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European population
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Background: Extensive observational studies have reported an association

between inflammatory factors and autism spectrum disorder (ASD), but their

causal relationships remain unclear. This study aims to offer deeper insight into

causal relationships between circulating inflammatory factors and ASD.

Methods: Two-sample bidirectional Mendelian randomization (MR) analysis

method was used in this study. The genetic variation of 91 circulating

inflammatory factors was obtained from the genome-wide association study

(GWAS) database of European ancestry. The germline GWAS summary data for

ASD were also obtained (18,381 ASD cases and 27,969 controls). Single

nucleotide polymorphisms robustly associated with the 91 inflammatory

factors were used as instrumental variables. The random-effects inverse-

variance weighted method was used as the primary analysis, and the

Bonferroni correction for multiple comparisons was applied. Sensitivity tests

were carried out to assess the validity of the causal relationship.

Results: The forward MR analysis results suggest that levels of sulfotransferase

1A1, natural killer cell receptor 2B4, T-cell surface glycoprotein CD5, Fms-related

tyrosine kinase 3 ligand, and tumor necrosis factor-related apoptosis-inducing

ligand are positively associated with the occurrence of ASD, while levels of

interleukin-7, interleukin-2 receptor subunit beta, and interleukin-2 are inversely

associated with the occurrence of ASD. In addition, matrix metalloproteinase-10,

caspase 8, tumor necrosis factor-related activation-induced cytokine, and C-C

motif chemokine 19 were considered downstream consequences of ASD.
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Conclusion: This MR study identified additional inflammatory factors in patients

with ASD relative to previous studies, and raised a possibility of ASD-caused

immune abnormalities. These identified inflammatory factors may be potential

biomarkers of immunologic dysfunction in ASD.
KEYWORDS

autism spectrum disorder, inflammatory factors, inflammation, Mendelian
randomization, single nucleotide polymorphisms, genome-wide association study
1 Introduction

Autism spectrum disorders (ASD) are defined as a group of

neurodevelopmental conditions of childhood with environmental

causes that are still not fully understood. Most environmental

factors during the perinatal stage appear to converge into a series

of inflammatory conditions, such as bacterial and viral infections and

inflammatory bowel disease (1, 2), suggesting that inflammatory

responses could be an underlying factor in the etiology of ASD.

Large population-based epidemiological studies have linked ASD

with autoimmune disease and abnormal blood levels of various

inflammatory cytokines and immunological biomarkers (3, 4). For

instance, previous studies on inflammatory biomarkers have found

increased concentrations of pro-inflammatory factors IL-1b, IL-4, IL-
6, IL-8, and TNF-a (5–8), as well as decreased concentrations of anti-

inflammatory factors IL-10 and IL-1Ra (9) in the peripheral blood of

patients with ASD. These abnormal inflammatory cytokine levels are

linked to greater impairments in language function and social

interaction in children with ASD (6, 8). Therefore, it is necessary to

further identify inflammatory biomarkers in ASD and uncover the

causality between ASD and changes in the levels of

inflammatory factors.

Observational studies are often susceptible to confounding,

reverse causation, and multiple biases, which can lead to

unreliable findings regarding the causal effects of exposures on

outcomes. The Mendelian randomization (MR) method provides

an alternative approach to investigate causality in epidemiological

research, by utilizing genetic variants as instrumental variables to

determine whether a risk factor has a causal effect on a health

outcome. As an individual’s genotype is determined at conception

and cannot be altered, this method avoids the reverse causality

between genotype and outcome. In general, MR analysis rests on 3

assumptions: (1) genetic variants are associated with the risk factor;

(2) genetic variants are not associated with confounders; and (3)

genetic variants affect the outcome only through the risk factor (10).

The advent of large-scale genome-wide association studies (GWAS)

increases the accessibility of single-nucleotide polymorphisms

(SNPs) as instrumental variables to infer causality in MR studies.

Based on the GWAS summary statistics, previous studies have

examined causal relationships between 41 circulating inflammatory
02
factors (11) and various complex diseases, including depression

(12), epilepsy (13), and Alzheimer’s disease (14). Recently, Zhao

et al. (15) extended previous works by conducting a genome-wide

protein quantitative trait locus study which identified the genetic

architecture of 91 circulating inflammatory factors in 14,824

European-ancestry participants. Several recent studies have

included these 91 inflammatory factors for MR analysis, which

further extends the use of inflammatory factors in MR studies (16,

17). Although previous observational studies have found a strong

association between changes in levels of some circulating

inflammatory proteins and ASD (5–9), their causal relationships

remain undefined. The number of inflammatory factors analyzed in

these studies is also relatively limited. Based on the knowledge

above, we conducted the first bidirectional two-sample MR analysis

(SNPs associated with the exposure and outcome are individually

obtained from two independent samples) to determine the causal

relationship between 91 inflammatory factors and ASD. The

inflammatory biomarkers identified in this work may provide the

basis for an objective test for early and accurate diagnosis of ASD

and may shed light on the etiology and pathogenesis of ASD.
2 Materials and methods

2.1 Study design and data sources

Figure 1 displays a schematic presentation of the study design.

The data were obtained from the GWAS database and all included

subjects had provided written informed consent in original

research. The GWAS data sets for 91 circulating inflammatory

factors are available in the GWAS Catalog (accession numbers from

GCST90274758 to GCST90274848). These results come from a

recent genome-wide protein quantitative trait locus study of 91

inflammation-related plasma factors in 14,824 European-ancestry

participants (15). The genetic data on ASD were obtained from a

genome-wide association meta-analysis of 18,381 ASD cases and

27,969 controls by Grove et al. (18) (OpenGWAS: ieu-a-1185). All

participants were children born in Denmark between 1981 and

2005, diagnosed with ASD according to the 10th Revision of the

International Classification of Diseases before 2014.
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2.2 Instrument selection

The SNPs strongly associated with inflammatory factors (p <

5e–06) were selected as instrumental variables. The linkage

disequilibrium of these SNPs was removed using the clumping

procedure in PLINK software (version v1.90), with the linkage

disequilibrium parameter (r2) < 0.001 and a distance threshold of

10,000 kilobases. The r2 was calculated based on the 1000 Genomes

Projects reference panel (Genomes Project C et al., 2012) (19).

Additionally, we excluded palindrome SNPs and weak instrumental

SNPs (F-statistics < 10). The F statistic was calculated by the

following equation: F = R2 × (N−k−1)/k × (1 − R2), where N is

the sample size of the exposure factor, K is the number of

instrumental variables, and R2 is the proportion of variance

explained by each instrumental variable. An F-statistic >10

typically indicates a strong correlation between instrumental

variables and exposure factors (20).
2.3 Statistical analysis

Both statistical and sensitive analyses were conducted using the R

software (version 4.2.1) and the “TwoSampleMR” R package (21, 22).
Frontiers in Immunology 03
The random-effects inverse variance weighted (IVW) method was

employed as the main MR analysis to estimate causal effects,

complemented by the weighted-median (WM) and MR-Egger

methods to investigate potential pleiotropic effects. The IVW

method can analyze individual Wald-type ratios of causal effects

for each SNP, which provides the most accurate and unbiased

causal estimates in the absence of horizontal pleiotropy (23). In

the presence of horizontal pleiotropy, the WM method provides a

consistent estimate even though half of the genetic variants are

invalid instrumental variables (24). The estimation of causal

effects of modifiable phenotypes on an outcome relies on the

assumption of no pleiotropy, wherein genes solely influence the

outcome via the given phenotype. If the genetic variants have a

pleiotropic effect on the outcome, then the causal estimates may be

biased. The MR-Egger regression intercept test was used to assess

residual horizontal pleiotropy – intercepts around the zero

indicate that SNPs do not have a direct effect on the outcome

via the exposure (25). The Cochran’s Q statistic was utilized to

evaluate the heterogeneity of SNPs in both the IVW and MR Egger

methods (21). The core assumption of MR is not contradicted

even if there is significant heterogeneity in the instrumental

variables. A p-value of less than 0.05 suggests the presence of

horizontal pleiotropy and heterogeneity. The association of
B

A

FIGURE 1

(A) Three assumptions in this MR study; (B) Workflow of this MR study.
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individual SNPs was determined using leave-one-out sensitivity

analysis to investigate whether the results were driven by any

single SNP (26). For binary exposures, causal estimates were

presented as odds ratio (OR) and 95% confidence interval (CI)

per log-odds increment of genetic exposure risk. To account for

multiple testing, a p-value of 0.00055 (0.05/91) was considered

robust significance after the Bonferroni correction. A p-value

between 0.00055 and 0.05 was deemed as suggestive evidence of

potential causation. All statistical analyses were two-sided.
3 Results

3.1 Basic information about instrumental
variables and exposures

After the selection of SNPs based on the criteria, a total of 1,815

SNPs related to 91 circulating inflammatory factors extracted from

the GWAS database were used as instrumental variables

(Supplementary Table S1). The basic information on 91

circulating inflammatory factors is summarized in Supplementary

Table S2. Due to the large number of inflammatory factors and

associated SNPs, in this section, we focus on the presentation of

positive results in MR analysis. SNPs used in the positive results of

both forward and reverse MR analysis are shown in Supplementary

Tables S3, S4. This compilation includes information on

chromosome location, effect allele, and effect allele frequency.

Moreover, all SNPs had F statistics greater than 10, indicating

that they were free of weak instrumental bias.
3.2 The causative impact of circulating
inflammatory factors on ASD

The analysis results from IVW showed a statistically significant

negative correlation between levels of interleukin-7 (IL-7) and ASD

(OR = 0.858, 95% CI = 0.796 to 0.925, p = 6.69e-05). The results also

showed possible positive associations between elevated levels of

sulfotransferase 1A1 (SULT1A1) (OR = 1.109, 95% CI = 1.0423 to

1.181, p = 0.001), natural killer cell receptor 2B4 (CD244) (OR =

1.144, 95% CI = 1.040 to 1.259, p = 0.006), T-cell surface

glycoprotein CD5 (CD5) (OR = 1.126, 95% CI = 1.028 to 1.233, p

= 0.011), Fms-related tyrosine kinase 3 ligand (FLT3LG) (OR =

1.120, 95% CI = 1.013 to 1.238, p = 0.027), and tumor necrosis

factor-related apoptosis-inducing ligand (TNFSF10) (OR = 1.093

95% CI = 1.009 to 1.184, p = 0.029) and an increased occurrence of

ASD. Levels of interleukin-2 receptor subunit beta (IL2Rb) (OR =

0.838, 95% CI = 0.749 to 0.936, p = 0.002), and interleukin-2 (IL-2)

(OR = 0.874, 95% CI = 0.785 to 0.972, p = 0.013) were inversely

associated with the risk of ASD. The results of the WM analysis for

CD244 (OR = 1.150, 95% CI = 1.026 to 1.289, p = 0.016) and CD5

(OR = 1.181, 95% CI = 1.028 to 1.355, p = 0.018) also indicate a

causal relationship with ASD, consistent with the trend observed in

the IVWmethod. MR Egger analysis of all the inflammatory factors

did not find any significant causal relationship with ASD. Figure 2

provide the results of the IVW, WM, and MR Egger analysis. None
Frontiers in Immunology 04
of the intercepts in the MR-Egger regression analysis significantly

deviated from the zero (p > 0.05), suggesting no horizontal

pleiotropy. Heterogeneity was observed only in TNFSF10 with a

Cochran’s Q-derived p <0.05, but the causal estimate was acceptable

when utilizing the random-effects IVW method (Table 1). The MR

leave-one-out sensitivity analysis indicated that sequentially

excluding individual SNP did not significantly influence the

results, and all the estimates of the error lines were on the same

side (Figure 3). The results of the IVW, WM, and MR Egger mode

for all circulating inflammatory factors on ASD are displayed in

Supplementary Table S5.
3.3 The causative impact of ASD on
circulating inflammatory factors

When considering functional outcomes of ASD as exposures

and the 91 circulating inflammatory factors as outcomes, the IVW

results indicate that adverse functional outcomes following ASD

may lead to increased levels of matrix metalloproteinase-10

(MMP10) and caspase 8 (CASP8) (OR = 1.067, 95% CI = 1.006

to 1.131, p = 0.032; OR = 1.064, 95% CI = 1.003-1.128, p = 0.040), as

well as decreased levels of tumor necrosis factor-related activation-

induced cytokine (TNFSF11) and C-C motif chemokine 19

(CCL19) (OR = 0.942, 95% CI = 0.888 to 0.998, p = 0.044; OR =

0.942 95% CI = 0.888 to 0.999, p = 0.047). The analysis results from

both WM and MR Egger did not reveal any significant causality

between ASD and the four inflammatory factors. Figure 4 provide

the results of the IVW, WM, and MR Egger analysis. Cochran’s Q-

test results showed no evidence of heterogeneity in the causal

relationship between these SNPs. The p-value of the MR-Egger

intercept was greater than 0.05, indicating that horizontal

pleiotropy was not possible for these four associations (Table 2).

Furthermore, the sensitivity analysis proved the robustness of these

observed causal associations (Figure 5). The results of the IVW,
FIGURE 2

Forest plots of the pooled OR results between 8 inflammatory
factors and ASD in the forward MR analysis.
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WM, and MR Egger mode for ASD on all circulating inflammatory

factors are displayed in Supplementary Table S6.
4 Discussion

Although recent observational studies have suggested an

association between inflammatory factors and ASD (27–29), it is

important to note that these results may be influenced by confounding

factors, and the causal relationship between the two remains

inconclusive. Using novel data and approaches, this bidirectional
Frontiers in Immunology 05
MR study offers a genetic insight into the potential causal

relationship between circulating inflammatory factors and ASD. The

findings of this study suggest that levels of SULT1A1, CD244, CD5,

FLT3LG, and TNFSF10 are positively associated with the risk of ASD,

while levels of IL-7, IL2Rb, and IL-2 are inversely associated with the

risk of ASD. Furthermore, the genetic susceptibility to ASD exhibited

suggestive evidence of increased levels of MMP10 and CASP8, and

decreased levels of TNFSF11 and CCL19. Importantly, sensitivity

analyses supported the robustness of these results.

Individuals with ASD show alterations in circulating

inflammatory factors along with abnormal peripheral blood levels
FIGURE 3

Leave-one-out of SNPs results between 8 inflammatory factors and ASD in the forward MR analysis. Each black point indicates the MR result of all
remaining SNPs after removing the SNP in this line. The MR results estimated by all SNPs are depicted by the red point. No single SNP strongly drives
the overall causal effect in these sensitivity analyses.
TABLE 1 The heterogeneity and horizontal pleiotropy results of the 8 inflammatory factors and ASD in the forward MR analysis.

Exposure

Heterogeneity test Pleiotropy test

MR Egger IVW MR Egger

Q-value Q-df p-value Q-value Q-df p-value Intercept SE p-value

IL-7 4.28 11 0.961 4.54 12 0.971 0.0072 0.014 0.616

SULT1A1 8.55 18 0.969 13.68 19 0.802 0.0201 0.010 0.061

IL2Rb 4.14 7 0.763 4.93 8 0.765 0.0130 0.015 0.405

CD244 25.00 17 0.094 25.60 18 0.109 -0.0066 0.011 0.546

CD5 14.10 15 0.521 14.30 16 0.579 -0.0056 0.012 0.657

IL-2 6.56 10 0.766 7.40 11 0.766 0.0165 0.018 0.382

FLT3LG 29.10 21 0.111 29.10 22 0.142 -0.0002 0.015 0.989

TNFSF10 34.9 18 0.010 35.5 19 0.013 -0.0042 0.011 0.708
fro
MR, Mendelian randomization; Q, heterogeneity statistic Q; df, degree of freedom; SE, standard error.
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of lymphocytes and macrophages across the lifespan (30).

Inflammatory factor profiling can reveal the progression and

status of immune system dysregulation in ASD, offering

therapeutic targets for improving core autistic symptoms. Current

results in the forward MR analysis demonstrated a strong causal

association between a decreased level of circulating IL-7 and a

higher liability of ASD based on the Bonferroni correction. IL-7 is

mainly produced by stromal cells in lymphoid tissues and has

pleiotropic effects on the development of T and B cells, as well as T-

cell homeostasis. The administration or neutralization of IL-7 may

enable the modulation of immune function in individuals with

lymphocyte depletion or autoimmunity (31). Data from several

studies have shown that plasma levels of IL-7 were higher in

children with ASD than those observed in typically developing

controls, but these differences did not reach statistical significance

after correction for multiple comparisons (32–34). By contrast,

Napolioni and colleagues (35) found that plasma levels of IL-7 were

inversely correlated with full intelligence quotient in children with

ASD using Spearman’s rank correlation analysis. Similarly, a large

observational study on the risk of psychopathology found that

decreased IL-7 levels in cord serum were linked to emotional

symptoms and abnormal pro-social behavior in 5-year-old

children (36). Overall, this MR analysis based on large

populations replicates and extends these findings, highlighting a

causal protective role of genetically encoded higher IL-7 levels

against ASD.
Frontiers in Immunology 06
Other results did not show robust causality after Bonferroni

correction, which can only be regarded as suggestive evidence of

potential causality. IL-2 functions as an essential immunoregulatory

factor produced primarily by T cells, exerting its effects via binding

to the high-affinity IL-2R comprising of a (IL-2Ra), b (IL-2Rb),
and g (IL-2Rg) subunits. Both IL-2 and IL-2Rb have been

implicated in clonal expansion and functional differentiation of T

cells and natural killer cells (37, 38). Vojdani et al. have found that

children with ASD appeared to suffer from decreased blood natural

killer cell activity due to their low intracellular IL-2 levels (39). In

patients with ASD, the proportion of DR+ (activated) T

lymphocytes is abnormally increased, whereas the proportion of

IL-2 receptor+ lymphocytes remains unchanged or even decreases.

This is inversely proportional to the severity of autistic symptoms

and similar to that seen in autoimmune diseases (40–42). In

addition, previous studies have observed lower mRNA expression

levels of IL-2 and percentages of IL-2 synthesizing CD4+ and CD8+

T cells in the peripheral blood of ASD children as compared to

controls (43, 44). To sum up, our findings further support these

observations and provide evidence of immune dysfunction and

autoimmunity in patients with ASD.

Preliminary results suggest that there may be a positive

association between levels of SULT1A1, CD244, CD5, FLT3LG,

and TNFSF10 and risk of ASD. However, much of the research up

to now has not dealt with the relationship between these

inflammatory factors and ASD. SULT1A1 is responsible for the
TABLE 2 The heterogeneity and horizontal pleiotropy results of the ASD and 4 inflammatory factors in the reverse MR analysis.

Outcome

Heterogeneity test Pleiotropy test

MR Egger IVW MR Egger

Q-value Q-df p-value Q-value Q-df p-value Intercept SE p-value

MMP10 28.34 32 0.652 28.34 33 0.698 -0.0003 0.008 0.965

CASP8 27.00 32 0.718 27.12 33 0.754 -0.0007 0.007 0.922

TNFSF11 24.04 32 0.843 24.05 33 0.872 -0.0002 0.015 0.989

CCL19 25.78 32 0.773 25.84 33 0.808 0.0020 0.0076 0.798
fro
MR, Mendelian randomization; Q, heterogeneity statistic Q; df, degree of freedom; SE, standard error.
FIGURE 4

Forest plots of the pooled OR results between ASD and 4 inflammatory factors in the reverse MR analysis.
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sulfonation of xenobiotics and has been implicated in several

cancers by activating carcinogens (45). During autoimmune

neuroinflammation, SULT1A is highly expressed in astrocytes,

hindering the anti-inflammatory activity of endogenous estrogens

(46). CD244 is an immune regulation receptor presented in

all NK cells, which can stimulate NK cell cytotoxicity and

IFN-g production by interacting with CD48 on neighboring

lymphocytes (47, 48). It has previously been observed that

children with ASD had significantly higher serum and plasma

levels of CD5 than those of normal controls, which is positively

correlated with Childhood Autism Rating Scale score (49, 50). As a

pan T cell marker, CD5 is highly expressed in a variety of

autoimmune diseases, and this MR study provides new evidence

that elevated levels of circulating CD5 may directly promote the

development of ASD. In premature infants following respiratory

viral infections, hyperoxia-induced high FLT3LG expression can

lead to expansion and activation of lung CD103+ dendritic cells.

The FLT3LG level is positively correlated with the level of

proinflammatory cytokines (51). In addition, chronic HIV-1

patients also displayed significantly high levels of FLT3LG

expression (52). TNFSF10 a proapoptotic member of the tumor

necrosis factor family, has been shown to be highly up-regulated in

pat ien ts wi th inflammatory bowel d i sease (53) and

neurodegenerative diseases (54). The previous findings suggest a

positive outcome for our MR results, indicating the need for further

research on the current topic.

The occurrence of ASD may increase the levels of MMP10 and

CASP8 and decrease the levels of TNFSF11 and CCL19 in the

results of reverse MR analyses, suggesting that they may act as

downstream factors in ASD. A recent proteomics analysis on

plasma inflammation-related protein changes found that MMP-

10 expression was significantly up-regulated in the ASD group

compared with healthy children (29). Mild cognitive impairment

individuals with elevated cerebrospinal fluid levels of MMP-10 had

a higher likelihood of progression to Alzheimer’s type dementia and

faster cognitive decline (55). CASP8 is a protease with both pro-

death and pro-survival functions by mediating extrinsic apoptosis

and suppressing necroptosis. Postmortem analysis results showed

that the apoptosis was increased in the prefrontal cortex,

hippocampus, and cerebellum of the autistic brain, as
Frontiers in Immunology 07
characterized by significantly increased levels of cleaved CASP8

(56). TNFSF11 exerts essential roles in lymph node organogenesis,

cellular immunity, and osteoclastogenesis. For example, TNFSF11

can signal the augmentation of IFN-g secretion and inhibit

apoptosis of human monocyte-derived dendritic cells (57, 58).

CCL19 has shown significant potential in the regulation of

adaptive immune responses by coordinating dendritic cell

migration and increasing interactions between dendritic cells, T

cells, and B cells in secondary lymphoid tissues (59, 60). Hence,

ASD-induced decreases in peripheral blood CCL19 and TNFSF11

levels may further exacerbate immune system disorders.

This MR study employed a large sample size and instrumental

variables obtained from the GWAS database, ensuring statistical

robustness in estimating causal associations and enhancing the

credibility of results. By addressing the bias introduced by

confounding factors and reverse causality through MR analysis,

this study provides stronger evidence for assessing the causal

relationship between inflammatory factor levels and the risk of

ASD compared to traditional observational studies. Nevertheless,

several limitations of the present study should be considered.

Firstly, the present MR study can only provide statistical evidence

for the causal association between circulating inflammatory factors

and ASD, and further research is needed to investigate the potential

mechanisms involved. Secondly, although current sensitivity

analyses did not reveal any significant pleiotropy between SNPs,

the effect of pleiotropy on the MR results cannot be completely

ruled out. Thirdly, this MR study utilized pooled data from the

GWAS database and did not analyze stratified risk factors related to

ASD duration, severity, treatment, and comorbidities. Finally, the

genetic data were mainly collected from individuals of European

descent, and it is uncertain whether these findings are applicable to

individuals of other ancestries.
5 Conclusion

Overall, this study provide novel ideas that IL-7, SULT1A1,

IL2Rb, CD244, CD5, IL-2, FLT3LG, and TNFSF10 may be

upstream factors in the pathogenesis of ASD, while levels of

MMP10, CASP8, TNFSF11, and CCL19 may act as downstream
FIGURE 5

Leave-one-out of SNPs results between ASD and 4 inflammatory factors in the reverse MR analysis. Each black point indicates the MR result of all
remaining SNPs after removing the SNP in this line. The MR results estimated by all SNPs are depicted by the red point. No single SNP strongly drives
the overall causal effect in these sensitivity analyses.
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factors in ASD. These inflammatory factors could potentially serve

as biomarkers for early diagnosis and treatment of ASD.
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