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Introduction: Anti-PD-1/PD-L1 inhibitors therapy has become a promising treatment

for hepatocellular carcinoma (HCC), while the therapeutic efficacy varies significantly

among effects for individual patients are significant difference. Unfortunately, specific

predictive biomarkers indicating the degree of benefit for patients and thus guiding the

selection of suitable candidates for immune therapy remain elusive.no specific

predictive biomarkers are available indicating the degree of benefit for patients and

thus screening the preferred population suitable for the immune therapy.

Methods: Ultra-high-pressure liquid chromatography-mass spectrometry

(UHPLC-MS) considered is an important method for analyzing biological

samples, since it has the advantages of high rapid, high sensitivity, and high

specificity. Ultra-high-pressure liquid chromatography-mass spectrometry

(UHPLC-MS) has emerged as a pivotal method for analyzing biological samples

due to its inherent advantages of rapidity, sensitivity, and specificity. In this study,

potential metabolite biomarkers that can predict the therapeutic effect of HCC

patients receiving immune therapy were identified by UHPLC-MS.

Results: A partial least-squares discriminant analysis (PLS-DA) model was

established using 14 glycerophospholipid metabolites mentioned above, and

good prediction parameters (R2 = 0.823, Q2 = 0.615, prediction accuracy =

0.880 and p < 0.001) were obtained. The relative abundance of

glycerophospholipid metabolite ions is closely related to the survival benefit of

HCC patients who received immune therapy.

Discussion: This study reveals that glycerophospholipid metabolites play a

crucial role in predicting the efficacy of immune therapy for HCC.
KEYWORDS

anti-PD-1/PD-L1 inhibitors therapy, hepatocellular carcinoma, UHPLC-MS, plasma

metabolite, prognosis
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1 Background

Hepatocellular carcinoma (HCC) is a malignant tumor with a

high incidence and mortality worldwide (1). Multicenter,

randomized clinical trials, such as IMbrave 150 and Orient 32,

have been demonstrated the effectiveness of programmed cell death

protein 1/programmed death ligand 1 (PD-1/PD-L1) inhibitor

based anti-PD-1/PD-L1 therapy in HCC patients (2–6). Anti-PD-

1/PD-L1 therapy was proven to increase the tumor response and

prolong the survival in patients with advanced HCC. However, it

still faces challenges. Currently, the objective response rate (ORR) of

anti-PD-1/PD-L1 therapy for HCC was only 17%-30% (2–8). Long-

term survival benefits are achieved for some patients, while primary

resistance or hyperprogression in very short time occur in some

patients after receiving anti-PD-1/PD-L1 therapy. In addition,

adverse effect also limits its clinical application treating HCC.

Therefore, there is extremely urgent to explore biomarkers

predicting the treatment response of immune therapy in the

early time.

Biomarkers such as PD-L1 expression in tumor tissues, tumor

mutation burden (TMB), mismatch repair gene (MMR), and

microsatellite instability (MSI) (9–21) could predict the prognosis

of HCC patients receiving anti-PD-1/PD-L1 therapy. However, all

these biomarkers are detected by tumor tissue and are not easily

obtained. Furthermore, the intertumoral heterogeneity may

significantly affect the results. Currently, there are no biomarkers

that can simply and accurately predict the prognosis of HCC

patients receiving anti-PD-1/PD-L1 therapy in clinical practice.

Therefore, it is critical to explore suitable biomarkers which

accurately predict the prognosis of HCC patients receiving anti-

PD-1/PD-L1 therapy, especially screen the advantage population

for anti-PD-1/PD-L1 therapy before treatment, assist clinicians in

making treatment decisions, and improve the prognosis of

HCC patients.

UHPLC-MS allows simultaneous detection of several

metabolites with high quality data (22), and thus is well suitable

for discovering biomarkers (23).Currently, some liver diseases

including diagnosis of HCC (24–27), the prognosis of HCC (28–

30), differentiation of HCC from other liver disease (31–34) have

been studied by applying metabolomics. To date, many metabolites

were reported as potential biomarkers for liver disease. However, no

biomarkers predicting the therapeutic effect of anti-PD-1/PD-L1

therapy for HCC were reported.

Herein, metabolic profiling data were obtained from UHPLC-

MS to elucidate the abnormal metabolism associated with HCC

patients. A total of 59 participants were enrolled to explore

metabolic features and metabolic pathways related to HCC

patients. In addition, a two-step partial least-squares discriminant

analysis (PLS-DA) model analysis strategy including all metabolites

and characteristic metabolites was established to discover and

validate new biomarkers set to predict the efficacy of immune

therapy for HCC. Using this strategy, six potential biomarkers

were found. In addition, we found that the alteration of PE (36:4)

in the progression-free survival (PFS) and overall survival (OS) of

patients was significant.
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2 Methods

2.1 Reagents and apparatus

Acetonitrile (HPLC grade) was purchased from Merck KGaA

(Darmstadt, Germany). Formic acid (LC/MS grade) was purchased

from Energy Chemical (Shanghai, China). Ammonium Formate

(Optima LC/MS grade) was purchased from Fisher Scientific (Fair

Lawn, USA). Ultrapure water was purchased from Watsons

(Guangzhou, China).
2.2 Patients

Consecutive HCC patients who received anti-PD-1/PD-L1

therapy from January 2020 to December 2020 at the First

Hospital of Jilin University (Changchun City, Jilin Province,

China) were identified. A total of 65 patients were initially

selected, and 59 patients were finally chosen for the study

(Supplementary Figure S1). The Institutional Review Board

approved the present study of the First Hospital of Jilin

University. Written, informed consent for their serum samples to

be used for biomedical research was obtained from all enrolled

patients. This study was conducted according to the Declaration of

Helsinki and the Ethical Guidelines for Clinical Studies.

Inclusion criteria includes: 1) the diagnosis of HCC was

confirmed by pathological examination or clinical diagnosis, 2)

locally advanced or distant metastases and after multidisciplinary

consultation, it was determined that local treatment was not suitable

3) received the anti-PD-1/PD-L1 therapy and baseline reference

serum samples were collected, 4) underwent abdominal computed

tomography (CT) or magnetic resonance imaging (MRI) within 4

weeks before the anti-PD-1/PD-L1 immune therapy. 5) at least once

efficacy evaluation after 3 cycles of anti-PD-1/PD-L1 treatment with

enhanced MRI and CT. Exclusion criteria were: 1) less than 18 years

old, 2) individuals with secondary liver cancer, cholangiocarcinoma,

mixed liver cancer, or particular types of liver cancer, 3) combined

with other tumors, 4) pregnant or lactating women, and 5) those

without complete clinical laboratory data.
2.3 Human plasma collection
and preparation

Fasting venous blood was collected. The plasma was collected

by centrifuging blood samples and then stored at -80°C until

UHPLC-MS analysis. All frozen plasma samples were thawed at

4°C. Afterwards, 600 mL of acetonitrile was added to 200 mL of

plasma in ice. Mixtures were shaken at 3,000 rpm for 30 seconds to

make them evenly mixed and then centrifuged at 13,000 rpm for 10

min at 4°C to remove protein. Then, supernatants were dried with

nitrogen blow and stored at -80°C. Before analysis, each sample was

reconstituted with acetonitrile/water (80:20, v/v) solution. Quality

control (QC) samples were prepared by pooling 20 mL of each

plasma sample.
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2.4 Follow-up and therapeutic
response assessment

All enrolled patients were followed up continuously, and the

best of response (BOR) and survival data were recorded. Treatment

response was assessed once every 3 cycles of anti-PD-1/PD-L1

treatment (around every 9-12 weeks) according to the Response

Evaluation Criteria in Solid Tumors (RECIST V1.1), or whenever a

sign or symptom suggested tumor progression. Anti-PD-1/PD-L1

therapy was continued until disease progression, intolerable adverse

events, or discontinuation at the doctors’ discretion. Follow-up

continued until the patient’s death or was lost to follow-up.

Complete response (CR) was defined as the disappearance of all

target lesions, and the short diameter of all pathological lymph nodes had

to be reduced to less than 10 mm. Partial response (PR) was defined as a

reduction in the sum of the diameters of the target lesions of 30% or

more (based on the baseline) for at least 4 weeks. Stable disease (SD) was

defined as the degree of reduction of target lesion diameter that did not

reach PR or the degree of increase that did not reach progressive disease

(PD). PD was defined as a relative increase in the sum of diameters of

target lesions of at least 20% (based on the minimum of the sum of

diameters of all measured target lesions over the course of treatment), in

addition to an absolute increase in the sum of diameters of at least 5 mm

(the appearance of new lesions was also considered as progression).

Disease control rate (DCR) refers to the percentage of cases with CR or

PR or SD in the total number of evaluable cases in treatment. DCR (%) =

(number of CR cases + number of PR cases + number of SD cases)/total

number of evaluable cases x100%. Overall survival (OS) was the time

from the start of therapy to death or loss to follow-up from any cause,

and progression-free Survival (PFS) was the time from the start of

therapy to the first tumor progression or death.
2.5 Analyst of plasma by UHPLC-MS

An UltiMate™ 3000 basic automated system (Thermo Scientific,

Waltham, USA) coupled with an Orbitrap Fusion™ Tribrid™ mass

spectrometer (Thermo Scientific, San Jose, CA, USA) was used for

untargetedmetabolomics analysis. The chromatography column used an

Accucore™HILICHPLC column (100×2.1mm i.d., 2.6mm), the column

temperature was set at 35°C, and the flow rate was 0.3 mL/min. The

injection volume was 10 mL. Mobile phase A consisted of water/

acetonitrile/formic acid (95:5:0.1, v/v/v) containing 10 mM ammonium

formate, and mobile phase B consisted of acetonitrile. The starting

composition was 5% A, which was maintained for 2 min before being

increased to 20% at 2.0 min and 80% at 20.0 min for a 1.0 min wash,

followed by returning to 5% A in 1 min and held until 8 min for a re-

equilibration step. The spray voltage was set at 3.5 kV in positive ion

modes. The full MS scan range was set at m/z 70-1050 Th with a

resolution setting of 120,000. The ion transfer tube temperature and

vaporizer temperature were set at 320°C and 275°C, respectively. The

sheath gas and aux gas were set at 35 psi and 10 psi, respectively.

Collision induced dissociation (CID) experiments were carried out for

MS/MS analysis. During the CID experiments, precursor ions were

isolated with a window width of 1.6 Th, and normalized collision energy
Frontiers in Immunology 03
(NCE) was set at 25-35%. The QC samples were inserted into the

running sequence after every 6 samples to monitor the stability of

data acquisition.
2.6 Chemical identification and
data analysis

Raw data of each sample were obtained by Xcalibur 3.0

software. MSConvert was used to convert all data into mzML

format data. Then, mzML data were uploaded to MetaboAnalyst

5.0 (https://www.metaboanalyst.ca/) and data processing was

performed in the Spectra Processing module of LC-MS. The

resulting peak intensities were used for statistical and functional

analysis. Principal component analysis (PCA) and partial least-

squares discriminant analysis (PLS-DA) analysis of plasma samples

data obtained above were performed using MetaboAnalyst 5.0

software. The robustness, predictive capacity, and validity of the

PLS-DA model were also confirmed using R (2), Q (2) parameters,

prediction accuracy, and permutation tests. The differential

metabolites that satisfied the criterion of variable importance in

the projection (VIP) of >1.0 and p-value of <0.05 were considered as

potential metabolic biomarkers. The biomarkers were putatively

annotated based on mass measurement and their fragmentation

patterns via CID as well as by consulting databases of the Human

Metabolome Database (HMDB, http://www.hmdb.ca) and the

LIPID MAPS (http://www.lipidmaps.org) to further enhance the

accuracy of biomarker identification. Advanced heatmap plots,

clustering correlation heatmap with signs, and correlation

network were performed on the identified biomarkers using the

OmicStudio tools at https://www.omstudio.cn to find the

relationship and interaction mechanism between the markers.
3 Results

3.1 Patient baseline characteristics

Fifty-nine HCC patients who received anti-PD-1/PD-L1

therapy were enrolled for analysis. There were 44 men (74.58%)

and 15 women (25.42%), with a median age of 58 years (52-66

years). The ECOG PS score of all patients was 0 (47.46%) or 1

(52.54%). Forty-four patients were classified as Child-Pugh A

(74.58%), and 15 patients were classified as Child-Pugh B

(25.42%). There were 42 patients (71.19%) with distant metastasis

and 17 (28.81%) with local advanced. Nineteen patients (32.20%)

received first-line treatment and 40 patients (67.80%) received non-

first-line treatment. Regarding anti-PD-1/PD-L1 therapy, 55

patients (93.22%) received anti-PD-1/PD-L1 therapy combined

with targeted therapy, and 4 (6.78%) received anti-PD-1/PD-L1

therapy combined with chemotherapy. There were 0 patients (0%)

with complete response (CR), 20 patients (33.9%) with partial

response (PR), 27 patients (45.8%) with stable disease (SD), and

12 patients (20.3%) with progressive disease (PD). The baseline

characteristics are listed in Table 1.
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3.2 Analysis of patient plasma samples by
UHPLC-MS

Fifty-nine plasma samples were analyzed by UHPLC-MS/MS in

the positive ion mode. The typical total ion chromatograms of the

PR, SD, and PD groups (Figure 1) show retention times in the range

of 0 - 28 min. The quality of datasets was checked with PCA

regarding gender (Supplementary Figure S2A) and age

(Supplementary Figure S2B). Not surprisingly, no significant

difference was found. To eliminate any artificial differences

introduced by grouping patients, the HCC plasma sample data

were scrambled, keeping each sample’s data intact and only

changing the sample grouping for analysis (Supplementary Figure

S2C). PCA determined QC and revealed no outl iers

(Supplementary Figure S2D), indicating that data acquired during

this analysis were stable.
3.3 Analysis of plasma from HCC patients

An untargeted metabolomics approach was first performed to build

an unsupervised PCAmodel comprising plasma samples from 59 patients

(including 27 SD plasma samples, 12 PD plasma samples, and 20 PR

plasma samples). As revealed by the score plot of PCA (Figure 2A), the

molecular patterns obtained by UHPLC-MS data from the three groups
Frontiers in Immunology 04
were clustered but did not show obvious separation trends between PD

and SD. Thus, as an observation process, partial least squares-discriminant

analysis (PLS-DA) can perform sorting and feature selectio (35). The PLS-

DA score plot shows that three group specimens are not only completely

separated from each other but clustered within the group (Figure 2B). To

further validate the PLS-DAmodel, the best cross-validation tests (marked

with red star) were performed, with intercepts R2 = 0.993, Q2 = 0.927, and

prediction accuracy = 0.953 (Supplementary Figure S3A). Also, the

permutation test was repeated 100 times, and the test was applied to

get the p-value (p = 0.03) (Supplementary Figure S3B), indicating that the

model was not overfitted. Moreover, variable importance in projection

(VIP) values was calculated to evaluate the contribution of individual

metabolites. Large VIP values > 1.0 were the most relevant for explaining

differences between PD, SD, and PR groups. By comparing the MS/MS

data of the HMBD and LIPID MAPS, 19 metabolites including

[pyruvatoxime+H]+ (m/z 104.0165), [4-Ipomeanol+H]+ (m/z 169.0884),

[amifostine+H]+ (m/z 215.0184), [DG(O-18:0/2:0/0:0)+NH4-H2O]
+ (m/z

386.3406), [LysoPC(16:0)+H]+ (m/z 496.3422), [3b,16a,21b,22a)-12-

Oleanene-3,16,21,23,28-pentol-22-angeloyloxy-23-al+NH4]
+ (m/z

604.4204), [PA(30:0)+ NH4-H2O]
+ (m/z 620.4405), [saponin H+NH4-

H2O]
+ (m/z 650.3941), [DG(11M3/9M5/0:0)+H]+ (m/z 673.5024), [PE-

NMe(30:2)+H]+ (m/z 674.46), [DG(11D3/9D3/0:0) + NH4]
+ (m/z

690.5242), [DG(42:10) +NH4]
+ (m/z 706.5234), [PE(32:1) + NH4]

+ (m/

z 707.5269), [PA(37:4)+NH4-H2O]
+ (m/z 710.4937), [PE(36:4)+H]+ (m/z

740.5445), [PG(36:4)+H-H2O]
+ (m/z 753.5169), [PE(38:9)+NH4-H2O]

+

(m/z 757.4687), [PG(38:5)+H]+ (m/z 797.5432), and [PG(40:6)+H]+) (m/z
TABLE 1 The baseline characteristics of the study population.

Variables Total (n=59) PR (n=20) SD (n=27) PD (n=12) P

Ages, years, (median (IQR)) 58 (52-66) 58 (50-66) 58 (55-66) 59 (48-65) 0.847

Sex, male/female, n (%) 44/15 (74.58/25.42) 13/7 (65.00/35.00) 21/6 (77.78%/22.22) 10/2 (83.33/16.67) 0.450

BMI, kg/m2, (median (IQR)) 23.44 (20.79-25.83) 24.53 (20.25-25.90) 23.03 (20.52-24.80) 22.96 (20.97-26.12) 0.497

First-line treatment, yes/no, n (%) 19/4 (32.20/67.80) 7/13 (35.00/65) 8/19 (29.63/70.37) 4/8 (33.33/66.67) 0.923

AFP, (median (IQR)) 243.30 (13.52-7548.00) 205.30 (13.52-9714.50) 243.3 (3.71-3576.2) 668.1 (23.86-60000) 0.471

Hb, g/L, (median (IQR)) 131.00 (119.00-143.00) 138.00 (121.00-145.75) 130.00 (113.00-136.00) 147.00 (126.25-156.25) 0.035

Pltelet, ×109/L, (median (IQR)) 169.00 (117.00-230.00) 175.00 (132.00-228.50) 166.00 (97.00-241.00) 151.50 (121.25-199.50) 0.855

INR, (median (IQR)) 1.03 (0.97-1.10) 1.02 (0.97-1.06) 1.03 (0.97-1.12) 1.03 (0.95-1.10) 0.769

ALT, U/L, (median (IQR)) 22.50 (16.30-37.30) 24.90 (15.3-39.40) 20.90 (16.30-31.90) 30.95 (20.75-41.80) 0.357

AST, U/L, (median (IQR)) 29.60 (23.10-48.70) 29.85 (18.63-53.88) 27.80 (19.60-41.90) 34.40 (23.15-63.35) 0.662

Albumin, g/dL, (median (IQR)) 37.30 (34.30-41.30) 39.00 (35.50-41.55) 36.50 (22.80-40.90) 36.40 (32.75-38.93) 0.333

Tbil, mmol/L, (median (IQR)) 17.10 (10.30-24.20) 12.15 (9.70-22.85) 13.90 (10.70-22.70) 19.35 (17.63-50.75) 0.095

Cirrhosis, yes/no, n (%) 25/34 (42.37/57.63) 9/11 (45.00/55.00) 10/17 (37.04/62.96) 6/6 (50.00/50.00) 0.427

Extrahepatic metastasis, yes/no, n (%) 42/17 (71.19/28.81) 14/6 (70.00/30.00) 19/8 (70.37/29.63) 9/3 (75.00/25.00) 0.948

Number of tumors, solitary/multiple, n (%) 14/45 (23.73/76.27) 6/14 (30.00/70.00) 7/20 (25.93/74.07) 1/11 (8.33/91.67) 0.354

Largest tumor size, <5cm/≥5cm, n (%) 20/39 (33.90/66.10) 8/12 (40.00/60.00) 9/18 (33.33/66.67) 3/9 (25.00/75.00) 0.684

Portal vein thrombosis, yes/no 14/45 (23.73/76.27) 6/14 (30.00/70.00) 4/23 (14.81/85.19) 4/8 (33.33/66.67) 0.328

Child-Pugh grade, A/B, n (%) 44/15 (74.58/25.42) 17/3 (85.00/15.00) 21/6 (77.78/22.22) 6/6 (50.00/50.00) 0.078

ECOG PS, 0/1, n (%) 28/31 (47.46/52.54) 10/10 (50.00/50.00) 12/15 (44.44/55.56) 6/6 (50.00/50.00) 0.913
frontier
BMI, body mass index; AFP, alpha-fetoprotein; Hb, hemoglobin; INR, International Normalized Ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Tbil, total bilirubin.
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840.5657) identified in plasma samples had VIP>1.5, and 14 metabolites

had VIP values >2 (Supplementary Figure S4; Supplementary Table S1).

Volcano plots can perform the distribution of metabolites with differential

expression based on P-value (p < 0.05) and fold change (FC > 2) (36).

Therefore, the results of the volcano plots were compared for the analysis

of the PD group with the PR and SD groups, respectively. The volcano
Frontiers in Immunology 05
plots show that the lipid metabolites with higher VIP values are

significantly distributed (Figures 2C, D). These results suggested that the

corresponding metabolites might act as potential biomarkers predicting

the therapeutic effect of HCC patients.
3.4 Correlation cluster analysis and
metabolic analysis visualization of nineteen
metabolites in HCC plasma samples

To further compare the alterations of major iconic signals in the

human model of immune therapy of HCC, the UHPLC-MS signal

intensities of the 19 iconic signals which made the major contribution to

the differentiation between different types of plasma according to the

VIP values were extracted for the construction of heatmaps (Figure 3A).

The heatmap reveal the signal intensity of metabolites in three groups,

and each small cell represents the signal intensity of a singlemetabolite in

one sample. PE-NMe (30:2), PA (30:0), LysoPC (16:0), PE (36:4), PG

(38:5), and DG (11D3/9D3/0:0) changed most obviously in the three

groups of plasma samples, which had low P- value and high fold change

(Supplementary Figure S5). Hence, investigated the metabolite alteration

trends based on UHPLC-MS for different immunotherapeutic effects.

Interestingly, the intensity of mass spectrometric signal responses of 19

metabolites correlated with the immunotherapeutic effect of HCC

(Figure 3B). To explore the relationship between 19 metabolites,

biomarker correlation analysis was performed showing significant

correlations between metabolites (Figure 3C). The correlation network
B

C D

A

FIGURE 2

Metabolic profiles of the plasma samples. (A) Score plot of PCA, (B) score plot of PLS-DA, (green circles: PR, blue circles: SD, red circles: PD). (C)
Volcano plot between PD plasma samples and PR plasma samples, (D) volcano plot be-tween PD plasma samples and SD plasma samples.
FIGURE 1

Typical total ion chromatograms of human plasma samples. PD
group samples, SD group samples, and PR group samples in positive
ion mode.
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plots show more clearly relationship between each metabolite, where 14

lipid metabolites show a strong positive correlation with each other, with

the significant number of correlated objects for PE-NMe (30:2), PA

(30:0), LysoPC (16:0), PE (36:4), PG (38:5) and DG (11D3/9D3/0:0).

As shown in Figure 3D, spearman rank-order correlation

coefficient is shown in the matrix. The test was used to determine if

the correlation was significant (* P-value <= 0.05, ** P-value <= 0.01,

*** P-value <= 0.001). 14 lipid metabolites were positively correlated,

and the metabolites of the same type had the strongest correlation,

followed by the metabolites that were directly affected by each other in

the metabolic pathway. Moreover, 14 lipid metabolites were on the

glycerophospholipid metabolic pathway. Thus, as shown in the

metabolic pathway (Figure 3E), the black text indicates that no

metabolites were detected, and the red text indicates that metabolites

were significantly enriched. The box plots show the intensity changes of

representative related lipid metabolites on the pathway which change

most obviously in three groups of plasma samples, including PE-NMe

(30:2), 620 PA (30:0), LysoPC (16:0), PE (38:9), PG (38:5) and DG (O-

18:0/2:0/0:0) and trends for these six lipid biomarkers are evident in

each group. Among them, LysoPC(16:0), PA (30:0), PE-NMe (30:2)

show the same trend of intensity change with high intensity of pre-

treatment metabolites and poor treatment effect in HCC patients and

DG (O-18:0/2:0/0:0), PE (38:9), PG (38:5) show the same trend of

intensity change, with low intensity of pre-treatment metabolites in

HCC patients and better treatment effect. Moreover, decreased palmitic

acyl (C16:0)–containing glycerophospholipids were positively

associated with metastatic abilities of HCC cells (37). It was reported

that the level of LysoPC(16:0) gradually decreased with the progression

of HCC (38), which was consistent with results, the signal level of

LysoPC (16:0) showed a gradual increase as the actual immune therapy

combined with chemotherapy efficacy of the patients improved.
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3.5 Clinical value of the fourteen
lipid metabolites

Over the last decade, immune checkpoint inhibitors (ICIs), such as

PD-1, PD-L1, and others have dramatically changed the treatment

algorithm for solid tumors. However, the role of existing predictive

biomarkers, such as the expression of PD-L1, in predicting the

prognosis of HCC receiving ICIs therapy remains to be clarified (39).

Here, the potential value of 14 phospholipid metabolites (including DG

(O-18:0/2:0/0:0), LysoPC (16:0), PA (30:0), DG (11M3/9M5/0:0), PE-

NMe (30:2), DG (11D3/9D3/0:0), DG (42:10), PE (32:1), PA (37:4), PE

(36:4), PG (36:4), PE (38:9), PG (38:5) and PG (40:6)) to predict the

prognostic of HCC patients was again analyzed by PLS-DA (Figure 4A).

Surprisingly, similar performance was obtained when using only the

fourteen glycerophospholipid metabolites, the best explained

parameters and predictive parameter (marked red star) of three

groups PLS-DA models were obtained by cross-validation tests

(Figure 4B), with intercepts R2 = 0.823, Q2 = 0.615, and prediction

accuracy = 0.880. The permutation test was repeated 1000 times

(Figure 4C), and the test was applied to get the p-value (p < 0.001),

indicating that the model was not over-fitted. The obtained

performance using the fourteen types of lipid metabolites was similar

to the reported performance of the cross-validation tests concerning all

metabolites (R2 = 0.998 vs. R2 = 0.823) but superior concerning the

permutation test (p=0.03 vs. p < 0.001).

Moreover, optimal cut-off values for 14 glycerophospholipid

metabolites based on standardized log-rank statistics. Patients were

divided into the high and low metabolite groups according to the

optimal cut-off of the relative abundance of each differential

glycerophospholipid metabolites respectively. The Kaplan-Meier

method was applied to analyze patients’ PFS and OS in the high
B

C D E

A

FIGURE 3

(A) Heatmap constructed based on the UHPLC-MS signal intensities of identified 19 metabolites, with a high VIP value in differential analysis of HCC
plasma samples. Dark red represents relative high abundances of biomarkers in the sample, and dark blue represents relative low abundances; (B)
Boxplots for the relative abundances of 19 features among the different HCC groups in positive mode. Boxplots of the differential metabolites for the
PD group (red), PR (blue) and SD (black); box plots display median (line within box) and quartiles (box limits); (C) Correlation network. The golden line
represents a positive correlation between biomarkers, the gray line represents a negative correlation. The darker the red of the biomarker, the
stronger the correlation in the network diagram, and the darker the dark blue, the weaker the correlation in the network diagram. The size of each
ball can also reflect this. (D) Correlation coefficient heat map of 14 metabolites in the glycerophospholipid pathway. (E) The changed lipid
metabolites were mapped to glycerophospholipid pathways according to their annotation in the KEGG database. The six lipid metabolites boxplots
were changed obviously in the three groups of metabolic pathway.
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and low metabolite groups. And the results of the Kaplan-Meier

Survival analysis suggested that survival benefits were different

between the high with low metabolite groups (Figures 4D–F,

Supplementary Figure S6). In the Kaplan-Meier survival curve, the

abscissa represents time, and the ordinate represents the progression-

free survival rate or OS rate of patients. As shown in Figures 4E, F,

both PFS and OS were significantly lower in the high metabolite

group than in the low metabolite group. This indicated that

metabolite PE (36:4) was closely related to the progression and

mortality of HCC patients. Kaplan-Meier survival analysis were

performed separately for 14 differential glycerophospholipid

metabolites, and the results were similar to PE (36:4). The results

showed that the survival curves of PFS and OS differed between high

and low metabolite groups.
4 Discussion

The purpose of this study is to predict the therapeutic effect of

HCC patients receiving anti-PD-1/PD-L1 therapy by an untargeted

metabolomics based on UHPLC-MS.We proposed a method based on

building a two-step PLS-DA prediction model strategy for finding the

significative metabolites that can predict the efficacy of immune

therapy for HCC in the following steps: in the first step, all

metabolites in plasma samples are retained and biomarkers with

characteristic properties are screened based on VIP values and a total

of 19 metabolites were screened. In the second step, a prediction model

was built from the screened biomarkers with prediction accuracy of

0.880. Moreover,14 biomarkers were identified, all which inside the

glycerophospholipid pathway in HCC plasma samples. These
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biomarkers showed a high correlation with each other, which may

make an essential contribution to the prediction of immune efficacy.

Lipids play a crucial role in regulating normal cellular

function. Disorders of lipid metabolism have been associated with the

development of various human diseases (40–42). Glycerophospholipids,

as a type of lipid, play an important metabolic role in plasma (43). They

are major components of cell membranes and are involved in

maintaining cell structure and function. In this study, 14 biomarkers

were related to glycerophospholipidmetabolism, six biomarkers showed

the greatest change in the significance of the signal (including PE-NMe

(30:2), PA (30:0), LysoPC (16:0), PE (36:4), PG (38:5), and DG (11D3/

9D3/0:0)) in PR patients and SD patients compared to PD patients. The

therapeutic effect of anti-PD-1/PD-L1 on patients decreases with the

increase of LysoPC, PA, and PE-NMe signals. However, PE, PG, and

DG have a poor effect after treatment with low signals, and with the

enhancement of signals, the treatment has some effect. To explore the

possibility of clinical application of biomarkers, the Kaplan-Meier

Survival analysis showed two biomarkers that should receive more

attention, PE (36:4) and DG (11M3/9M5/0:0), while PE (36:4) was one

of the biomarkers with the most significant changes in signal intensity.

Furthermore, metabolomics research has demonstrated that

irregularities in glycerophospholipid metabolism can result in liver

damage (44).

Previous studies have shown that proteomics, MRI radiomics, and

genomics on predicting anti-PD-1/PD-L1 therapy markers has made

several advances (45–47). In addition, Zhang et al. found that plasma

mevalonate levels were positively correlated with the therapeutic effect of

anti-PD -(L)1 antibodies, and confirmed that plasma mevalonate could

enhance tumor immunity (48). Although the metabolomic correlation

in predicting the efficacy of immune therapy for HCC remains quite
B C
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FIGURE 4

Differential analysis of fourteen lipid metabolites in plasma samples of HCC patients. (A) Score plot of PLS-DA models derived from UHPLC-MS data of
PR (green circles), SD (blue circles), and PD (red circles), (B) cross-validation test (marked with a red star are the best explained and predicted
parameteters) and (C) permutation test results (1000 permutations) of the PLS-DA model indicated that the model was not over-fitted. (D) Determining
cut-off values and the plot of standardized log-rank statistics of PE (36:4), (E, F) the Kaplan-Meier plot according to the cut-off values of PE (36:4).
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preliminary, it may potentially serve as a method to predict the efficacy

of immune therapy for HCC. In this study, 14metabolites were found to

be associated with immunotherapy efficacy, overall survival and disease-

free survival. Thus, we proposed that the up-regulation of those two

kinds of metabolites (DG (11M3/9M5/0:0), and PE (36:4)) patients with

worse prognosis may be related to the enhanced metabolism of tumor

cells in this population. These metabolites may be produced or secreted

by tumor cells with an active metabolism, or they may be part of the

tumor cell structure and released into the plasma of patients (39). In

addition, those metabolites (including DG (O-18:0/2:0/0:0), LysoPC

(16:0), PA (30:0), PE-NMe (30:2), DG (11D3/9D3/0:0), DG (42:10), PE

(32:1), PA (37:4), PG (36:4), PE (38:9), PG (38:5) and PG (40:6)) were

down-regulated in patients with worse prognosis, which may be due to

mutations in tumor suppressor genes, resulting in down-regulation of its

expression products, or due to suppression of normal hepatocyte

metabolism (49–52). Thus, we should pay more attention to patients

with a high relative abundance of those two kinds of metabolites (DG

(11M3/9M5/0:0) and PE (36:4)), and low relative abundance of other

metabolites, and imaging changes should be closely monitored to

identify tumor progression in early stage. Timely adjustment of

treatment or symptomatic treatment should be given to patients to

improve the survival prognosis and quality of life.

In conclusion, this study demonstrated a two-step PLS-DA model

strategy based on the application of untargeted metabolomics (UHPLC-

MS), which can afforded new and valuable metabolites regarding to

predict the therapeutic outcome of HCC patients receiving of this

disease. This study identified metabolites strongly associated with the

efficacy of HCC anti-PD-1/PD-L1 immune therapy (DG (11M3/9M5/

0:0, PE (36:4), DG (O-18:0/2:0/0:0), LysoPC (16:0), PA (30:0), PE-NMe

(30:2), DG (11D3/9D3/0:0), DG (42:10), PE (32:1), PA (37:4), PG (36:4),

PE (38:9), PG (38:5) and PG (40:6)). The results could be utilized as a

reference for further clinical examination. In response to the growing

demand on predicting immune therapy in HCC, amore comprehensive

analysis of HCC could be achieved at both protein and gene levels when

combining with the determination of some other biomarkers in the

future. Other metabolite profiling techniques, using either targeted or

untargeted metabolomics in diverse sample matrices, are necessary to

replicate our findings and to provide greater insight into the metabolites

associated with predicting immunological treatment of HCC.
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