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Background: Coronavirus disease (COVID-19), caused by SARS-CoV-2, has

emerged as a infectious disease, coexisting with widespread seasonal and

sporadic influenza epidemics globally. Individuals living with HIV, characterized

by compromised immune systems, face an elevated risk of severe outcomes and

increased mortality when affected by COVID-19. Despite this connection, the

molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our

research endeavors to elucidate the shared pathways and molecular markers in

individuals with HIV concurrently infected with COVID-19 and influenza.

Furthermore, we aim to identify potential medications that may prove

beneficial in managing these three interconnected illnesses.

Methods: Sequencing data for COVID-19 (GSE157103), influenza (GSE185576),

and HIV (GSE195434) were retrieved from the GEO database. Commonly

expressed differentially expressed genes (DEGs) were identified across the

three datasets, followed by immune infiltration analysis and diagnostic ROC

analysis on the DEGs. Functional enrichment analysis was performed using GO/

KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened

through a Protein-Protein Interaction networks (PPIs) analysis among DEGs.

Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-

binding proteins was conducted based on the identified hub genes. Finally,

quantitative PCR (qPCR) expression verification was undertaken for selected

hub genes.

Results: The analysis of the three datasets revealed a total of 22 shared DEGs,

with the majority exhibiting an area under the curve value exceeding 0.7.

Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted

signaling pathways associated with ribosomes and tumors. The ten identified hub

genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL,
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and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p,

hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential

transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten

significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol,

fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide,

cyclosporine) were identified.

Conclusion: This research provides valuable insights into shared molecular

targets, signaling pathways, drug chemicals, and potential biomarkers for

individuals facing the complex intersection of COVID-19, influenza, and HIV.

These findings hold promise for enhancing the precision of diagnosis and

treatment for individuals with HIV co-infected with COVID-19 and influenza.
KEYWORDS

COVID-19, influenza, HIV, differentially expressed genes, immune infiltration, hub
genes, protein-protein interaction networks, drug chemicals
1 Introduction

The contagious illness, known as Coronavirus disease (COVID-

19), is generated by the Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) virus (1, 2) and emerged in Wuhan,

China, in December 2019, resulting in significant casualties, severe

consequences, and a significant menace to public health, food

systems, and the global workforce (1–4).According to the World

Health Organization (WHO), typical symptoms of COVID-19

encompass fever, diarrhea, sore throat, dry cough, fatigue, and

musculoskeletal manifestations such as joint and muscle pain (5–

9). Respiratory tract infection generated by influenza virus occurs

through direct infection of respiratory epithelial cells, leading to both

Innate and adaptive immune responses are activated. Indeed,

blocking the transmission of flu viruses is essential (10), given that

the onset of the flu season can substantially impact human well-being.

Influenza, a prevalent respiratory pathogen, causes regular outbreaks

and occasional severe epidemics globally (11).

As of 2021, the WHO estimates that approximately 36.3 million

individuals have lost their lives due to human immunodeficiency virus

(HIV)/acquired immunodeficiency syndrome (AIDS), with a global

population of 37.7 million affected by this disease. HIV results in HIV

infection and AIDS (12), characterized by the blood is described by a

deficiency of CD4 T cells, with a count below 200 cells per liter or the

presence of AIDS-defining illnesses (13, 14). Earlier research has

indicated that individuals with HIV face a twofold enhance in the

probability of succumbing to COVID-19 and experiencing more

adverse outcomes related to COVID-19 (15–17). Recent findings

suggest that HIV is an separate indicator of heightened risk for

severe/critical COVID-19 and mortality during hospitalization.

Although manifestations of influenza infection are comparable

between patients with and without HIV, HIV-positive individuals
02
appear more susceptible to complications from lower respiratory tract

disease (18). Mortality rates among people living with HIV after

contracting influenza have decreased due to antiretroviral treatment

but remain higher compared to individuals without HIV (19).

Numerous researches have examined COVID-19 and influenza-

infected persons, covering transmission methods, clinical

characteristics, immune response patterns, symptoms, laboratory tests,

radiological indications, morbidity, and mortality rates (10, 20–22).

Notably, individuals afflicted with COVID-19 reveal symptoms

akin to those observed in influenza patients, including cough,

pneumonia, acute respiratory distress syndrome (ARDS), fever,

imbalanced immune response, excessive inflammation, depletion

and dysfunction of T cells, and immune evasion mechanisms (21–

23). SARS-CoV-2 exhibits a higher transmissibility than seasonal

influenza, although the latter has a significantly lower fatality rate

(21, 22). It has also been established that COVID-19 individuals are

more susceptible to chemosensory dysfunction, rash, and

reproductive system damage than those with influenza (21, 24).

This research employed three datasets to uncover biological

connections among COVID-19, influenza, and HIV. Shared DEGs

were identified, followed by immune infiltration and diagnostic

Receiver Operating Characteristic (ROC) curve analyses.

Functional enrichment analysis and identification of potential

biological pathways were performed using Gene Ontology (GO)/

Kyoto Encyclopedia of Genes and Genomes (KEGG) and GSEA

methods. PPIs were utilized to analyze shared DEGs and identify

hub genes. Based on hub genes, several aspects were analyzed,

including microRNAs (miRNAs), transcription factors (TFs), drug

chemicals, diseases, RNA-binding proteins (RBPs), and expression

verification of some hub genes by qPCR. Figure 1 illustrates the

sequential workflow during the study. Abbreviation and full name

comparison table can be found in Supplementary Table 1.
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2 Materials and methods

2.1 Data collection

When selecting specific sequencing datasets, we carefully

evaluated factors such as data accessibility, data quality, disease

relevance, and consistency with study objectives. In order to explore

common genetic interactions and potential therapeutic targets

among COVID-19, influenza, and HIV, we acquired microarray

and RNA-seq data from the Gene Expression Omnibus (GEO)

database, which is administered by the National Center for

Biotechnology Information (NCBI).The COVID-19 dataset (GEO

accession ID: GSE157103) comprised 126 samples (100 COVID-19

and 26 non-diseased control samples) obtained from whole blood,

and transcriptional analysis was performed. RNA sequencing

analysis of GSE157103 utilized the Illumina NovaSeq 6000

(Homo sapiens) platform (GPL24676) for high-throughput

sequencing-based expression profiling. The influenza dataset
Frontiers in Immunology 03
(GEO accession ID: GSE185576) included 152 samples of whole

blood from 127 influenza-positive cases and 25 healthy controls.

The dataset was created using the Agilent SurePrint G3 platform

(GPL21185), and expression profiling analysis was conducted using

array-based methods. Similarly, the HIV dataset (GEO accession

ID: GSE195434) involved whole blood gene expression profiles

from 90 samples, including 69 HIV-infected and 21 HIV-

uninfected individuals. Expression profiling utilized the Illumina

HumanHT-12 platform (GPL10558), and analysis was performed

through array-based methods.
2.2 DEGs detection and shared DEGs
among COVID-19, influenza, and HIV

Our research primarily focused on identifying DEGs in the

COVID-19, Influenza, and HIV datasets. For the COVID-19

dataset, sequencing data were initially obtained from GEO. The
FIGURE 1

Schematic illustration of the overall general workflow of this study.
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Xiantao online tool’s differential analysis transcriptome-counts

module was utilized for standardization, and the resulting DEG

data were downloaded. In the case of the influenza dataset, the

GEO2R web tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/) was

employed to analyze DEGs, utilizing the Xiantao online tool for

DEG identification. Similarly, the Xiantao tool was utilized for the

analysis of the HIV dataset and identify DEGs. DEGs showing an

adjusted p-value was less than 0.05 and |log2FC| > 0.58 were

regarded statistically significant and used for subsequent analysis.

To visualize the overlapping up-regulated and down-regulated

DEGs across all three datasets, three Venn diagrams were

generated: one for the intersection of all DEGs, one for the

intersection of only up-regulated DEGs, and another for the

intersection of only down-regulated DEGs. Additionally, volcano

plots were generated for each dataset to visualize the differential

genes. Heat maps and group comparison diagrams, derived from

the 22 identified DEGs, were created to represent the three datasets.

All these visualizations, including volcano plots, Venn diagrams,

heat maps, and group comparison diagrams, were generated using

the Xiantao tool.
2.3 Diagnostic ROC curve analysis of 22
DEGs among COVID-19, influenza, and HIV

In our study, we utilized grouped data and expression data of 22

differential genes to generate ROC curves for each of the three

datasets. Each dataset drew 4 graphs respectively, of which the first

two graphs had 6 genes, and the last two graphs contained 5 genes,

12 pictures.
2.4 Immune infiltration analysis in
COVID-19, influenza and HIV datasets

In our analysis, we assessed each sample’s extent of immune cell

infiltration by utilizing the Immune Infiltration ssGSEA algorithm

module of the Xiantao tool. This approach involved employing

single-sample gene set enrichment analysis (ssGSEA) to assess the

extent of immune cell presence. Across the three datasets, we

utilized the Xiantao online tool to generate heat maps, group

comparison maps, and correlation heat maps, incorporating

information on 24 different immune cells.
2.5 Functional enrichment analysis

Analysis of functional enrichment includes GO analysis, a

widely used approach (25) that categorizes genes into the three

main domains: biological process (BP), cellular composition (CC),

and molecular function (MF). Additionally, substantially enriched

pathways were identified using KEGG pathway analysis, providing

valuable insights into the biological significance of genomic data

(26). For the GO/KEGG data analysis, we focused on 22 genes that

exhibited differential expression. Initially, a screening process was
Frontiers in Immunology 04
implemented, wherein the criteria for inclusion involved a false

discovery rate (FDR) of less than 0.25 and an adjusted p-value of

lower than 0.05. The top 5 terms for BP, CC, and MF (KEGG had

the top 4) were observed in a bubble graph. Subsequently, we

screened the top 3 results for BP, CC, MF, and KEGG to construct a

graphical representation of the network. To further explore the

connections between GO/KEGG terms and logFC across the three

datasets, we utilized the 22 DEGs to generate chord and

circle diagrams.
2.6 GSEA of common DEGs among
COVID-19, influenza, and HIV

In our study, we conducted GSEA using all samples from the

three datasets. Upon obtaining the data, we screened pathways

based on a FDR of less than 0.25 and an adjusted p-value of lower

than 0.05. Subsequently, we sorted the pathways in descending

order based on Normalized Enrichment Score (NES) values and

selected 8 important pathways for each dataset. To visualize the

results, we generated two classic graphs for each dataset. Each

classic graph contained information on 4 pathways. Additionally,

we generated a mountain plot for each dataset, illustrating all 8

selected pathways. The classic graphs and mountain plots were

created using the Xiantao tool, providing a comprehensive

visualization of the enriched pathways and their significance in

the context of the analyzed datasets.
2.7 PPIs and hub genes among COVID-19,
influenza, and HIV

In our study, we identified the PPIs of shared DEGs among

COVID-19, Influenza, and HIV. The connections between

various diseases based on protein interactions were explored

utilizing the STRING database’s search tool (version 12.0,

https://cn.string-db.org/) (27). The STRING database consolidates

established and anticipated connections among proteins,

encompassing both physical interactions and functional

relationships. For the construction of the PPIs, we set a minimum

interaction score of 0.150 as the low confidence level and established a

limit of a maximum of 5 interactors in the 1st shell. Additionally, we

implemented a minimum required interaction score of 0.900 as the

highest confidence level. We also limited the maximum number of

interactors to include only non-query proteins in the 1st shell,

resulting in the generation of an additional PPIs for common

DEGs. To enhance the visualization and facilitate further PPIs

studies, we utilized Cytoscape software (version 3.9.1) (28). In the

identification of hub genes within the PPIs, a plugin for Cytoscape

called Cytohubba was employed. We employed five algorithms

within Cytohubba, namely MCC, DMNC, MNC, Degree, and EPC,

to screen for hub genes (29). Using various algorithms, the top 10 hub

genes were chosen. Afterwards, the production of a Venn diagram

was conducted to determine the genes that overlap among these

algorithms, leading to the identification of core hub genes.
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2.8 The regulatory interaction network of
hub genes, which were interconnected
with miRNAs and TFs

MiRNAs are small, naturally occurring, non-coding RNAs that

function by binding to gene transcripts, influencing protein expression

(30). Transcription factors are essential regulators of transcription rates,

binding to specific genes (31) and providing valuable molecular insights.

To identify putative Hub genes-miRNAs, we employed the miRWalk

database (version 3.0, http://mirwalk.umm.uni-heidelberg.de/) and

considered pairings with a number greater than or equal to 20.

Additionally, the miRDB database (version 6.0, https://mirdb.org/) was

used for this screening process. Genes identified by both databases were

overlapped to acquire the Hub genes-miRNAs. Subsequently, these

selected genes were imported into Cytoscape software to generate a

graphical representation of the network. For Hub genes-TFs, we utilized

the database of hTFtarget (http://bioinfo.life.hust.edu.cn/hTFtarget#!/),

and the database of ChIPBase (version 3.0, https://rnasysu.com/

chipbase3/index.php). Genes obtained from both databases were

overlapped to select the Hub genes-TFs. Subsequently, the selected

genes were imported into the Cytoscape software platform in order to

generate a network diagram.
2.9 The network of regulatory interactions
between hub genes and chemicals, as well
as hub genes and diseases

To predict the interaction between proteins and drugs and

recognize drug molecules based on target genes, we utilized the

networkanalyst database (https://www.networkanalyst.ca/) and the

Comparative Toxicogenomics Database (CTD: https://ctdbase.org/).

Specifically, we aimed to identify the small molecule structures of 10

hub genes with a Reference Count of 2 or more. Genes filtered by

both databases were compared to identify intersecting hub genes

associated with chemicals. Subsequently, these hub genes associated

with chemicals were imported into Cytoscape software to generate a

network diagram. In addition, we investigated the connection

between Hub genes and diseases to identify related diseases with

common hub genes. Initially, we used the DisGeNET database

(version 7.0, http://www.disgenet.org/) and the MalaCards database

(Version 5.17, https://www.malacards.org/) to screen for related

genes. Genes extracted from the two databases were then compared

to identify Hub genes-disease relationships. The identified genes were

imported into Cytoscape software, where a network diagram

was constructed.
2.10 Prediction of hub genes–RBPs and
qPCR verification

To identify hub genes–RBPs, we utilized the ENCORI database

(https://rnasysu.com/encori/). The screening process involved

selecting genes with several supported CLIP-seq experiments

greater than 1. The selected hub genes–RBPs were then filtered,

and the selected genes were integrated into the Cytoscape
Frontiers in Immunology 05
application to generate a graphical representation of the network,

providing insights into potential RNA-protein interactions.

For gene expression verification, the qPCRmethodwas employed

on the datasets: COVID-19, influenza, and HIV. For COVID-19

testing, positive samples were patient throat swab samples, and

negative control samples were oral mucosal cells from a healthy

person. For influenza and HIV testing, positive samples were patient

whole blood samples, and negative control samples were whole blood

samples from a healthy person. Experimental samples were collected

from the First Affiliated Hospital of JinzhouMedical University. RNA

extraction was performed on oral mucosal cells and whole blood

samples utilizing the Viral Nucleic Acid Extraction Kit (SDK60104,

Jiangsu Bioperfectus) and quantified using a spectrophotometer

(NP80, Implen). The reverse transcription of RNA into cDNA was

performed employing ReverTra Ace® qPCR RT Master Mix with

gDNA Remover (FSQ-301, TOYOBO). Real-time quantitative PCR

(qPCR) was conducted utilizing Tag Pro Universal SYBR qPCR

Master Mix (Q712-02, Vazyme) and a real-time PCR system (QS7,

ABI). In the experimental setup for all three diseases, including

COVID-19, influenza, and HIV, each disease was tested using 4

positive and 4 negative samples. The experiment was conducted with

each sample comprising 3 sub-wells for robustness and reliability.

The primer sequences utilized for qPCR can be discovered in

Supplementary Table 2.

For the COVID-19 trial, three genes (IFIT3, EIF2AK2, and IFI27)

were selected; for the influenza trial, six genes (IFI44L, IFI44, RSAD2,

IFIT3, EIF2AK2, and IFI27) were chosen; and for the HIV trial, seven

genes (IFI44L, IFI44, RSAD2, IFIT3, EIF2AK2, IFI27, and ISG15) were

included. After qPCR amplification, the cycle threshold (CT) values of

each sample were recorded in Excel and then imported into the Xiantao

online tools for further analysis. The 2-DDCt approach, a widely used

method in qPCR data analysis, was employed to calculate the relative

expression levels for each sample. Subsequently, a histogram was

generated to visually represent the relative expression levels of the

selected genes across positive and negative samples for each disease.
2.11 Complex interrelationships of hub
gene, miRNA, transcription factor, drug
chemical, disease, and RBP

By considering 10 hub genes, 5 predicted significant miRNAs, 5

predicted transcription factors, 10 predicted drug chemicals, 10

predicted diseases, and 5 predicted RNA-binding proteins, we

constructed a comprehensive network diagram to visually represent

the mutual regulatory relationships among these six distinct types

of molecules.
2.12 Statistical analysis

The statistical analysis and visualization were conducted

employing the Xiantao online tool (https://www.xiantaozi.com/).

The group comparison diagrams were employed to analyze DEGs,

utilizing the Wilcoxon rank sum test. Additionally, the Spearman

correlation coefficient was utilized to assess the relationships
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between immune cells. Statistical significance extents were defined

as p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***), while ‘ns’ indicated

no significant difference.
3 Result

3.1 Detecting DEGs and identifying shared
DEGs for COVID-19, influenza, and HIV

In the COVID-19 dataset GSE157103, 2,197 genes exhibiting

differential expression were detected, comprising of 1,103 up-

regulated genes and 1,094 down-regulated genes. Similarly, in the

influenza dataset GSE185576, 2,630 DEGs (1,228 up-regulated and

1,402 down-regulated) were discovered, while the HIV dataset

GSE195434 revealed 98 DEGs (63 up-regulated and 35 down-

regulated). Figure 2 presents three volcano plots, specifically

Figure 2A for COVID-19, Figure 2B for Influenza, and Figure 2C

for HIV, effectively delineating the overall gene expression patterns.

Red dots indicate up-regulated genes, while blue dots display down-

regulated genes. By generating a Venn diagram, we identified 22

shared differential genes among COVID-19, Influenza, and HIV

(Figure 2D). Among these genes, 16 were up-regulated DEGs

(Figure 2E), with no observed down-regulated DEGs (Figure 2F).

For the remaining 6 genes, 5 of them (CD52, GZMM, PTPRCAP,

RPLP0, RPS21) were down-regulated in the COVID-19 and

influenza datasets, and up-regulated in the HIV dataset; the other

gene, MMP9, was down-regulated in the COVID-19 and HIV

datasets, and upregulated in the influenza dataset. A total of 22

DEGs can be found in Supplementary Table 3.

The three presented heat maps enable visualization of the

comprehensive expression patterns of the 22 differential genes

across COVID-19 (Figure 3A), Influenza (Figure 3B), and HIV

(Figure 3C). Our analysis involved the examination of 22 DEGs,

comparing the gene expression variations within the disease groups

of COVID-19, Influenza, and HIV against their respective healthy

groups. Within the context of the COVID-19 test, the control group

exhibited no statistically significant difference in expression levels of

ISG15 and MMP9. However, the remaining 20 genes displayed

noteworthy variations (Figure 3D). In the Influenza test, only the

gene ISG15 did not manifest a notable distinction between the

group with the disease and those in good health, while the

remaining 21 genes exhibited substantial disparities (Figure 3E).

Simultaneously, during the HIV test, only one gene, OAS1,

demonstrated no significant difference, whereas the other 21

genes displayed significant variations (Figure 3F).
3.2 Diagnostic ROC curve analysis of 22
DEGs among COVID-19, influenza, and HIV

The diagnostic efficacy of the 22 DEGs in COVID-19, influenza,

and HIV was assessed through diagnostic ROC curve analysis. Results

of the ROC analysis for DEGs are depicted in Figure 4, with the Area

Under the Curve (AUC) graphs of the 22 DEGs in COVID-19,

influenza, and HIV presented in Figures 4A–D, 4E-H, and 4I-L,
Frontiers in Immunology 06
respectively. As depicted in Figure 4, a limited number of DEGs

exhibited an AUC of less than 0.7. Specifically, in COVID-19, these

genes were CD52, ISG15, and MMP9; in influenza, they included

IFI44L, IFIT3, ISG15, and OAS1; and in HIV, OAS1 was identified.

Excluding these genes, the AUC values for the diagnostic ROC curves

corresponding to other differential genes in the three disease groups

were consistently above 0.7. This suggests that these genes have the

possibility to serve as biomarkers for the respective diseases.
3.3 Immune infiltration analysis in
COVID-19, influenza,and HIV datasets

Figure 5 presents the heat map results of immune infiltration

analysis using the ssGSEA algorithm for three diseases. Specifically,

Figure 5A illustrates the immune cell profile for COVID-19, Figure 5B

for influenza, and Figure 5C for HIV, each representing 24 different

immune cells. In Figure 6, the group comparison charts of immune

infiltration analysis for COVID-19, influenza, and HIV reveal distinct

expression levels for various immune cells between the disease and

healthy control groups. In COVID-19 (Figure 6A), 13 immune cells,

including aDC, CD8 T cells, DC, iDC, Mast cells, NK CD56 bright cells,

pDC, T helper cells, Tcm, Th1 cells, Th17 cells, Th2 cells, and TReg,

exhibited significant differences in expression. For influenza (Figure 6B),

14 immune cells, such as CD8 T cells, Cytotoxic cells, Macrophages, NK

CD56bright cells, NK CD56dim cells, NK cells, T cells, T helper cells,

Tcm, Tem, TFH, Tgd, Th2 cells, and TReg, displayed noticeable

differences in expression. In HIV (Figure 6C), the expression levels of

8 immune cells, including Eosinophils, iDC, Macrophages, Mast cells,

Neutrophils, T cells, Tgd, and Th1 cells, exhibited important differences

between the disease and normal groups. Figure 7 illustrates the

correlation heat map of ssGSEA outcomes. Figure 7A displays the

correlation heat maps of 24 immune cells in COVID-19, Figure 7B for

influenza, and Figure 7C for HIV.
3.4 GO and KEGG analyses

GO analysis was conducted by selecting the top 5 items from the

BP, CC, andMF categories. Additionally, the top 4 KEGGwere selected

(Figure 8A). The DEGs exhibited significant enrichment, including the

response to the virus of the BP category, high enrichment in ribosome

activity of the CC category, and double-stranded RNA binding of the

MF category. Moreover, this enrichment extended to the Coronavirus

disease - COVID-19 pathway in the KEGG category, indicating its

involvement in immunotherapy-related functional enrichment. To

provide a more comprehensive explanation, the pathway enrichment

analysis was visualized via bubble graph. The top three results from the

BP, CC, MF, and KEGG categories were chosen to illustrate the

enrichment analysis of specific biological pathways in the network

diagram (Figure 8B). For the GO/KEGG-United logFC analysis in

COVID-19, 22 DEGs were utilized, and chordal diagrams and loop

graphs were generated, as shown in Figures 8C, D. Besides, the results

of GOKEGG-United logFC analysis in Influenza are shown in

Figures 8E, F. Figures 8G, H present the results of GOKEGG-United

logFC analysis in HIV.
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3.5 GSEA functional enrichment analysis of
all genes among COVID-19, influenza,
and HIV

GSEA analysis was performed on all genes associated with

COVID-19, yielding 8 significant pathways. These pathways

encompassed the plk1 pathway, retinoblastoma gene in cancer,

cell cycle checkpoints, resolution of sister chromatid cohesion,

activation of atr in response to replication stress, aurora b
Frontiers in Immunology 07
pathway, G2 M checkpoints, and atr pathway (Figures 9A, B).

Figure 9C presents the Mountain plot of these 8 pathways in

COVID-19. Subsequently, GSEA analysis was carried out on all

genes related to Influenza, revealing the 8 most significant

pathways. These pathways included oxidative stress response,

KEGG complement and coagulation cascades, WP complement

and coagulation cascades, complement and coagulation

cascades, response to elevated platelet cytosolic Ca2, sulfation

biotransformation reaction, defects of contact activation system
B

C D
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A

FIGURE 2

Visualization of common diferentially expressed genes (DEGs) among COVID-19, Influenza and HIV. (A) Volcano plot of COVID-19 in GSE157103
dataset. (B) Volcano plot of Influenza in GSE185576 dataset. (C) Volcano plot of HIV in GSE195434 dataset. (D) Venn diagram showing the overlap of
up-regulated and down-regulated DEGs among three diseases. (E) Venn diagram showing only up-regulated DEGs overlap among three diseases.
(F) Venn diagram showing only down-regulated DEGs overlap among three diseases.
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CAS and kallikrein-kinin system KKS, IRAK4 deficiency TLR2 4,

and regulation of TLR by endogenous ligand (Figures 9D, E). A

Mountain plot was generated to depict these 8 pathways in

Influenza (Figure 9F). GSEA analysis of all genes in HIV was

conducted, as shown in Figures 9G, H. Among the 8 identified

pathways, the most significant were mitochondrial translation,

respiratory electron transport, DNA synthesis, ATP synthesis by

chemiosmotic coupling and heat production by uncoupling

proteins, DNA replication, electron transport chain in the

oxidative phosphorylation system of mitochondria, degradation of

cell cycle proteins mediated by APC C, and switching of origins to a

post-replicative state. Figure 9I displays the Mountain plot

illustrating these 8 pathways in HIV.
Frontiers in Immunology 08
3.6 PPIs and hub genes among COVID-19,
influenza,and HIV

The interactions among the overlapping genes were explored

utilizing the STRING database. The PPIs of shared DEGs comprised

27 nodes and 143 edges, as illustrated in Figure 10A. The identification

of hub genes was achieved through PPIs analysis using a plugin for

Cytoscape called Cytohubba. To determine the most influential top ten

hub genes, we employed five algorithms—MCC, DMNC, Degree,

MNC, and EPC. All five algorithms consistently identified the same

top ten hub genes, as shown in Figure 10B. The MCC algorithm

identified FI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27,

OASL, and EPSTI1 as the top 10 hub genes (Figure 10C). Hence, these
B C

D

E

F

A

FIGURE 3

Expression analysis of the 22 DEGs among three diseases. (A) Heat map of COVID-19. (B) Heat map of Influenza. (C) Heat map of HIV. (D) mRNA
expression levels of COVID-19. (E) mRNA expression levels of Influenza. (F) mRNA expression levels of HIV.
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identified hub genes could serve as effective biomarkers and contribute

to advancing innovative therapeutic methods for these conditions.

3.7 The network of regulatory interactions
of hub genes interconnected with miRNAs
and TFs

We conducted a screening process using the Mirwalk database,

resulting in the identification of 499 Hub genes–miRNA
Frontiers in Immunology 09
interactions. Additionally, screening from the miRDB database

yielded 699 Hub genes–miRNA interactions. The intersection of

these databases revealed 17 Hub genes–miRNA interactions.

Importantly, these interactions involved 6 hub genes—IFI44L,

RSAD2, OAS1, EIF2AK2, OASL, and EPSTI1—along with 17

miRNAs in the interactive network. Figure 11A illustrates the

intricate interactions between miRNA regulators and hub genes.

The top 5 significant miRNAs identified in this network were hsa-

miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p,
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FIGURE 4

Diagnostic ROC curve analysis of 22 DEGs among three diseases. (A) ROC of CD52, CDC20, CKS2, EIF2AK2, EPSTI1, GZMM in COVID-19. (B) ROC of
IFI27, IFI44, IFI44L, IFIT3, ISG15, MMP9 in COVID-19. (C) ROC of OAS1, OASL, PTPRCAP, RPLP0, RPS21 in COVID-19. (D) ROC of RSAD2, SEC11C,
TNFRSF17, TXNDC5, TYMS in COVID-19. (E) ROC of CD52, CDC20, CKS2, EIF2AK2, EPSTI1, GZMM in Influenza. (F) ROC of IFI27, IFI44, IFI44L, IFIT3,
ISG15, MMP9 in Influenza. (G) ROC of OAS1, OASL, PTPRCAP, RPLP0, RPS21 in Influenza. (H) ROC of RSAD2, SEC11C, TNFRSF17, TXNDC5, TYMS in
Influenza. (I) ROC of CD52, CDC20, CKS2, EIF2AK2, EPSTI1, GZMM in HIV. (J) ROC of IFI27, IFI44, IFI44L, IFIT3, ISG15, MMP9 in HIV. (K) ROC of
OAS1, OASL, PTPRCAP, RPLP0, RPS21 in HIV. (L) ROC of RSAD2, SEC11C, TNFRSF17, TXNDC5, TYMS in HIV.
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and hsa-miR-6069. Subsequently, we searched the hTFtarget

database, identifying 295 Hub genes–TFs interactions. Further

screening of the ChIP database resulted in 1338 Hub genes–TFs

interactions. The intersection of these databases yielded 163 Hub

genes–transcription factor interactions. These interactions were

imported into Cytoscape, revealing 9 hub genes involved in this

interactive network—IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2,

IFI27, OASL, and EPSTI1. Figure 11B displays 78 TFs due to the

intersection between TFs and hub genes. The interactions between

TFs and hub genes are depicted, identifying CREB1, CEBPB, EGR1,

EP300, and IRF1 as the top five significant TFs.
Frontiers in Immunology 10
3.8 The network of regulatory interactions
between hub genes and chemicals, as well
as hub genes and diseases

From the networkanalyst database, we identified 411 Hub genes–

Drug Chemical interactions. Simultaneously, screening the

Comparative Toxicogenomics Database produced 136 Hub genes–

Drug Chemical interactions. The intersection of these two databases

yielded 84 Hub genes–Drug Chemical interactions. Importing these

interactions into Cytoscape revealed an interactive network of 10 hub

genes and 35 Drug Chemicals. Figure 12A displays the top ten
B

C

A

FIGURE 5

Expression analysis of infiltrated immune cells by ssGSEA algorithm among three diseases. (A) Heat map of COVID-19. (B) Heat map of Influenza.
(C) Heat map of HIV.
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significant drug chemicals, including estradiol, progesterone, tretinoin,

calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid,

silicon dioxide, and cyclosporine. These potential drugs could act as

medicinal targets and interventions for COVID-19, Influenza, and

HIV. Following a similar approach, we screened the DisGeNET

database, identifying 888 Hub genes–disease names. Subsequently,

screening the MalaCards database resulted in 2084 Hub genes–

disease names. The intersection of these two databases yielded 87

Hub genes–disease names, which were imported into Cytoscape and

displayed. The interaction network revealed the involvement of 9 hub

genes and 53 diseases. The examination of gene-disease correlations

highlighted that influenza, asthma, major depressive disorder,

lymphoma, glioblastoma, cholangiocarcinoma, pancreatic ductal
Frontiers in Immunology 11
adenocarcinoma, acute promyelocytic leukemia, hepatitis C, and

hepatitis B showed the highest level of coordination with the

reported hub genes. These findings suggest that COVID-19,

influenza, and HIV share common characteristics with these

diseases. Figure 12B displays the connection between genes

and diseases.
3.9 Prediction of hub genes-RBPs and
qPCR verification

We retrieved 164 hub genes–RBPs from the starBase database

and inputted them into Cytoscape. The resulting interaction network
B

C

A

FIGURE 6

Group comparison graphs of infiltrated immune cells by ssGSEA algorithm among three diseases. (A) Infiltrated immune cells expression levels of
COVID-19. (B) Infiltrated immune cells expression levels of Influenza. (C) Infiltrated immune cells expression levels of HIV. (*p<0.05, **p<0.01,
***p<0.001, ns meant no significant difference).
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revealed the involvement of 10 hub genes and 88 RBPs, suggesting a

shared characteristic between these RBPs and COVID-19, Influenza,

and HIV. The hub genes–RBPs association is depicted in Figure 13A.

The top five most important RBPs identified were RBM39, U2AF1,

ELAVL1, IGF2BP2, and HNRNPA2B1. In the gene expression

validation experiment for the COVID-19 group, significant

differences were viewed between the disease and normal groups for

the IFIT3 and IFI27 genes, while no notable distinction was found in

the EIF2AK2 gene (Figure 13B). The influenza group’s validation

experiment showed significant differences in all six genes (IFI44L,

IFI44, RSAD2, IFIT3, EIF2AK2, and IFI27) (Figure 13C). In the HIV

group, four genes (IFI44L, IFI44, IFI27, and ISG15) exhibited

significant differences, while the remaining three genes (RSAD2,

IFIT3, and EIF2AK2) did not (Figure 13D).
Frontiers in Immunology 12
3.10 Complex interrelationships of hub
gene, miRNA, transcription factor, drug
chemical, disease, and RBP

In summary, these six molecules exhibited complex

interrelationships. For instance, hsa-miR-6890-5p, CEBPB,

Cyclosporine, Influenza, and RBM39 have interactive

relationships centered around OAS1. Similarly, hsa-miR-5003-3p,

EP300, Valproic Acid, Influenza, and ELAVL1 have interactive

relationships centered around EIF2AK2, while hsa-miR-6893-3p,

EP300, Calcitriol, Influenza, and HNRNPA2B1 exhibit interactive

relationships centered around OASL. Figure 14 illustrated a

network diagram that highlights the mutual regulatory

relationships among the six distinct types of molecules mentioned
B

C

A

FIGURE 7

Correlation heat map analysis of infiltrated immune cells by ssGSEA algorithm among three diseases. (A) Correlation heat map of COVID-19.
(B) Correlation heat map of Influenza. (C) Correlation heat map of HIV.
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above . The s ix dis t inct types of molecules complex

interrelationships table can be found in Supplementary Table 4.
4 Discussion

A notable increase in studies revealing potential connections

between various diseases has been observed in recent years.

Consequently, exploring the correlations among different illnesses

represents a promising avenue for future research (32–34).
Frontiers in Immunology 13
COVID-19 and influenza, both highly contagious respiratory

disorders, manifest comparable clinical symptoms due to shared

pathogenicity and gene expression regulation in the host body (35,

36). HIV belongs to the Retroviridae family and the Lentivirus

genus (37). It significantly impacts the well-being of individuals,

families, communities, and the economic and social welfare of

nations. Recent research suggests that individuals living with HIV

have an increased susceptibility to contracting SARS-CoV-2 and are

more likely to experience fatal outcomes from COVID-19

compared to those without HIV (38–40).
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FIGURE 8

GO and KEGG functional enrichment analysis of 22 DEGs among three diseases. (A) The bubble graph of GO and KEGG functional enrichment
analysis. (B) The network diagram of GO and KEGG functional enrichment analysis. (C) Chordal diagram of GO/KEGG-United logFC in COVID-19.
(D) Loop graph of GO/KEGG-United logFC in COVID-19. (E) Chordal diagram of GO/KEGG-United logFC in Influenza. (F) Loop graph of GO/KEGG-
United logFC in Influenza. (G) Chordal diagram of GO/KEGG-United logFC in HIV. (H) Loop graph of GO/KEGG-United logFC in HIV.
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To research the molecular mechanisms underlying the

worsened prognosis of HIV patients upon simultaneous infection

with COVID-19 and influenza and to understand the regulatory

role of these three viruses in host gene expression, we acquired

sequencing data for COVID-19 (GSE157103), influenza

(GSE185576), and HIV (GSE195434). Following this, we

conducted a differential analysis of the three datasets. Among the

22 DEGs, it is noteworthy that only three genes, namely ISG15,

MMP9, andOAS1, did not exhibit statistically significant differences
Frontiers in Immunology 14
between the disease group and the healthy control group across all

three datasets. This finding could be attributed to several factors

including the limitations of sample size, individual variations, and

experimental design. This observation demonstrates the complexity

and variability of differentially expressed genes in different infection

states and requires further study and verification.

By intersecting the resulting DEGs from these three analyses, we

further scrutinized the common DEGs, leading to the identification

of 10 hub genes: IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1,
B C

D E F

G H I

A

FIGURE 9

GSEA functional enrichment analysis of all genes among three diseases. (A) Classic graph of 1-4 pathways in COVID-19. (B) Classic graph of 5-8
pathways in COVID-19. (C) Mountain plot of 8 pathways in COVID-19. (D) Classic graph of 1-4 pathways in Influenza. (E) Classic graph of 5-8
pathways in Influenza. (F) Mountain plot of 8 pathways in Influenza. (G) Classic graph of 1-4 pathways in HIV. (H) Classic graph of 5-8 pathways in
HIV. (I) Mountain plot of 8 pathways in HIV.
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EIF2AK2, IFI27, OASL, and EPSTI1. These genes were significantly

up-regulated in COVID-19, exerting roles in immune regulation.

Previous research has highlighted the up-regulation of genes such as

IFI44L, IFFI44, RSAD2, OAS1, EPSTI1, and OSAL in COVID-19,

contributing to immune regulation (41). Notably, during the

treatment of COVID-19, the down-regulation of genes like IFI27,

which possesses antiviral effects and activates neutrophils, aligns

with the increased inflammatory response observed in these

patients (42). In individuals affected by influenza virus infection,

IFFI44L, ISG15, IFIT3, and RSAD2 are crucial antiviral factors

inhibiting infection within alveolar basal epithelial cells (43).

Analysis of kinases, phosphatases, and related signaling factors

also reveals heightened activity of EIF2AK2 in patients with HIV-

associated dementia compared to those with mild neurocognitive

disorder. Thus, EIF2AK2 may play a significant role in HIV-1-

associated neuropathogenesis in HIV-infected individuals (44).

To enhance our comprehension of how HIV-induced

immunocompromise influences the acquisition and clearance of
Frontiers in Immunology 15
infection and elucidate shared mechanisms among COVID-19,

influenza, and HIV, we conducted GO and KEGG analyses.

Additionally, we employed the Xiantao tool to perform GO analysis

on BP, CC, and MF associated with the shared DEGs related to these

three diseases. The significantly enriched biological processes of these

shared DEGs were related to responding to viruses, defense responses

against viruses, defense response to symbionts, negative regulation of

viral genome replication, and viral genome replication.

Based on Kalil and colleagues’ research, the progression of

influenza virus infection entails an inflammatory process within

the respiratory tract. This process is initiated when the virus directly

infects the cells lining the respiratory system, immune responses,

both innate and adaptive, are triggered. The primary objective of

these responses is to effectively manage contagious diseases (45).

Concerning the significantly enriched Cellular Components of these

common DEGs, there is a notable concentration in ribosome-

related terms, including ribosome, ribosomal subunit, cytosolic

ribosome, small ribosomal subunit, and cytosolic small ribosomal
B C

A

FIGURE 10

Protein-protein interaction networks (PPIs) and hub genes for common DEGs to COVID-19, Influenza and HIV. (A) Shared DEGs of COVID-19,
Influenza and HIV in the PPIs (27 nodes,143 edges). (B) The Venn diagram of screened hub genes from MCC, DMNC, MNC, Degree and EPC 5
algorithms. (C) The red and yellow rhomboid nodes represent the top 10 hub genes and edges represent the interactions between nodes.
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subunit. Perturbations in ribosome production are associated with

conditions such as cancer, developmental disorders, and viral

infections, emphasizing the pivotal role of ribosomes in biological

processes (46). Significantly enriched GO terms of these shared

DEGs were also associated molecular functions such as binding

double-stranded RNA, serine-type endopeptidase activity, the

structural component of ribosomes, serine-type peptidase activity,

and serine hydrolase activity. This, underscores the crucial reliance

of viruses on ribosomes for synthesizing polypeptides and

generating polypeptide molecules (47, 48).

From a perspective of gene expression regulation, we identified

22 shared genes across the datasets of COVID-19, influenza, and
Frontiers in Immunology 16
HIV. The top 4 KEGG pathways enriched in these genes were

related to COVID-19, Hepatitis C, Influenza A, and Epstein-Barr

virus infection, emphasizing distinctions between SARS-CoV-2 and

influenza virus infections (49). Enhancing our understanding of

how HIV infection contributes to increased mortality risk in

COVID-19 and influenza involves improving the identification of

crucial gene ontology and molecular pathways.

GSEA analysis of all genes in the three datasets revealed specific

pathway enrichments. The COVID-19 dataset showed enrichment

in the PLK1 pathway, associated with stem cell cancer (50), glioma

(51), and lung adenocarcinoma (52). The influenza dataset

exhibited enrichment in the oxidative stress response signaling
B

A

FIGURE 11

The interconnected regulatory interaction network of Hub genes–miRNAs and Hub genes–TFs. (A) Hub genes–miRNAs,red rhomboid nodes
indicate Hub genes and blue oval nodes represent miRNAs (23 nodes,17 edges). (B) Hub genes–TFs,red rhomboid nodes indicate Hub genes and
yellow oval nodes represent TFs (87 nodes,163 edges).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1369311
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1369311
pathway, a potential therapeutic target for gastric cancer (53).

Furthermore, the HIV dataset showed enrichment in the

mitochondrial translation pathway, which is crucial for the

continuous cytotoxicity of T lymphocytes (CTL) (54).

Next, we assessed the accumulation of immune cells in tissues

or lesions and found a notable decrease in the abundance of CD8 T

cells, bright CD56 cells of natural killer, and regulatory T cells

among individuals with COVID-19 and influenza. Additionally,

infections caused by COVID-19 and HIV in patients exhibited a

decrease in the number of immature dendritic cells, indicating a

depletion of immune cells and compromised immune function (21).
Frontiers in Immunology 17
In addition, during the H1N1 epidemic, about half of influenza

patients experienced a reduced CD4:CD8 ratio (55).

Notably, patients with COVID-19 and HIV exhibited an

increase in Th1 cells. Th1 lymphocytes play a pivotal role in the

immune system by activating cellular immunity, fostering

inflammatory responses, enhancing cytotoxicity, and promoting

antibody production. They contribute significantly to combating

infections, regulating tumor development, and maintaining

immune system balance. A notable upregulation of immune cells

and inflammatory markers was observed in all three diseases. While

these findings may have been reported in previous studies, we
B

A

FIGURE 12

The interconnected regulatory interaction network of Hub genes–Drug chemicals and Hub genes–diseases. (A) Hub genes–Drug chemicals,red
rhomboid nodes indicate Hub genes and green oval nodes represent Drug chemicals (45 nodes, 84 edges). (B) Hub genes–diseases,red rhomboid
nodes indicate Hub genes and purple oval nodes represent diseases (62 nodes, 87 edges).
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believed that these findings still hold significant implications.

Firstly, the identification of specific immune cell types has the

potential to impact disease progression and treatment in the context

of the three specific diseases examined. Secondly, there is a need for

further exploration of immune cell subtypes within these diseases

and their respective roles in pathological processes. Additionally,

the upregulation of inflammatory markers may be associated with

distinct clinical characteristics of patients, warranting further

investigation. Moreover, our future investigations will focus on

examining the interactions between these immune cells and other

biomarkers to gain a comprehensive understanding. The presence

and proper functioning of immune cells are essential for a impactful

immune response, involving monitoring potential threats,

controlling inflammation, and assessing prognosis. A more

profound comprehension of the characteristics and mechanisms

of immune infiltration holds valuable insights for diagnosing,

treating, and preventing diseases.

MiRNAs, by binding to the mRNA of target genes and

influencing their translation or degradation, play a pivotal role in
Frontiers in Immunology 18
controlling gene expression levels. We utilized two well-established

and validated databases, namely miRWalk and miRDB, to

investigate the relationship between miRNAs and mRNAs. These

databases contain a vast collection of experimentally verified

interactions between miRNAs and their target mRNAs. Based on

these data, various algorithms such as seed matching, conservation

analysis, RNA secondary structure prediction, and machine

learning models are used to predict potential miRNAs that are

likely associated with the target mRNA. This integrated approach

allowed us to comprehensively explore and identify putative

miRNA-mRNA interactions with high confidence.

Studies suggest that hsa-miR-8060 could be a biomarker for

diagnosing H1N1 virus infectious diseases (56). Hsa-miR-6890-5p

regulates dehydrogenase/reductase 9 (DHRS9), a significant

biomarker for atherosclerosis (57). Hsa-miR-5003-3p exhibits a

correlation with both ICU admission and blood endophenotypes,

thereby exerting regulatory influence over the host response to

COVID-19 (58). Hsa-miR-6893-3p is a promising miRNA for

SARS-CoV-2 infection, targeting the ORF1ab and spike protein of
B C D

A

FIGURE 13

Prediction of Hub genes–RBPs and qPCR validation among COVID-19, Influenza and HIV. (A) Hub genes–RBPs,red rhomboid nodes indicate Hub
genes and gray oval nodes represent RBPs (98 nodes, 164 edges). (B) The mRNA expression levels of IFIT3,EIF2AK2,IFI27 in COVID-19. (C) The
mRNA expression levels of IFI44L,IFI44,RSAD2,IFIT3,EIF2AK2,IFI27 in Influenza. (D) The mRNA expression levels of IFI44L,IFI44,RSAD2,IFIT3,EIF2AK2,
IFI27,ISG15 in HIV. (*p<0.05, ns meant no significant difference).
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the SARS-CoV-2 virus (59). Hsa-miR-6069, an up-regulated

predicted gene, represents a potentially crucial candidate for

molecular targets and diagnostic biomarkers for COVID-19 (60).

The analysis of predicted miRNAs from mRNA reveals the intricate

interactions between miRNAs and their target genes. It further

determines the specific set of genes that may be regulated by

miRNAs, allowing for the identification of potential regulatory

pathways. Moreover, it uncovers disease-associated miRNAs and

their target genes, thereby predicting gene-centric, potential

therapeutic targets. This comprehensive analysis provides pivotal

insights into miRNA regulation and gene expression control,

serving as a theoretical foundation for the development of novel

treatment strategies and therapeutics.

Transcription factors, a category of proteins, play a significant

role in regulating gene transcription by binding to DNA. We

employed two widely recognized databases, namely hTFtarget and

ChIPBase, to investigate the transcription factor binding site

information. These databases provide a comprehensive collection

of experimentally validated transcription factor binding site data.

Through a comparative analysis of the target mRNA sequence with

the binding site patterns documented in these databases, we

successfully predicted the potential transcription factors that are

likely to bind to the target mRNA and regulate its expression. This

approach allowed us to gain insights into the regulatory

mechanisms underlying the target mRNA and provided valuable

information regarding the involvement of specific transcription

factors in its regulation.

CREB1, a central transcription factor in the network, is linked to

changes in protein expression induced by the SARS-CoV-2 spike S1

(61). CEBPB, identified in the differential analysis of bronchoalveolar

lavage fluid from SARS-CoV-2-positive individuals, is involved in

chemokine signaling and immunometabolism (62). EGR1, a versatile

transcription factor found in mammals, has been associated with
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various viral infections, including HSV-1, HIV, and EBV (63). EP300,

a crucial target of glycosides, impacts viral myocarditis, chemotaxis of

monocytes and macrophages, and T-cell activation, leading to

antibody responses, potentially serving as a therapeutic target for

influenza A viruses (64). MicroRNA-132-3p reportedly hinders the

type I IFN response and facilitates infection of the H1N1 influenza A

virus by targeting IRF1 (65). Transcription factors play a significant

role in regulating normal physiological processes, development, and

the occurrence of diseases.

We utilized two established databases, namely networkanalyst

and Comparative Toxicogenomics Database, to explore the

relationship between drug and target genes. These databases

contain comprehensive records of interactions between drug and

their target genes. By comparing the association of the target mRNA

with known drug target genes, we were able to predict potential drug

chemicals that may interact with the target mRNA and hold

therapeutic potential. Currently, drugs like molnupiravir, azivudine,

paxlovid, and remdesivir have been approved for COVID-19

treatment. However, there is currently no evidence indicating that

specific antiretroviral treatments either enhance or worsen

therapeutic effects for infections caused by COVID-19 and HIV in

patients or can prevent SARS-CoV-2 infection (66). Hence, the

development of a safe and efficacious pharmaceutical intervention

for the treatment of AIDS patients co-infected with COVID-19 and

influenza is of utmost importance. This study has identified various

drug chemicals, including estradiol, progesterone, tretinoin, calcitriol,

fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon

dioxide, and cyclosporine, with the potential to simultaneously treat

COVID-19, influenza, and HIV. Research has indicated the

participation of estradiol in regulating HIV infection (67), and it

has a substantial effect on reducing COVID-19 mortality (68).

Calcitriol has recently discovered as a potentially efficacious

therapeutic agent for the management of COVID-19 (69).
FIGURE 14

Complex interrelationships of Hub gene, miRNA, transcription factor, drug chemical, disease, and RBP. Red rhomboid nodes indicate Hub genes,
blue oval nodes represent miRNAs, yellow oval nodes represent transcription factors, green oval nodes represent Drug chemicals, purple oval nodes
represent diseases, and gray oval nodes represent RBPs(45 nodes, 114 edges).
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Retinoic acid can reportedly enhance the function and

development of epithelial and endothelial barriers, inhibiting

inflammation-related barrier damage through modulation of

immune cell activity (70). Callaghan et al. conducted research

supporting these findings, revealing that the breakdown of retinoic

acid is hindered in individuals with COVID-19 sepsis, and adding

retinoic acid could offer a fresh approach to treating COVID-19 (71).

In the context of a Syrian hamster model, the investigation revealed

that progesterone exhibits the potential to alleviate the severity of

COVID-19 pneumonia (72). The combination of 5-Fluorouracil with

deoxyribonucleosides and deoxyribose exhibits promise as a

prospective therapeutic strategy for the treatment of coronavirus

infections (73). Additionally, Methotrexate is recognized as a safe

immunosuppressant for use during the COVID-19 pandemic

(74).Through the analysis of predicted drug chemicals from RNA, a

comprehensive understanding of the intricate interactions and

regulatory mechanisms between drug candidates and disease-related

genes can be achieved. This analysis serves as a solid theoretical

foundation and offers valuable guidance for the discovery of novel

treatment strategies, the development of personalized therapeutic

approaches, and the evaluation of the potential efficacy of drugs.

We employed two widely accessible databases, namely

DisGeNET and MalaCards, which provide curated collections of

disease-related genomics datasets. These databases encompass

comprehensive lists of genes associated with various diseases.

Through a comparative analysis and correlation of the target

mRNA with these known disease-associated genes, we were able to

infer potential connections between the target mRNA and specific

diseases. This approach enabled us to gain insights into the potential

involvement of the target mRNA in disease pathogenesis and

provided valuable information for further investigations into

disease mechanisms and therapeutic interventions.

Genetic disease analysis revealed that hub genes are associated with

a range of illnesses in COVID-19, influenza, and HIV, encompassing

influenza, asthma, major depressive disorder, lymphoma, glioblastoma,

cholangiocarcinoma, pancreatic ductal adenocarcinoma, acute

promyelocytic leukemia, hepatitis C, and hepatitis B. Respiratory

viruses like influenza can frequently trigger acute asthma episodes

(75, 76). COVID-19 poses a significant threat to individuals with

mental disorders, especially depression and schizophrenia (77).

Numerous studies demonstrate a significant correlation between

COVID-19 and various cancers, such as breast, colon, stomach, and

prostate tumors (78). Considering the gravity of cancer and the

compromised immune system, individuals diagnosed with COVID-

19 face an increased likelihood of mortality (79). According to a study,

pre-existing chronic liver disease was observed in approximately 2-11%

of patients diagnosed with COVID-19 (80).

RNA-binding proteins represent ubiquitous proteins found in

various cellular contexts and play a key role in regulating post-

transcriptional processing, translation, stability, transport, and

modification of RNA. We utilized the ENCORI database, a publicly

available resource that provides comprehensive information on RNA

binding protein (RBP) binding sites. This database contains curated

records of experimentally verified RBP binding site data. Through a

comparative analysis of the target mRNA sequence with the binding

site patterns documented in the ENCORI database, we were able to
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predict the RBPs that are likely to bind to the target mRNA and exert

regulatory control over its expression. In terms of mechanism, arginine

alters the metabolism of liver cancer by attaching to RNA-binding

protein 39 (RBM39) to regulate the expression of metabolic genes (81).

U2AF1 mutations are more common in younger patients with

myelodysplastic syndromes (MDS) and, despite remaining stable

throughout clinical progression, are linked to a poorer prognosis.

This mutation exhibits the potential to function as a biomarker for

risk stratification (82). The analysis of ELAVL1 expression in distinct

respiratory cell populations among individuals with COVID-19 and

COPD unveiled a noteworthy positive correlation between ELAVL1

and ACE2, particularly in cells affected by COPD (83). In the context of

the Women’s Interagency HIV Study (WIHS) research, the

identification of IGF2BP2 as a significant determinant in

antiretroviral therapy has revealed its capacity to modulate the

genetic impacts of established risk variants linked to type 2 diabetes

(84). The ribonucleoprotein hnRNPA2B1 represents a potential target

for treating recurrent thymic epithelial tumors (85). By interacting with

RNA molecules, RBP actively participates in the intricate regulatory

network of gene expression in cells, playing a vital role in regulating

normal cellular functions and adaptive responses.

In this study, we employed an integrated approach to analyze

multiple datasets, and the results were interconnected by identifying

common key nodes represented by hub genes. Among the identified

hub genes, there were shared regulatory genes involved in miRNA

prediction, transcription factor prediction, drug chemical prediction,

disease prediction, and RBP prediction. The regulatory relationships

between each pair of these molecules are as follows: 1.miRNA-

mediated regulation: miRNA binds to the 3’ untranslated region (3’

UTR) or other regulatory regions of mRNA, leading to mRNA

degradation or inhibition of its translation process. 2.Transcription

factor-mediated regulation: Transcription factors can bind to the

promoter or enhancer region of mRNA, directly influencing the

transcriptional process of mRNA. 3.Drug chemical-mediated

regulation: Drug compounds interact with specific targets on

mRNA, affecting mRNA stability, degradation, or translation

processes. 4.Disease-related regulation: Abnormal expression or

mutation of mRNA can serve as disease markers and influence

disease progression and clinical manifestations. 5.RNA-binding

protein (RBP)-mediated regulation: RBPs interact with specific

regions of mRNA, influencing mRNA stability, post-transcriptional

modification, transport, and other processes. Additionally, miRNAs

can regulate the expression levels of transcription factors by binding

to the mRNA of transcription factors. These interrelationships are

crucial for understanding cellular regulation, disease mechanisms,

and the development of therapeutic interventions. A deeper

exploration of these relationships can provide novel perspectives

and strategies for disease prevention, diagnosis, and treatment.

To sum up, our research presents several strengths. We utilized

blood samples from the GEO database containing COVID-19,

influenza, and HIV, identifying central genes that could significantly

contribute to the progression of these three illnesses. Moreover, we

uncovered connections among these diseases, providing new

perspectives into the molecular processes of concurrent getting sick

with COVID-19 and influenza viruses in individuals with HIV.

Additionally, we identified 10 drug chemicals that could support as
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potential therapeutic drug candidates for managing patients with

COVID-19, influenza, and HIV.

Nevertheless, despite the strengths of our research, it is crucial

to acknowledge certain limitations. Firstly, we obtained study data

from the publicly available GEO database and performed gene

expression validation on a limited number of samples. Secondly,

there is a lack of comparable patient demographics and matching

confounding variables. We will further collect data or strengthen

collaborative research in subsequent studies to obtain more

comprehensive and comparable patient information. Thirdly, the

study currently lacks a comprehensive analysis of co-infections

involving all three diseases. We will actively collect and analyze co-

infection data to validate the results obtained from single infection

data in this study. Additionally, it is essential to validate the

biological roles of central genes and assess the efficacy and safety

of potential medications through either fundamental or clinical

experiments. Additional investigation is necessary to delve into the

molecular mechanisms underlying COVID-19, influenza, and HIV.
5 Conclusion

The current investigation offers a comprehensive analysis of

shared molecular targets, signaling pathways, drug chemicals, and

potential biomarkers associated with COVID-19, influenza, and

HIV. These discoveries hold the potential to enhance the accuracy

of diagnosing and treating individuals with HIV who are also

infected with COVID-19 and influenza.
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