammatory molecules
like IL-17 and IL-23, might accelerate atherosclerotic lesion formation. However, information about other subsets, such as gd1 or gdreg cells, and
their involvement during plaque formation is currently limited. The figure was created with BioRender.com.
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achieved through the upregulation of cytokine production (such as

IL-6, TNF-a, etc.) and the recruitment of inflammatory

macrophages in obesity mouse model (79). In ApoE/gd T cells

double knockout (DKO) mice, a substantial reduction in circulating

neutrophils was observed when these DKOmice were on a Western

diet. Notably, the expansion of inflammatory monocytes and

splenic Th1 or Th17 lymphocytes remained unaffected (11).

Neutrophils show a higher abundance in early atherosclerotic

lesions compared to more advanced plaques. Also, Neutrophils

are the major source of IL-23, they could collaborate with IL-23R+

gd T cells, collectively contributing to the initiation of inflammation

in the vessel wall (80, 81). These findings suggest a significant

connection between gd T cells and neutrophils in atherosclerosis,

indicating a potential therapeutic target for treatment.

Innate immune cells play a crucial role in the early stages of

responding to high lipid. When an excess of lipids is present, the

innate immune cells and endothelial cells, acting as the initial line of

defense, promptly release pro-inflammatory cytokines like IL-1b,
IL-6, and TNF-a at inflammatory sites. This action is followed by

the recruitment of additional lymphocytes, such as Th1 cells, which

accelerate the progression of atherosclerosis. Conversely, during the

stages of atherosclerosis regression, innate immune cells can express

ACE (angiotensin-converting enzyme), IL-4, and IL-10 and TGF-b
to attract reparative lymphocytes like Th2 cells. Additionally, they

reprogram macrophage metabolism by modulating ACE expression

towards oxidative phosphorylation (OXPHOS), aiming to mitigate

atherosclerosis (3, 82–85). gd T cells are regarded as members of the

innate immune system, playing a crucial role in innate immune

recognition and bridging innate and adaptive immunity.

Consequently, they could be a promising target for the treatment

of atherosclerosis.

Reparative macrophages play a pivotal role in the regression of

atherosclerosis. However, their abundance is often compromised by

the heightened presence of IL-17 within the atherosclerotic milieu.

IL-17 has been identified as a key factor in inhibiting the polarization

of M2 macrophages while concurrently stimulating the proliferation

of M1 macrophages. Studies utilizing murine models of chronic

trauma have underscored the potential of IL-17-neutralizing

antibodies in bolstering the population of M2 macrophages (86,

87). Moreover, gd17 cells emerge as prominent contributors to the IL-

17 pool, particularly during the progression of atherosclerosis,

compared to other gd T cell subsets. This prevalence of gd17 cells

in the initial stages of atherosclerosis is implicated in impeding the

recruitment and activation of reparative macrophages. Furthermore,

in the context of metabolic disorders such as obesity, gd17 cells have
been observed to exacerbate inflammation and insulin resistance

through heightened cytokine production, including IL-6 and TNF-a,
and the recruitment of proinflammatory M1 macrophages (79).

Additionally, investigations in psoriasis mouse models have

revealed a potential link between Ly6C high monocytes/

macrophages and the accumulation of gd17 cells mediated by the

secretion of IL-23 and IL-1b (88, 89). These findings collectively

suggest a mechanistic association between gd17-derived IL-17 and the
Frontiers in Immunology 05
dampening of M2 macrophage polarization, thereby perpetuating

atherosclerosis progression.

On another front, the role of gd T cells in antigen presentation is

noteworthy. These cells possess a broader antigen recognition

repertoire compared to conventional ab T cells, enabling them to

respond to diverse non-peptide antigens. In conditions such as

sepsis, however, the antigen-presenting functions of gd T cells may

be compromised, leading to reduced activation of CD4+ T cells.

Nevertheless, in healthy individuals, gd T cells typically maintain

their APC functionality (89, 90). Recent studies have shown that the

infusion of allogeneic Vd2 T cells can increase the proportions of

both CD4+ and CD8+ T cells in the peripheral blood of most

patients (90). Additionally, CD1 molecules, a family of cell surface

proteins responsible for presenting lipid antigens to T cells, have

been implicated in antigen presentation (91). Notably, CD1

proteins, including CD1a, -b, -c, and -d, are highly expressed in

atherosclerotic plaques (91, 92). These lipid antigens presented by

CD1 encompass a diverse array, ranging from foreign lipids unique

to specific microorganisms to common mammalian self-lipids (93).

Human gd T cell receptors (TCRs) have been found to recognize

CD1 molecules via Vd1+ or Vd3+ subsets and can respond to

various presented phospho- and glycolipids (90). This suggests that

gd T cells may play a role in recognizing and presenting foreign

lipids to ab T cells during the formation of atherosclerosis. These

findings highlight the potential of gd T cells as APCs capable of

promoting the proliferation of ab T cells, hinting at a therapeutic

avenue for mitigating atherosclerosis.

In the landscape of atherosclerosis, cytokines are broadly

categorized as either pro- or anti-atherogenic. Pro-atherogenic

cytokines like IL-17, IL-1b, and IL-6 exert significant influence on

plaque formation, while anti-atherogenic cytokines such as IL-10,

TGF-b, IL-5, and IL-13 have been associated with reduced plaque

formation. During the progression stage, gd T cells have been

observed to increase notably in high lipid environments, releasing

proinflammatory cytokines like IL-6, IL-1b, and IL-17, potentially

exacerbating plaque vulnerability (94). Single-cell RNA sequencing

data from both human and mouse studies have revealed an

increased number of gd T cells in adventitial artery tertiary

lymphoid organs (ATLOs), exhibiting elevated expression levels

of certain genes including Cxcr6, Lgals1, Reep5 and S100a6 (95).

Consequently, in the context of atherosclerosis, gd T cells may

promote inflammation by releasing proinflammatory cytokines and

chemokines, thus accelerating disease progression. Despite

limitations in studying the subsets and functions of gd T cells in

atherosclerosis, their involvement in cardiovascular-related diseases

such as myocardial infarction and myocardial ischemia has been

extensively investigated (96–98). Studies have shown that gd T cells

are recruited to the myocardium after myocardial infarction in both

humans and mice, acting as a major source of IL-17A, which

promotes inflammation (97, 98). People have observed increased

expression of CD69 in Tregs after myocardial infarction in patient

samples. Knockout experiments in mouse models have revealed

that the absence of CD69 dramatically increases IL-17+ gd T cells,
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exacerbating inflammation and impairing cardiac function (99). In

myocardial ischemia, depletion of IL-17A or gd T cells has been

shown to improve the survival rate of mice after early myocardial

ischemia (100). These discoveries indicate that gd T cells might be

promising targets for treating cardiovascular conditions.

Specifically, decreasing IL-17+ gd T cells could potentially

attenuate the advancement of cardiovascular inflammation.

In contrast, during atherosclerosis regression, gd T cells, as part

of the innate immune system, may detect lipids, releasing cytokines

that attract regulatory cells to the inflammatory site, thereby

reducing plaque expansion. In experiments involving high

cholesterol treatment, gd T cells have displayed higher activation

levels of lipid digestion markers (ABCA1 and ACAT1/2) compared

to ab T cells (101). Additionally, in ruminants, gd T cells play a

crucial regulatory role in the immune system, spontaneously

secreting IL-10 and proliferating in response to specific stimuli

(102). Notably, IL-10 and TGF-b have been identified as major

cytokines associated with atherosclerosis regression (103).

Furthermore, studies on obesity have shown that cytokine levels

such as IL-13 and IL-5 are significantly lower in gd T-deficient obese
mice compared to WT mice (104). These findings suggest a

potential reparative role for gd T cells during the process of

atherosclerosis regression, further highlighting their importance

in mitigating disease progression and promoting vascular health.

Recent finding has been shown that gd T cells especially Vd2
cells are activated, independent of MHC, by small lipid molecules,

phosphoantigens (pAgs), which are derived from the mevalonate

pathway (105). Additionally, specific lipid-related ligands, including

apolipoprotein A1 (Apo-A1) and ATP synthase/F1-ATPase

(recognized as a high-affinity apo A-I receptor), have been

identified as ligands for the Vɣ9Vd2 TCR on tumor cells,

suggesting a potential role for gd T cells in recognizing lipid

molecules (106). In patients with Coronary Artery Disease

(CAD), a lower absolute number of circulating gd T cells has

been observed. This may be attributed to an increase in Fas

expression on the surface of gd T cells in CAD patients,

potentially mediating apoptosis (107). Above findings suggest that

gd T cells could recognize ApoA, which may positively correlate

with HDL and have beneficial effects on cholesterol efflux, thereby

promoting atherosclerosis regression. Investigating the connection

between gd T cells and apolipoproteins during atherosclerosis

regression may offer new insights for treatment strategies.

Immunometabolism can reprogram cells according to their

energy environment. abT cells have been observed to utilize

various metabolic pathways and metabolites that can modulate T

cell proliferation, survival, differentiation, and function (108, 109).

In contrast to abT cells, our knowledge regarding the metabolism of

gdT cells remains limited. In tumor microenvironments, gd T cell

subsets that produce either IFN-g or IL-17 exhibit inherently

distinct metabolic requirements (109, 110). Lopes et al. discovered

that gdIFN T cells exhibit a high degree of glycolysis, similar to CD8

+ T cells. Conversely, gd17 T cells rely on oxidative phosphorylation

(OXPHOS) and exhibit increased mitochondrial mass. Their study

also identified two major transcription factors, NRF1 and Myc,
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which regulate OXPHOS and glycolysis (109, 110). In another

study, glutamine has been identified as a crucial regulator in gd17
T cells associated with skin inflammation (111). Fatty acids, which

serve as a primary energy source to sustain the body’s daily

requirements, can also induce reprogramming of T cell functions

across various dimensions. As T cells cannot synthesize fatty acids

internally, they rely on the abundant circulating fatty acids, which

can interact with T cells and influence every aspect of their

responses. The outcomes vary depending on the specific fatty acid

the T cell is exposed to. Unsaturated fatty acids, prevalent in anti-

inflammatory responses, contribute to an atheroprotective role. In

contrast, saturated fatty acids, recognized as proatherogenic factors,

tend to incite a more pro-inflammatory reaction during T cell

activation (112). External fatty acids can impact the differentiation

of Th17 cells by modifying T cell metabolism through acetyl-CoA

carboxylase 1 (ACC1) (113). One human study revealed that adding

palmitoleic acid to activated human T cells did not induce cytotoxic

effects. However, it did reduce the production of IL-17A, IL-2, IFNg,
and TNF, while simultaneously decreasing the number of Treg cells

(114). Polyunsaturated fatty acids (PUFAs) like EPA and DHA

exhibit distinct anti-inflammatory properties, enhancing the

proportion and cytokine levels of anti-inflammatory Th2 cells and

Treg cells while reducing those of pro-inflammatory Th1 and Th17

cells in both vitro and vivo (112).

Despite the initial identification of gd T cells in human

atherosclerosis lesions, their precise role in the progression and

regression of atherosclerosis remains unclear (11, 101, 115). Since

the first identification of gdT cells in human atherosclerotic lesions,

only a few studies have been conducted in mice investigating their

involvement in atherosclerosis (11, 101, 115). Notably, during the

early phases of atherogenesis, there was a marked increase in the

numbers of gdT cells within the proximal aorta of ApoE-deficient

mice compared to wild-type counterparts. This elevation was

particularly pronounced in the aortic root and arch, where gdT
cells constituted the predominant T cell population, coinciding with

the most rapid lesion progression. These aortic gdT cells were

identified as IL-17 producers but not IFN-g (11). Interestingly, it

was found that the intracellular cholesterol content in gdT cells

significantly impacted their activation, proliferation, and effector

functions (101). Additionally, gdT cells emerged as a major source

of IL-17 in murine models, potentially regulating IL-17 production

in atherosclerosis. Bone marrow-derived CD27-positive gdT cells

promote atherosclerosis and influence plaque stability. This

promotion occurs through their direct involvement in lesion

inflammation and cell death, facilitated by the release of IFN-g
and perforin, ultimately expanding vulnerable plaques (116).

Additionally, IL-23R+ gd T cells are primarily concentrated in the

aortic root, exhibiting substantial expression of IL-17 and GM-CSF.

This implies a potential contribution to early atherosclerotic lesions

and plaque necrosis initiation by activating macrophages through

the secretion of IL-17A and GM-CSF (81). These observations

strongly suggest a pro-inflammatory role for activated gdT cells in

atherosclerosis. However, the precise role of these gdT cell

subpopulations in atherosclerosis remains elusive, mainly due to
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limited investigative resources and postponed analyses of gdT cells

in this context. Fortunately, recent advancements in sequencing

technologies such as single-cell RNA sequencing and spatial

transcriptomics provide new opportunities for a more

comprehensive understanding of gdT cells, their subsets, and

functions during the progression and regression of atherosclerosis.
gd T cells based therapy

gd T cells possess the unique ability of independent antigen

presentation, enabling direct infiltration into tumor environments.

High levels of gd T cells in cancer patients have been correlated with

improved clinical outcomes across various malignancies. As

mentioned above, Vd2 cells are the dominant and most studied

subset in human peripheral blood. Clinical applications of Vd2 cells
in cancer treatment have enhanced overall survival rates compared

to control groups (117–123). Vd1 cells also shown beneficial effects

in skin, colon, and triple-negative breast cancers, improving clinical

outcomes across various malignancies (124–126). gd T cells exhibit

rapid and effective target cell killing through the secretion of pro-

inflammatory cytokines (such as IL-12) and cytotoxic molecules

(granzymes and perforin), along with the expression of NK cell

receptors, which hold promise against malignant cells (121, 127).

Based on their anti-tumor capabilities, numerous gd T cell-

based immunotherapies have been developed for cancer treatment.

For Vd2 T cells, approaches include using humanized anti-BTN3A

antibodies to enhance their tumor-targeting ability (128, 129) or

employing engineered tumor-gd TCR bispecific antibodies (e.g.,

CD40, CD1D) to boost their cytotoxic efficiency (130, 131).

Furthermore, there has been a surge in the utilization of modified

gd T cells, such as CAR- gd T cells, which demonstrate enhanced

cytotoxic potential compared to unmodified counterparts within

the tumor microenvironment. Intriguingly, CAR-T Vd2 cells

maintain antigen-presenting potential in vitro (121, 132).

Recently, there’s been increased focus on Vd1 T cells, as they

exhibit prolonged persistence rates in vivo (121). Studies have

demonstrated that CAR Vd1 T cells possess tumor-suppressive

abilities, as evidenced in xenograft models of hepatocellular

carcinoma and B cell lymphoma (133, 134). Moreover,

researchers are utilizing retrovirus to implant TCRgd onto ab T

cells, creating ‘T cells engineered with defined gd TCRs’ (TEGs),

which have demonstrated tumor suppression abilities in various

models (135, 136). Although our understanding of gd T cells

reparative functions in inflammatory diseases is currently limited,

we still can draw from anti-tumor methods to explore new

approaches. For instance, atherosclerotic-gd TCR bispecific

antibodies and engineered reparative gd TCRs could be promising

avenues for atherosclerotic therapy.

Despite their promising potential, the utilization of gd T cells in

T-cell therapy faces challenges. Prolonged ex vivo expansion of gd T

cells can lead to a loss of anti-tumor efficacy due to gd T cell

exhaustion induced by long-term stimulations, including exposure
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to substances like ZOL and pro-inflammatory cytokines(IL-2, IL-15).

This phenomenon, known as T cell exhaustion, presents a significant

obstacle in harnessing the full therapeutic potential of gd T cells for

cancer therapy (137, 138). To address this challenge, Induced

pluripotent stem cell (iPSCs) technology hold promise as they

possess the ability for unlimited proliferation and multidirectional

differentiation. Watanabe et al. showed that human peripheral blood

mononuclear cells (PBMCs) were stimulated with IL-2 and

zoledronate. Subsequently, these cells were transfected with a

Sendai virus vector, resulting in gdT cell-dominant expression of

exogenous genes, allowing approximately 70% of the cells to carry the

TCRG and TCRD gene locus (137). Nobuyuki et al. successfully

utilized human iPSCs to generate gdT cells. These iPSC-derived gdT
cells have demonstrated potential applications in various cancers in

an MHC-unrestricted manner (138). They identified distinctive

features in these iPSC-derived gdT cells (igdT) by using single-cell

RNA sequencing. These cells exhibited lower CD2, CD5, and

antigen-presenting gene expression. Surprisingly, CD7, Kit, and

natural killer cell markers had higher expression. Additionally, igdT
cells expressed high levels of granzyme B and perforin (138). ab Treg

cells have been demonstrated to play a reparative role in the

development of atherosclerosis (139), Tregs can also upregulate the

expression of fatty acid transporter CD36 and PPAR-g, potentially
activating fatty oxidation to alleviate the progression of

atherosclerosis (140). Similar to the ab Tregs cell subset, enhancing

gdreg cells could serve as a potential target for treating atherosclerosis.
Additionally, freshly isolated human gd T cells typically exhibit low

expression of Foxp3 and CD25. However, after treatment with anti-

human TCRgd, the majority of expanded gd T cells coexpressed

Foxp3 and CD25 by day 5 (141). Interestingly, in a Type 1 diabetes

(T1D) mouse model, Mohammad et al. utilized iPSC-Tregs (iTreg) to

effectively suppress autoimmunity and prevent the destruction of

insulin-secreting pancreatic beta cells. Furthermore, their study

revealed that iTregs could reduce the expression of ICAM-1 in the

diabetic pancreas, thereby inhibiting the production of the pro-

inflammatory cytokine IFN-g within the pancreas (142). Therefore,

for future applications aimed at obtaining iPSC-induced gdreg cells,

one could potentially treat the cells with specific molecular

supplements, such as anti-human TCRgd and other anti-

inflammatory cytokines, to induce differentiation into gdreg cells

for the treatment of atherosclerosis.
Conclusions

gd T cells orchestrate a multifaceted immune response in the

context of atherosclerosis, with potential implications in either

promoting or reducing the threats posed by atherosclerosis,

depending on the specific subpopulations and their interactions

within the high lipid environment. gd T cells serve as a link between

the innate and adaptive immune responses, potentially holding a

pivotal role in the progression and regression of atherosclerosis,

contingent on their energy requirements. Further research is
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warranted to unravel the precise roles and implications of different

gd T cell subsets in atherosclerosis. Such insights have the potential

to unlock unique therapeutic strategies, including the induction of

reparative gd T cells through iPSC technology.
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