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CD4+ CD25+ FOXP3+ T regulatory cells (Tregs) are a subset of the

immunomodulatory cell population that can inhibit both innate and adaptive

immunity by various regulatory mechanisms. In hepatic microenvironment,

proliferation, plasticity, migration, and function of Tregs are interrelated to the

remaining immune cells and their secreted cytokines and chemokines. In normal

conditions, Tregs protect the liver from inflammatory and auto-immune

responses, while disruption of this crosstalk between Tregs and other immune

cells may result in the progression of chronic liver diseases and the development

of hepatic malignancy. In this review, we analyze the deviance of this protective

nature of Tregs in response to chronic inflammation and its involvement in

inducing liver fibrosis, cirrhosis, and hepatocellular carcinoma. We will also

provide a detailed emphasis on the relevance of Tregs as an effective

immunotherapeutic option for autoimmune diseases, liver transplantation, and

chronic liver diseases including liver cancer.
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Introduction

Tregs are a minor population of T subset cells, representing

about 5-10% of the whole cluster of differentiation (CD) 4+ T

lymphocyte population (1, 2). Tregs maintain immune homeostasis

by controlling autoimmune reactions and imparting self-tolerance

in tissues (3). In both Humans and other mammals, Tregs prevent

self-antigen reactions by suppressing immune cells of innate

lineages like monocytes, macrophages, dendritic cells (DCs),

natural killer cells (NKs), and natural killer T cells (NKTs) as well

as immune cells of adaptive lineage such as T and B lymphocytes (4,

5). Treg family comprises of natural Tregs (nTregs) that express the

nuclear forkhead or winged-helix family of transcription factor P3

(FoxP3), along with cell surface proteins cytotoxic T lymphocyte

antigen-4 (CTLA-4) and CD25, as well as peripherally derived

Tregs (pTregs) or those generated in vitro, known as induced Tregs

(iTregs) (6). nTregs are characterized as CD4+ T cells expressing

high levels of CD25 and FOXP3, and low levels of CD127 surface

marker (7–9). CD25 is the a-chain of Interleukin-2 (IL-2) receptor

expressed on the cell surface of Tregs and activated T effector cells.

Transcription factor FOXP3 is crucial for the development,

function, and lineage commitment of Tregs (7, 10). It has been

reported as a specific marker required for the development of

thymic CD4+ CD25+ Tregs and is directly correlated with the cell

surface expression of CD25 receptor (11). Mutations or deficiency

of the FOXP3 gene can lead to IPEX syndrome (immune

dysregulation, polyendocrinopathy, enteropathy, X-linked genetic

trait) in humans, and in scurfy mutant mice, it causes

lymphoproliferation and multiorgan autoimmunity (11, 12).
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Subsets of Tregs

Regulatory T cells are classified into Tregs expressing Foxp3

(Foxp3+ Tregs), Type 1 regulatory T (Tr1) cells, T helper (Th3)

cells, CD8+CD28− T cells, human leukocyte antigen (HLA)‐

G+CD4+ T cells and HLA‐E‐specific CD8+ T cells (13). In this

review we will focus on the CD4+ Tregs. FoxP3 expressing Tregs are

a highly heterogenous population of immune cells. Based on their

site of development, Tregs are subdivided into naturally occurring

Tregs (nTregs) and adaptive or induced Tregs (pTregs). While

nTregs develop in the thymus, pTregs develop in the peripheral

lymphoid organs (14) (Figure 1). Strong T-cell Receptor (TCR)

signaling and CD28 co-stimulation result in the nTreg lineage,

whereas pTregs are generated from naïve, mature T cells under

weak TCR stimulation along with other factors like IL-2,

Transforming growth factor-b (TGF-b) or retinoic acid (RA) (2,

15). High demethylation of Treg-specific demethylated region

(TSDR), a highly conserved CpG-rich region in the FOXP3

enhancer, is specific for nTregs while in pTregs, it is only partially

demethylated (2). Th-3 and Th1-like or Tr1 are Treg subsets arising

from pTregs in the periphery. The presence of cytokines like TGF-b
and IL-4 promotes the proliferation of Th3 Tregs while IL-10 and

Interferon (IFN)-g promote the proliferation of the Th1-like or Tr1

lineages of Treg cell types. Th-3 Tregs are FoxP3+ and they largely

maintain the immunosuppressive microenvironment by secreting

TGF-b. Th1 Tregs lack FoxP3 expression, but express Lymphocyte-

activation gene 3 (LAG-3) and secrete IL-10 into their

microenvironment (16).

Furthermore, Tregs can be subdivided based on their

differentiation potential into naïve Tregs (nTregs), effector Tregs
FIGURE 1

Different chemokines and cytokines activate both nTregs and pTregs in the microenvironment of both thymus and the periphery. Naïve nTregs are
already FoxP3+ and their activation is mainly by strong TCR stimulation and CD28 co-stimulation. Only activated pTregs express FoxP3 and this is
mainly by weak TCR stimulation along with higher levels of IL-2, TGF-b, and RA.
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(eTregs), effector memory cells (emTregs), and central memory

cells (cmTregs) (Table 1) (18). Peripheral self-antigens activate

nTregs to increase their cell number and suppressive function,

thereby differentiating them into eTregs, which are recruited toward

the inflammation site. A proportion of these cells remain in the

non-lymphoid tissue after antigen expression cessation and survive

as effector memory Tregs (emTregs) with an enhanced capacity to

suppress autoimmunity in these tissues (21). Apart from this,

memory Tregs may be located in the secondary lymphoid organs

as the central memory Tregs (cmTregs). A re-exposure to the

antigen can result in an expansion of these memory Tregs into a

more effective immune response than during the primary

exposure (17).
Suppressive mechanisms of Tregs

In homeostatic conditions, Tregs show reduced recirculation or

tissue infiltration in comparison to conventional T cells. During

pathological conditions, Treg recirculation through the lymphoid

tissues for entering the inflamed, tumors, and infectious sites,

increases (22). Tregs induce immunosuppression by inhibiting the

proliferation, differentiation, cytokine or antibody production, of

their target cells. Tregs can suppress a large number of target

immune cells by direct cell-cell contact inhibition/killing,

secretion of anti-inflammatory cytokines, and disruption of the

metabolic pathways competing for growth factors (23). Direct cell-

cell contact elimination is a strategy used by nTregs to directly kill

cytotoxic cells by releasing perforin or serine protease granzyme

(24). Activated Tregs may express cell surface molecules like

Galectin1 which bind the receptors of effector T cells to induce

cell cycle arrest, apoptosis, or inhibition of pro-inflammatory

cytokine secretions. Cell-cell contact of Tregs with target cells can
Frontiers in Immunology 03
also induce several inhibitory pathways by the modulation of

molecules such as cyclic adenosine monophosphate (cAMP),

resulting in the inhibition of cellular proliferation, differentiation,

inhibition of cytokines IL-2, IFNg or the activation of

transcriptional repressor inducible cAMP early repressor (ICER).

In trans-well system studies, Tregs failed to suppress effector T

target cells, which suggests that it is necessary for Tregs to be in

close proximity of the target cells to impart their inhibitory action

(25). However, recent studies showed that the secretion of

extracellular vesicles (EVs) by Tregs has emerged as a novel

suppressive mechanism with the ability to modulate immunity in

a cell-contact independent and targeted manner. This phenomenon

has been identified in various autoimmune and cancer pathologies.

Yu et al., demonstrated that Tregs-derived EVs effectively

suppressed T cell proliferation in a dose-dependent manner (26).

In another study by Okoye et al., Treg-derived EVs (Treg-EVs) were

shown to suppress T cell-mediated responses through the transfer

of packaged Let-7d miRNA to Th1 cells, leading to an inhibition of

their proliferation and IFN-g secretion (27). Aiello et al. further

demonstrated that EVs derived from Tregs possessed the ability to

convert T cells into regulatory cells, upon delivery of miR-503, miR-

330, miR-9 (28). Naïve T cells exposed to these Treg-EVs exhibited

an increased IL-10 secretion and expressed T cell immunoglobulin

and mucin-domain containing-3 (Tim3), indicating the regulatory

effects of these EVs on T cell behavior. Such studies collectively shed

light on the immunomodulatory potential of Treg-EVs, offering

insights into their therapeutic implications in immune-related

disorders (29). Notably, Treg-EVs appear to exhibit a dual role,

either protecting or inducing cell death, contingent upon the target

cells involved. These EVs demonstrate the capability to inhibit

apoptosis in myocardial cells during acute myocardial infarction,

while concurrently inducing apoptosis in conventional T cells.

DCs represent a major antigen-presenting cell (APC) type, so

targeting this cell population can indirectly inhibit T effector cell

activation and immune response. LAG-3 (CD223) expressed on

Tregs, binds to the Major histocompatibility complex class II (MHC

class II) in immature DCs and induces an inhibitory signal which

leads to a suppression of DC maturation and their capability for

immune stimulation. Prolonged interaction of Neuropilin 1 (Nrp1),

present in Tregs, with immature DCs, restricts the antigen-

presenting capabilities of DCs (Figure 2) (30, 31). Thereby, only

mature DCs promote T effector cell proliferation, while immature/

tolerogenic DCs induce the activity of Tregs. Thus, tolerogenic DCs-

induced Tregs and the Treg-maintained immunosuppressive nature

of DCs are linked (32, 33). As FOXP3 regulates the high expression

of cytotoxic T lymphocyte antigen 4 (CTLA-4) required for

immunosuppressive activity of Tregs (34), another strategy for DC

suppression is the binding of CTLA-4 to DC surface proteins CD80/

86 (Figure 2). Formed complex is trans-endocytosed by Tregs

thereby inhibiting the ability of DCs to interact with effector T

cells. Thereafter, CD80/86 is fused with the lysosome and CTLA-4 is

recycled back to the cell surface for further APC suppression (35).

Another mechanism of Treg-induced maintenance of tolerogenic

DCs is by inducing the secretion of indoleamine 2,3-dioxygenase

(IDO). Studies have shown that both in mice and Humans, Tregs

induce DCs to produce IDO, in order to suppress the T cell response
TABLE 1 Site of localization and marker heterogeneity in different
Treg subsets.

Cell
type

Localisation Specific Markers References

Naïve
Tregs

(nTregs)

Thymus
Secondary

lymphoid organs

FoxP3+, CD25+,
CD45RA+, CD45RO-,

CCR7+, CD62L+, CTLA4-

, CD127-

(17, 18)

Effector
Tregs

(eTregs)

Sites
of inflammation

FoxP3+, CD25+/-,
CD45RA-, CD45RO+,
CCR7+, CD62L+,
CTLA4+, CD127-

Central
memory
Tregs

(cmTregs)

Secondary
lymphoid organs

FoxP3+, CD25+,
CD45RA-, CD45RO+,

CCR7-, CD62L-,
CTLA4+, CD127-

Effector
memory
Tregs

(emTregs)

Tissue-resident

FoxP3+, CD25+,
CD45RA-, CD45RO+,

CCR7-, CD62L-,
CTLA4+, CD127+

Induced
Tregs
(iTregs)

In vitro culture
FoxP3+, CD25+, CTLA4+,

GITR+, LAG3+,
CD62L+, Helios-

(19, 20)
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through CTLA-4 dependent mechanisms (36). Cheng et al. reported

that the DCs recruited by the carcinoma-associated fibroblasts

(CAFs) in hepatocellular carcinoma (HCC) get converted to IDO

producing regulatory DCs which exhibits an increased ability to

suppress T cell proliferation, and upregulation of Tregs through IL-6

mediated Signal transducer and activator of transcription 3 (STAT3)

activation (37).

Programmed death ligand 1/programmed death receptor 1

(PDL-1/PD-1) based interaction between tumor cells and T

lymphocytes, plays an important role in suppressing the cytotoxic

effects of T cell immunity in the tumor microenvironment.

Likewise, Tregs also express PD-1 and PDL-1 on their cell surface

and have the potential to interact with the PDL-1-expressing T and

B lymphocytes, DCs, macrophages, and bone marrow-derived mast

cells. During cancer, PD-1 is upregulated in Tregs resulting in an

increased interaction of PDL-1 in T effector cells thereby resulting

in their inhibition and suppression of immune responses. While

PDL-1/PD-1 suppresses the immunogenic activity of T

lymphocytes, this interaction in Tregs may activate and induce

their differentiation (38, 39). Tregs can also secrete suppressive

cytokines like IL-10, TGF-b, and IL-35, which could induce cell

cycle arrest in other immune and myeloid cells (Figure 2) (31).

Studies show that deficiency of membrane-bound and soluble TGF-

b produced by Tregs, results in T-cell mediated autoimmunity in

mice and that IL-35 directly influences T cells by inhibiting their

proliferation (40).

Key features of FoxP3+ Tregs are high expression of CTLA-4,

CD25 cell surface marker and absence of IL-2 production (41). IL-2
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is an important cytokine signal required for the proliferation,

differentiation, survival and activity of T-helper cells, memory T

cells and Tregs. Naive Tregs do not produce IL-2, but the cell

surface receptor CD25 displays high affinity for IL-2. By competitive

consumption, Tregs use the IL-2 produced by activated T cells and

suppress them via a negative feed-back loop (34, 35). In IL-2

deprived T cells, Tregs induce apoptosis through BCL2

Associated Agonist of cell Death (Bad)/BCL-2 interacting

mediator of cell death (Bim) driven caspase activation (42).

Inducible co-stimulator (ICOS) is a member of CD-28/CTLA-4

family, widely expressed on activated CD4+ T cells and Tregs. The

pathway activation occurs during the binding of ICOS with its

ligand ICOSL, expressed on APCs (43). According to the expression

of ICOS, Tregs can be divided into ICOS+ and ICOS- Tregs. In vitro

studies have proven that cytokine secretion is different in these 2

Treg subsets, i.e. ICOS+ Tregs tend to secrete more IL-10 and

moderate amounts of TGF-b1, while ICOS- Tregs play a suppressive
function by secreting TGF-b1 alone. In mice, studies have shown

that ICOS+ Tregs have better survival and superior suppressive

properties as compared to ICOS- subset. In a study by Tu et al.,

HCC patients have been shown to display a higher prevalence of

tumor infiltrating ICOS+ Tregs. Due to higher proportion of FoxP3+

Tregs/CD4+ T cells and ICOS+ FoxP3+ Tregs/total FoxP3+ Tregs,

their study concludes that ICOS+ FoxP3+ Tregs may be the main

immunosuppressive cell type in HCC microenvironment (44–46).

Another mechanism of Treg suppression is the deprivation of

calcium levels in T effector cells. Calcium is essential for the

proliferation of lymphocytes, their expression of activation-
FIGURE 2

Treg immunosuppression is achieved via three main mechanisms: direct cell-cell contact inhibition or cell killing (Blue background), secretion of
immunosuppressive cytokines, and disruption of metabolic pathways (Yellow background). (i) Treg cell surface molecules like, CTLA-4, LAG-3, NRP1
bind to the cell surface receptors of tolerogenic DCs resulting the DCs from maturing for antigen presentation and thereby inhibiting T effector cell
activation and functioning. (ii) Secretion of immunosuppressive cytokines like IL-35, IL-10, TGF-b results in cell cycle arrest in other immune cells (iii)
Tregs over-express CD25 receptor which has a higher affinity for IL-2, this in turn will suppress other cell types which require IL-2 for activation like
T effector cells from effectively functioning. Other mechanisms include Ca2+ suppression in T effector cells, IDO based and PD-1/PDL-1 interaction-
based cell suppressions.
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associated genes, production of chemokines and cytokines, and

activation and differentiation of naïve T cells into effector or

memory T cells. Tregs have been reported to suppress the

calcium signaling in T conventional cells (47).
Role of Tregs on liver T lymphocytes
and innate immune cells

Tregs promote immune tolerance by modulating both innate

and adaptive immunity (48). CD4+ CD25+ Tregs are the natural

suppressor cells of the immune system. They function during early

innate and adaptive immune responses even prior to antigen

activation, indicating their capability to differentiate self from

non-self-cells during immune responses (49). CD4+ CD25+ Tregs

maintain immune tolerance by suppressing the activity of both

CD8+ and CD4+ T cell populations during inflammatory responses

(50, 51). To understand their interactions with CD8+ and CD4+

cells, Treg population was depleted in mouse. The study

demonstrated that CD4+ T cell population remained unchanged

suggesting other regulatory factors, while a significant increase in

the CD8+ T population was shown (5). The liver is renowned for its

exceptional regenerative potential and is recognized for its ability to

sequester auto-reactivated T cells, facilitating their apoptotic

clearance. In neonatal liver, the transcriptomic profile of thymus-

derived Tregs was thoroughly examined, revealing that their intra-

hepatic accumulation plays a crucial role in preserving self-

tolerance and promoting liver maturation. However, adult mice

livers harbor a reduced number of tissue-resident Tregs, exhibiting

distinct phenotypic characteristics while retaining increased

proliferation, which suggests a lineage instability (52). Indeed, the

liver’s unique immunological characteristics, resulting from its

constant exposure to foreign antigens, are essential for its proper

function. However, this constant exposure also renders the liver

susceptible to immune-mediated injuries, as any disruption in the

delicate balance of immune responses can lead to inflammation and

damage of the liver tissue. The innate immune system in the liver

consists of NKs, NKTs, Kupffer cells (KCs), DCs, and mast cells. In

both human and mouse, Tregs can inhibit the NK effector function.

TGF-b produced by Tregs inhibits the cytolytic activity of NKs.

Tregs kill NKs by releasing granzyme-B and cell-cell contact

mechanism (53). In an autoimmune condition, NKTs can secrete

both anti-inflammatory and pro-inflammatory cytokines and

regulate the recruitment of Tregs to the inflammation site (54).

Tregs exert a negative effect on the proliferation and cytokine

production of NKTs while NKTs promote the proliferation and

homing of Tregs in the liver (55). KCs are involved in the

pathogenesis of viral hepatitis, steatohepatitis, alcoholic liver

disease, intrahepatic cholestasis, organ rejection in liver

transplantation and liver fibrosis. During fibrosis, KCs induce the

activation of hepatic stellate cells (HSCs) into myofibroblasts which

leads to an increase in collagen and proteoglycans production (56).

Depletion of KCs has been shown to induce a complete inhibition of

IL-10 production by Tregs suggesting an interaction of KCs with

Tregs for inducing tolerance (57). Tregs have also a role in blocking
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the antigen presenting capabilities of DCs and these immature DCs

can promote the immune tolerance by Tregs or by inactivating T

cells whereas, mature DCs trigger the development of naïve CD4+

and CD8+ T cell populations (58).
Influence of liver metabolic activity on
the function, survival, and plasticity
of Tregs

The human liver receives 70-80% of blood from the portal vein

rich in nutrients and the other 20-30% from the hepatic artery rich

in oxygen. Tregs can either directly use the metabolites present in

the liver or from the environmental metabolism of DCs. The

intrahepatic microenvironment which is, deprived of oxygen and

enriched with microbes, inflammatory cytokines and hormones,

plays a major role in the differentiation and function of Tregs (35).

Activated Tregs generate energy using glucose, amino acids, fatty

acids (FAs) and vitamins. In vitro, lipid biosynthesis, aerobic

glycolysis and FAO were also used for the generation of ATP

(59). FoxP3 expression in Tregs is correlated with higher

mitochondrial mass and increased reactive oxygen species (ROS)

production as demonstrated in both nTregs and iTregs. Oxidative

phosphorylation (OXPHOS) and ROS play an important role in

Treg signaling and homeostasis (60). Unlike other T cells, Tregs rely

on FAs oxidation and OXPHOS for cell differentiation and function

(61). Tregs proliferation is dependent on glycolysis and FAs

oxidation. Upregulated insulin receptor INSR increases the

glucose uptake in Tregs, required for their migration. Mammalian

target of rapamycin (mTOR) complex 2 (mTORC2) regulates the

Treg motility through Phosphoinositide 3 kinase- protein kinase B

(PI3K-Akt) pathway and modulat ion of cytoskeleton

reorganization by glycogen synthase kinase (GSK) activity. PI3K

modulation is likely to alter cellular metabolism and FOXP3

expression (62). Metabolites like purine, tryptophan, RA, and

glutamine maintain the induction of FOXP3 gene (60). Liver is

enriched with metabolites like vitamin A, vitamin D, RA, etc.

required for the generation and trafficking of Tregs (59). Vitamin

A, C and D3 increase and stabilize the expression and activity of

FOXP3 in Tregs (63).
Epigenetic regulation of Tregs

Epigenetic modifications like DNA methylation, histone

modifications, and microRNA regulations may significantly

control the proliferation of Tregs, as well as development and

facilitation of their suppressive properties. Epigenetic

modification of its promoter, enhancer and CpG rich region,

primarily through methylation and demethylation mechanisms,

modulate the expression of FOXP3 in Tregs. In response to TCR

signals, FOXP3 promoter gets activated consequently to the

binding of transcription factors Nuclear factor of activate T cells

(NFAT) and activator protein 1 (AP1). The enhancer region of

FOXP3 is a TGF-b sensor with binding sites for NFAT and
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SMADs (64). TSDR is demethylated in Tregs while methylated in

other T cells. Such TSDR demethylation determines the stability of

FOXP3 expression in Tregs (65). Inhibition or mutations

occurring in DNA methyl transferase 1 gene, results in

hypomethylation of FOXP3 gene, thereby increasing its

expression levels in Tregs (66). In HCC, lower methylation of

FOXP3 promoter via DNA methyl transferase (DNMT1) is

positively linked to a higher percentage of intra-tumoral Treg

levels and tumor growth (64). Like DNA demethylation, histone

modifications namely N terminal lysine methylation and

acetylation are other important epigenetic alterations that can

result in gene activation. Histone acetyl transferase (HAT) 300 is

an important factor for the immune suppressive function of Tregs

and pTregs induction (67). According to this study, p300 is

required for Treg activity and maintenance of homeostasis both

in vivo and in vitro. Acetylation of P300 has been shown to

increase FOXP3 protein levels and FOXP3 mediated

transcriptional repression of IL-2 production. Apart from p300,

other HATs like Tat-interactive protein 60 kD (TIP60) and CREB-

binding protein (CBP) are also involved in the development,

activity and lineage specificity of Tregs (68).

MicroRNAs are another epigenetic regulator of several genes

implicated in Tregs polarization and play an important role in their

thymic development and function (Table 2) (65). miR-155 is an

important epigenetic factor required for an enhanced

responsiveness of Tregs to IL-2. miR-155 and miR-21 are positive

enhancers of the FOXP3 activity in Tregs (76). Other miRNAs like

miR-17a, miR-18a, miR-19a, miR-20a, miR19b and miR-92-1, miR-

31 are negatively regulating Tregs (66). In HCC patients, the

modulated expression of several miRNAs hsa-miR-182-5p, hsa-

miR-214-3p, hsa-miR-129-5p and hsa-miR-30b-5p in Tregs, is

targeting several signaling pathways including cytokine,

chemotaxis and adhesion, thereby supporting the critical role of

epigenetic regulation of this immune cell population.
Tregs in chronic liver diseases

Chronic wound healing process in response to sustained

inflammation is a trigger for liver fibrosis and development of

cirrhosis (77). Chronic alcohol consumption, non-alcoholic

steatohepatitis (NASH), viral infections like hepatitis B (HBV) and C

(HCV), autoimmune hepatitis (AIH), non-alcoholic fatty liver disease

(NAFLD), cholestatic liver diseases, result in the inflammatory

response causing fibrosis (78, 79). There is an increased risk for

NASH to progress into liver fibrosis, cirrhosis and then to HCC. In

NAFLD mouse model, the expression of FoxP3 mRNA is low in liver,

indicating a decreased activity of Tregs. This has a deleterious effect

resulting in NAFLD progression, resulting in the imbalance of Treg/

Th17 cell levels due to increased inflammatory response by Th17 cells

(80). A clinical study in children revealed an association between

pronounced hepatic inflammation due to NAFLD and elevated

number of Foxp3+ lymphocytes within the lobules. Conversely,

adults showcased a decline in Foxp3+ lymphocytes alongside

increased IL-17A+ lymphocytes in the portal/periportal tracts (81).

Steatohepatitis was induced in mice fed with high fat diet and treated
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with endotoxin, resulted in Treg deficiency, while adaptive transfer of

Tregs to these mice showed reduced disease progression and liver

injury (82). The impact of Tregs on NASH remains unclear while an

increased count of intrahepatic Tregs was reported in a related mouse

model. Surprisingly, attempts at adoptive Treg transfer or anti-CD3

therapy yielded an unforeseen outcome escalated steatosis and elevated

alanine aminotransferase levels—without any other discernible impact

on NASH (83). In alcoholic steatohepatitis, alcoholic hepatitis and

autoimmune liver diseases like primary biliary cirrhosis and

autoimmune hepatitis, the population of Tregs infiltrating the liver is

higher than the circulating one (84). In this setting, sustained

inflammation induces necrosis and apoptosis of hepatocytes,

therefore the anti-inflammatory function of Tregs has a protective

effect against the inflammatory liver responses (85). Tregs have been

reported to support the progression of liver fibrosis by targeting KCs

through the TGF-b pathway. Furthermore, HSCs can selectively induce
TABLE 2 miRNAs critically involved in Treg cell regulation.

MicroRNA
identity

Positive/
Negative
regulation
of Tregs

Function References

miR155 +

Treg development,
proliferation and

survival
Upregulation of IL-

2 expression

(66, 69)

miR146a +

Induced Treg-
mediated suppression
of IFN-g dependent

Th1 response
and inflammation

(70)

miR126 +
Suppressive activity
of Tregs through

PI3K/AKT pathway
(71)

miR10a +

Attenuates Tregs
conversion to

follicular helper T
cell lineage

(72)

miR24 –

Binding to the
potential target site of

3’ UTR of
FOXP3 mRNA

(73)

miR31 –

Binds to the potential
target site of 3’ UTR
of FOXP3 mRNA

(66)

miR15a/16 –

Reduces the
expression of FOxP3

and CTLA4
Attenuates Tregs

immunosuppressive
activity

(74)

miR-142-3p –

Impairs the
suppressive function

of Tregs by
restricting the

generation of cAMP
needed for their

immunomodulatory
effect on T cells

(75)
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Tregs by the production of RA or in an IL-2 dependent manner (86).

However, IL-10 released by Tregs has been reported to inhibit the ECM

production by HSCs (87, 88).

Tregs are essential for wound healing and cessation of

inflammation. Yet, studies report that reduction in Treg numbers

can promote fibrosis regression. Activated HSCs secrete IL-2,

resulting in the abundance of Tregs in fibrotic tissue. In healthy

liver, matrix metalloproteinases (MMPs) released by KCs degrade

and regulate the liver ECM. TGFb secreted by Tregs can repress the

MMP secretion by KCs which may disrupt the fibrosis regression

(89). Study by (79) demonstrated that depletion of Tregs was

associated with liver fibrosis progression in DEREG transgenic

(DEpletion of REGulatory T cells) mice. This was mainly due to an

increase of CD8+ and IL-17A+ T cell populations and enhanced

secretion of pro-inflammatory cytokines and chemokines (Roh

et al, 2015).

TGFb is an important cytokine required for the determination

of the differentiation of Tregs and Th17 cells. Indeed, low

concentrations of TGFb synergized with IL-6, induce Th-17 cell

differentiation, while high concentrations of TGFb induce Treg

differentiation from the naïve CD4+ T cell precursors. During liver

fibrosis, secretion of higher levels of IL-6 and TGFb occurs which in

turn activates the HSCs to produce ECM proteins, leading to

increased Th-17 cells and an imbalance in the Th17/Treg ratio (78).

During viral infection, immune cells release cytokines needed

for the termination of infection and the eradication of infected cells.

Tregs regulate a delicate balance by preventing the immune cells

from destroying non-infected self-cells. Studies have shown that

during HBV infection, the number of CD4+ CD25+ Tregs increases

in the liver and peripheral blood as compared to normal conditions

(90). The analysis of Tregs in acute, chronic and chronic severe

HBV infections, showed that their numbers were higher in chronic

severe HBV infection than in acute or chronic HBV infections (91).

HBV induced liver fibrosis also showed a similar trend where the

number of Tregs was increased in advanced HBV related liver

fibrosis than in early HBV-fibrosis (87). Persistent HBV infection

has an increased risk for the progression of chronic hepatitis B

(CHB) to hepatic cirrhosis and HCC. The role of Tregs played

during HBV-induced fibrosis is dependent on disease stage at which

they are activated. If the Tregs get activated by the HBV antigen in

earlier stage, they might protect the HBV from host immune

response, while if the host elicited Treg response occurs in the

later stage of infection, Tregs will protect against excessive

inflammation and prevent further liver injury. However, for

progression into fibrosis from CHB infection, immune tolerance

should decrease, and inflammatory response ratio should increase

(92). Frequencies of Th-17 cells, IL-22 and IL-17A were found to

increase with the severity of infection while the frequency of Tregs

decreased in HBV associated cirrhosis than in CHB or HCC cases.

IL-17 and IL-22 activate the proliferation of HSCs and the

progression of fibrosis through PI3K/AKT pathway (93). When

the immune suppressive properties of Tregs in the presence of HCV

inoculum were studied, a significant increase of the of CD4, CD25,

FOXP3 expression and inhibitory markers like CTLA-4, LAG-3,

was noticed in parallel to a decreased expression of CD127. This

confirms that Treg population increases with the number of HBV
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antigens (94). Treg immunosuppressive activity in HBV and HCV

infection has dual consequences on the disease prognosis by i)

restraining the CD8+ and CD4+ T cell activity which is beneficial for

the host since it prevents the inflammatory liver damage and ii)

persisting the infection since it provides protection for the virus

from the immunogenic activities of CD8+ and CD4+ T cells (95, 96).
Recruitment and homing of Tregs to
the inflamed liver

The ability of Tregs to migrate to the site of inflammation is critical

for their capacity to regulate inflammation, and this is mainly achieved

by the expression of adhesionmolecules and chemokine receptors. Like

conventional T cells, Tregs also undergo trans-endothelial migration by

interacting with pro-adhesive signals. In general, during their migration

when ligands bind to the receptors, leukocytes alter their cell surface

integrin conformation (like b2 and a4 families). This allows the

adhesion molecules to bind to the endothelial cell expressed ligands

like intracellular adhesion molecule-1,2,3 (ICAM) and Vascular cell

adhesion molecule-1 (VCAM)/mucosal addressin cell adhesion mol-1

(MAdCAM-1). This interaction with the adhesion molecules, enables

the arrest of rolling leukocytes, resulting in the trans-endothelial

migration of leukocytes (97). Similarly, interaction between liver

sinusoidal endothelial cells (LSECs) and Tregs, leads to the activation

of integrins lymphocyte function associated antigen 1 (LFA-1) and very

late antigen 1 (VLA-4) on Treg surface thereby interacting with the cell

adhesion molecules like intercellular adhesion molecule 1 (ICAM),

vascular cell adhesion molecule (VACM) and Vascular adhesion

protein-1 (VAP-1) expressed by inflamed LSECs and resulting in the

trans-endothelial migration of Tregs into liver (98). In inflamed liver,

Shetty and colleagues demonstrated that the homing of Tregs is also

mediated by their interaction with the common lymphatic endothelial

and vascular endothelial receptor (CLEVER-1) expressed by LSECs.

ICAM-1 and VAP-1 along with common lymphatic endothelial and

vascular endothelial receptor-1 (CLEVER-1) support the transcellular

migration of Tregs in the liver (99).

Migration of immune cells to the site of inflammation is an

important process, mediated by secreted cytokines and chemokines,

for an effective immune response. The homing receptors expressed by

Tregs are specific to the location and microenvironment at which

they are exposed to, during their activation. Homing of Tregs in non-

lymphoid tissue is mediated via higher expression levels of cell surface

receptors like chemokine receptor 3 (CXCR3), CD103, C-C

chemokine receptor type 5 (CCR5), CCR4, and CCR6. Recruitment

of Tregs to the site of inflammation is facilitated by CXCR3, CCR5,

and CCR6 receptors. Chemokine receptors CXCR3, CCR6 and CCR4

overlap with those of other effector T cells like Th1, CD8 T cells, Th17

cells and enable Tregs to co-localize with them (100). During Tregs

infiltration, CXCR3 helps to undergo trans-endothelial migration

across the hepatic sinusoidal endothelium. Naïve CXCR3 deficient

mice displayed lower number of CD4+ CD25+ Tregs than in wild type

mice. Accordingly, CXCR3 deficient mice tend to develop severe liver

injury due to a lower infiltration of Tregs (101, 102). CCR4 helps

Tregs to co-localize with liver infiltrating DCs by responding to
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chemokines CCL17 and CCL22 secreted by those cells (Figure 3). In

chronic inflammatory liver diseases, liver infiltrating Tregs express

both CXCR3 and CCR4. CCL17 and CCL22 secreted by activated

intrahepatic DCs guide the CCR4 receptor in Tregs for the

subsequent migration within the inflamed liver (103). Infected

primary human hepatocytes secrete chemokines CCL20 and

CCL22, which activate CCR6 and CCR2 present on Tregs thereby

recruiting them to the site of inflammation (94). Crosstalk between

the other liver immune cells and Tregs also regulates their infiltration

into the inflammation site. The recruitment and the ability to

maintain Tregs in the inflamed liver is influenced by several

parameters, including intricate interactions with other extra-hepatic

immune cell populations. Indeed, the role of GATA-Binding protein-

6+ peritoneal macrophages in this complex orchestration has been

recently unveiled, in the dual modulation of hepatic

immunopathogenic genesis and the concurrent augmentation of

Treg assemblages (104).
Immune microenvironment and Tregs
in HCC

Cancer immune response is dependent on the balance between

tumor antigenicity and the microenvironment of the tumor tissue.

Immune cells like Th1 cells, Th2 cells, Tregs, myeloid derived

suppressor cells, tumor associated macrophages, DCs, NKs, CD4+

and CD8+ T cells are all involved in the regulation of immune

response in the tumor microenvironment (105). Tregs in the HCC
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microenvironment, have a suppressive activity. An expansion of

CD4+ CD25+ T cell population is observed in both peripheral blood

and tumor microenvironment of HCC patients (106, 107). An

increased number of Tregs in tumor microenvironment can have

an unfavorable outcome on immunoregulatory activities. Treg

population has been shown to increase in HBV infected HCC

patients (108). The two possible pathways for the recruitment of

Tregs to the tumor microenvironment are either influenced by the

priming of naive CD4+ T cells to differentiate into CD4+ CD25+

Tregs or by inducing the selective migration of Tregs via specific

chemokine secretion (46) (Figure 4). In tumor microenvironment,

CD4+ CD25low T cells and CD4+ CD25- T cells may get induced for

FOXP3 expression and converted to CD4+ CD25+ Tregs. Tumor

derived TGFb plays an important role in this promotion of FoxP3

expressing Tregs from naïve CD4+ T cells. In mouse, the principal

mechanism for increasing CD4+ CD25+ presenting FOXP3+

population in the tumor site is via the conversion of CD4+ CD25-

T cells (109, 110). Upregulation of chemokine receptors like

CXCR3, CCR5, CCR4 and CCR8 is involved in both the

activation and differentiation of Tregs in HCC. CCL22 produced

by tumor derived macrophages and CCL17 regulate the infiltration

of Tregs into the tumor sites. The CCR6-CCL20 axis plays an

important role in recruiting Tregs to the tumor site. High levels of

CCL20 are secreted by tumor cells and KCs to which CCR6

expressed in Tregs gets attracted inducing the migration towards

the tumor site (46, 111). Secretion of the chemokine SDF-1 through

the activation of CXCR4/CXCL12 signaling also has a positive

correlation with increased Treg number in the tumor
FIGURE 3

Cytokine mediated Treg recruitment during inflammation in liver: Treg recruitment towards the site of inflammation is required for other immune
cell suppression during inflammation. This phenomenon is mainly mediated by receptors like CXCR3, CCR4 and CCR6 present on Treg cell surface.
(1) CXCR3 helps Tregs in trans-endothelial migration across hepatic sinusoidal endothelium (2) CCR4 receptor, helps to respond to the chemokines
CCL17 and CCL22 secreted by dendritic cells to co-localise with them to the inflamed liver. (3) CCL22 and CCL17 secretions by damaged
hepatocytes are identified by CCR6/CCR2 receptors on Tregs, which helps in the active migration of Tregs.
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microenvironment (44). Thus, lack of proper tumor immunity is

not due to the absence of immunogenicity but due to the increased

infiltration and conversion of CD4+ CD25- T cells to CD4+ CD25+

T cells in HCC.
Clinicopathologic and prognostic
significance of Tregs in HCC patients

The intra-tumoral balance between Tregs and cytotoxic T cells,

determines the recurrence and survival rate of HCC. The number of

Tregs in HCC microenvironment is proportional to the tumor size

(112). Therefore, an increased incidence of CD4+ Tregs is associated

with HCC invasiveness and poor prognosis (113). Higher grade of

the tumor is correlated with both higher Treg and lower CD8+ T cell

infiltrations (114). In the tumor microenvironment, CD4+ CD25+

Tregs have a negative impact on cytokine secretion and

proliferation of CD4+ CD25- anti-tumor T cells (44). CD8+ cells

have been reported to accumulate in the peritumoral region,

thereby proving that Tregs not only suppress CD8+ activity but

also block their migration into the tumor. Besides inhibiting CD8+

T cell proliferation and activation, Tregs also suppress the

production and release of the cytolytic enzymes perforin,

granzyme A and granzyme B that mediate CD8+ T cell effector

functions (109). Apart from CD4+ T cells not expressing CD25,

Tregs were also documented for their ability to eliminate DCs, one

of the most important surveillance mechanisms for the removal of

cancer cells in the tumor microenvironment (115). Furthermore,

the proportion of Tregs in the tumor microenvironment predicts

HCC recurrence and survival rate. Indeed, the prevalence and

migration of Tregs have been reported to enhance with the

progression of HCC from an early to a later stage (44). A steady

increase in the number of CD4+ has been noticed from hepatitis to

liver cirrhosis to HCC (107, 111). HCC invasiveness is also

associated with the number of Tregs. Indeed, HCC patients with

lower intra-tumoral Tregs population had a higher overall survival

and disease-free survival rates of 70 and 69 months when compared

to patients with higher intra-tumoral Tregs population. Lower

intra-tumoral Tregs with high CTL population in the HCC tumor

are associated with an improved survival as well as a reduced

recurrence in HCC (114). Analysis of specific surface markers of

Tregs [GITR, HLA-DR, CD45RO, CD152, and CD45RA

and FOXP3] also showed that there is a steady increase in

the number of Tregs in both peripheral blood and tumor

microenvironment (116).

Angiogenesis is another important feature of tumor progression

and Tregs are known to play a positive role in HCC angiogenesis.

increased levels of intra-tumoral FOXP3 cells was correlated to

higher expression of vascular endothelial growth factor (VEGF) and

microvascular density (117). HCC cells produce TGF-b1 which

could generate Tregs from CD4+ CD25- T cells. This tumor derived

TGF-b1 negatively affects the tumor infiltrating leukocytes (TILs)

thereby suppressing the immunosurveillance activity in tumor

microenvironment. Another disadvantage correlated with TGF-b
in HCC is that it induces epithelial-mesenchymal transition in

HCC. Indeed, silencing TGF-b1 prolongs the survival rate in mouse
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models of HCC (1, 118). The levels of growth differentiation factor

15 (GDF15), which belongs to the family of TGF-b, are upregulated
during inflammatory conditions or cancer as compared to normal

physiological conditions. GDF15 promotes and modulates the

proliferation of pTregs and the suppressive function of nTregs

through CD48 T cell receptor and by post-transcriptional

regulation of FoxP3 in humans (119). Constructing and validating

an angiogenesis-related scoring (ARGs) model holds great promise

for prognostication, tumor immune microenvironment assessment,

and therapeutic stratification in HCC. A recent study harnessed the

TCGA dataset to identify 97 differentially expressed ARGs linked to

the prognosis of HCC patients. Nine-gene signature, accurately

predicted unfavorable clinical outcomes, standing out as an

independent prognostic indicator for HCC. Furthermore,

associations with diverse immune cell enrichment, encompassing

CD4+ T cells, Tregs, macrophages, neutrophils, and DCs have been

raised, showcasing an inherently immunosuppressive phenotype.

Accordingly, a higher ARGs Score reflects an elevated expression of

immune checkpoint genes and an ineffective response to

immunotherapy (120). In short, there are numerous regulatory

mechanisms that initiate the activation and modulation of the

immunosuppressive nature of Tregs resulting in the progression

of HCC condition. Increasing evidences supported the involvement

of new immune cell subtypes in orchestrating the recruitment of

Tregs within the tumor microenvironment, particularly in HCC,

including IFNg- Tc17 cells, a distinct subset of CD8 cells producing
IL-17. These cells display characteristics that foster tumor

progress ion , marked by e levated CCL20 express ion.

Consequently, this triggered an escalation in the Tregs infiltration

in the tumor microenvironment, correlating with an unfavorable

prognosis (121). by using single-cell RNA sequencing (scRNA-seq)

and flow cytometry, a specific subset of the innate-like mucosa-

associated invariant T cells termed regulatory Mucosal associated

invariant T cells (MAITregs) were detected within HCC patients.

These MAITregs possess robust immunosuppressive abilities and

are derived from a precursor reservoir exhibiting mild Treg-

associated characteristics. Their development is triggered under

Treg-promoting conditions like b1 adrenergic receptor signaling.

Intriguingly, intra-tumoral MAITregs exert immune suppressive

effects and are linked to unfavorable clinical outcomes in HCC

patients (122).
Clinical application of Tregs in
liver diseases

Alteration of Tregs expression may have deleterious responses

in tissues like i) suppression of effector immune response resulting

in cancer progression ii) impaired autoimmune and inflammatory

responses, and iii) protection against immune cells in viral

infection. This suppressive population of immune cells has to be

finely tuned to maintain the delicate balance between inflammatory

insults, autoimmunity induction and facilitating protection against

infection and tumor. Thus, selective purification and expansion of

FOXP3+ Tregs is a potent cellular immunotherapy mechanism that

could potentially treat T cell mediated inflammatory liver injuries
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and liver transplantation rejection. For successful Tregs-mediated

cell therapy, strategies have been developed to maintain their

phenotypic stability and suppressive capabilities post-infusion

into the inflamed liver microenvironment. Neutralization of pro-

inflammatory cytokines, IL-12 and IL-6 present in the inflamed

intrahepatic microenvironment, can stabilize the Tregs (123). In

vitro, the mTOR inhibitor rapamycin, in presence of TCR and

CD28 or IL-2, can influence rapid expansion and proliferation of

Tregs and increase their activity against effector T cells than Tregs

grown in the absence of rapamycin (124). TX527, a vitamin D

analogue, triggered the induction and migration of Tregs to the site

of inflammation and induced the Tregs-based suppression of

effector T cell functions. This Tregs’ immunosuppressive activity

can be exploited for their therapeutic applicability in inflammatory

and autoimmune disorders (125).
Tregs immunotherapy for liver
transplantation and autoimmune
liver diseases

In the liver, crosstalk between leukocytes, hepatocytes, HSCs,

LSECs, and cholangiocytes is important for maintaining the balance

between immune reactivity and immune tolerance. For patient

survival after liver transplantation, li felong intake of

immunosuppressants is a necessity. As an alternative approach, a

small group of patients underwent Tregs-based therapy. Cells were

generated ex vivo by co-culturing recipient lymphocytes with

irradiated donor cells in the presence of anti-CD80/CD86

antibodies and were administrated back into the patients. The

study was found to be a safer and an effective approach in

maintaining immune tolerance without the intake of

immunosuppressants (126), thereby proving the important role of

Tregs in the induction and maintenance of immune tolerance after

liver transplantation (127). During organ transplantation and due

to graft-versus-host disease (GvHD), donor T cells get continuously

activated and thus react with the host, resulting in tissue damage

and extreme complications. Preclinical trials have demonstrated

that adoptive transfer of Tregs can regulate GvHD (16). The first

clinical trial in the treatment of acute and chronic GvHD using

Tregs was performed in 2009. In chronic GvHD, reduction in

symptoms and increase in the number of Tregs were observed

while in acute GvHD, no significant conclusion was drawn (128).

A breakdown in immune homeostasis mediated by a balance

between effector T cells and Tregs results in autoimmune liver
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diseases (AILDs) like AIH, primary biliary cholangitis and primary

sclerosing cholangitis in liver. The current strategies of AILDs are

not fully effective and require long term immunosuppressive

medications leading to a poor control over hepatic and biliary

inflammations. Tregs are highly sensitive to IL-2 which is required

for Tregs survival (129). Trials on administration of low doses of IL-

2 as an immunomodulatory agent into AIH patients showed

positive therapeutic results (130). In animal models, gene transfer

for the ectopic expression of autoantigens to liver cells has

successfully used Tregs as a therapeutic option for inflammatory

and autoimmune diseases. Selective delivery of autoantigens using

nanoparticles to hepatic cells like LSECs helps in the generation of

auto-antigen specific Tregs in the liver. Such approach has been

proved to be effective at least in mice (131). In humans, Tregs

therapy in autoimmune liver diseases (AILD) is not yet tested, but

similar tests in Type 1 diabetes mellitus was found to be successful

suggesting a possibility for AILD based Tregs therapy in the

future (35).
Immunotherapy targeting Tregs in HCC

HCC is the most prevalent form of primary liver cancer with

various causes for tumorigenesis. Immunocompromised tumor

environment due to natural suppressor cells like CD4+ CD25+ T

cells is one of the major reasons for tumor progression and

malignancy. TILs have a negative impact on the progression of

solid tumors and a positive impact in anti-cancer therapies and

prognosis of cancer (132). The two strategies employed for cancer

immunotherapy aim at i) enhancing the number and function of

immune effector cells and ii) blocking the immune suppressor cells

like Tregs in the tumor microenvironment. Depletion and

prevention of Tregs proliferation in the tumor microenvironment,

represent accordingly a potential therapeutic measurement for

HCC (133). In a mouse model of HCC, treatment with anti-

CD25 antibody [PC-61] resulted in the suppression of Tregs

thereby reducing tumor growth. Treatment with antibody for

chemokine receptor CCR4 reduced the intra-tumoral population

of Tregs as well as the tumor growth (Table 3) (134–136).

Furthermore, targeting OX40, an immune checkpoint extensively

expressed in Tregs, could result in the depletion of HCC tumor cells.

A combination therapy using anti PD-1 antibody Nivolumab and

anti CTLA-4 antibody ipilimumab resulted in tumor remission in

29% of patients with HCC within 6 weeks of treatment (Table 3)

(133, 137). Sirolimus and sorafenib induce apoptosis of Tregs when
TABLE 3 Treg based immunotherapy trials in HCC.

Treatment Model Regulation Disease condition Reference

PC-61
(anti-CD25 Ab)

Mouse Downregulated HCC (134)

CCR4 Mouse Downregulated HCC (135)

Combination of Nivolumab (anti-PD-1) & ipilimumab (anti-CTLA-4) Human Downregulated HCC (133)

Sirolimus, sorafenib Human Tregs apoptosis HCC (112)
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1371089
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ajith et al. 10.3389/fimmu.2024.1371089
activated through T cell receptors. Therefore, these molecules can

be used to reduce the tumor recurrence rate by keeping the Tregs

population regulated (Table 3) (112). A potential mechanism

underlying the increased intra-tumoral Treg accumulation

induced by anti-PD-1 treatment in HCC, has been proposed. By

using single-cell transcriptomic approach, the study reveals that

Nrp-1 facilitates the migration behavior of Tregs, and the genes

Crem and Tnfrsf9 governing the activity of the terminal suppressive

Tregs. As Tregs transition from lymphoid tissues to the tumor, a

progression from Nrp-1 + 4-1BB- Tregs to Nrp-1- 4-1BB+ Tregs was

reported. Depleting Nrp-1 specifically in Tregs curtailed the

heightened intra-tumoral Tregs resulting from anti-PD-1 therapy,

and its combination with a 4-1BB agonist enhances the antitumor

response. Importantly, employing a Nrp-1 inhibitor alongside a 4-

1BB agonist in humanized HCC models demonstrates favorable

outcomes and safety, augmenting the anti-tumor effects of PD-1

blockade (6). Administration of daclizumab, a blocking antibody

that reduces the Treg numbers, is a potential immunotherapy

option for HCC. Depleting the local Treg population while

preserving the host immune response, is therefore an important

strategic approach for successful immunotherapy in HCC (138).

Notably, Tregs have a detrimental effect in HCC malignancy

due to their anti-tumor immune cell suppression. Thus,

immunotherapy targeting the Tregs is an effective way for

preventing the progression of non-cancerous lesions into HCC. In

this context, focusing on miRNAs to decrease Tregs is an alternative

strategy. Recent research illustrates the efficacy of miR-22 delivery

via adeno-associated virus in treating HCC, showing superior

survival outcomes and lower toxicity when compared to FDA-

approved lenvatinib. In liver, miR-22 reduces IL17-producing T
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cells, resulting in the attenuation of IL17 signaling via HIF1a.
Moreover, miR-22 fosters the expansion of cytotoxic T cells while

concurrently reducing the presence of Tregs (139).
Generation of GMP-compliant clinical
grade Tregs for cell therapy

Adoptive Tregs therapy is an alternative approach for

harnessing a Tregs-induced immune suppressive activity. For this

approach, Tregs are isolated from the patient, expanded in vitro and

reinfused back to the patient. The advantage of this approach is that,

the phenotype and functionality of the Tregs can be analyzed prior

to their administration (140). Cell surface markers CD4, CD25high

CD127low help in the identification of Tregs from non-Tregs (141).

However, the functional instability of Tregs pose a challenge for

adoptive Tregs therapy, as there is a chance for these infused Tregs

to lose FOXP3 expression due to the influence of pro-inflammatory

factors and to shift towards effector T phenotypes secreting IL-17

and interferon-g (48). Firstly, Peripheral blood mononuclear cells

(PBMCs) isolated from peripheral blood are subjected to density

gradient centrifugation. Via CliniMACS selection, PBMCs were

isolated and subjected to negative selection of CD4+ using

antibodies against CD8, CD14, CD16, CD19, CD33, CD238a and

a positive selection using anti-CD25 antibody for obtaining a high

purity CD4+ CD25+ T cell fraction. For expansion and selective

enrichment for CD25+, T cells were activated with anti-CD3/CD28

beads and occasionally re-stimulated with rapamycin, IL-2 and RA.

During harvest of the expanded Tregs, IL-17 and IFNg expression is

analyzed by intracellular staining and indirect sandwich ELISA
FIGURE 4

Recruitment and activation of Tregs to HCC tumor microenvironment (TME): Treg recruitment into TME happens by two mechanisms: priming of
naïve T cells to differentiate into FoxP3 expressing Tregs or selective migration of Tregs by cytokines. In response to the cytokine secretion from
TME, Tregs upregulate the expression of several receptors like, CXCR3, CCR5, CCR4, CCR8 etc. Treg migration is facilitated via the secretion of i)
CCL20 by Kupffer and tumor cells, ii) CCL22 and CCL17 by tumor associated macrophages and iii) SDF1, TGFb from tumor cells. TAMs; Tumor
Associated Macrophages, KC; Kupffer Cells, TILs; Tumor Infiltrating Lymphocytes.
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methods to deplete CD127+ cells and selectively culture CD4+

CD25+ T cells (142). The suppressive capacity of cultured Tregs is

studied in co-culture assays (143). In phase I clinical trial conducted

at King’s College Hospital London and University Hospitals

Plymouth (UK), Tregs expanded under Good Manufacturing

Practices (GMP), were administrated back into the patient at two

dosages of 0.5-1 million Tregs/kg and 3-4.5 million Tregs/kg. The

study showed that in patients administered with 4.5 million Tregs/

kg, the transfer increased the circulating Tregs pool for 1 month as

compared to the Treg pool before infusion (144). Cell tracking and

dose escalating studies to monitor the safety and efficacy of Tregs

are necessary to confirm the accumulation of Tregs in the site of

inflammation. However, Tregs choice and antigen specificity,

adequate cell number, timing and frequency of administration are

still to be considered for achieving adoptive cell therapy (123).
Engineering specificity and function of
therapeutic Tregs

The major disadvantage of adoptive Treg cell therapy is that,

Tregs fail to maintain their phenotypic characters for

immunosuppression at longer time periods. To overcome this

shortcoming, a vector encoding TCR or chimeric antigen receptor

(CAR) with defined antigen specificity Tregs, was developed. TCR

expressed on Tregs surface determines their specificity. Tregs

encoding the genes with TCR or CAR can be genetically

engineered to increase the Tregs specificity to antigens present

during autoimmunity and not in normal cells. CARs have MHC

independent recognition, so they are applicable to patients

irrespective of their genotypes (145). CARs have an extracellular

antigen recognition site, transmembrane domain and hinge site

connected to the intracellular signaling domain. CAR based

mechanism of suppression is similar to Tregs mediated immune

cell suppression. Suppression of DCs is accomplished by binding to

its CD80/CD86 cell surface protein. It can interfere with the

metabolism of lymphocytes, via the secretion of anti-

inflammatory cytokines like IL-10, IL-35 and TGFb or direct cell-

to-cell interaction induced inhibition and apoptosis (146). Delivery

of CAR is by viral vectors like lentiviruses, adeno-associated viruses

or adenoviruses or it can be through non-viral vectors like

transposons or plasmid vectors (147). Using nanocarriers as

vectors can be a safer option than conventional viral and non-

viral vectors. The next step in Tregs engineering can be using newer

techniques as clustered regularly interspaced short palindromic

repeats (CRISPR) by removing genes for cytokine signals like IL-

6, TNFg, and IL-17. Preclinical trials in immunosuppressive

diseases have been successful using CAR expressing Tregs (148).

These encouraging findings have paved the way for the first clinical

trial involving CAR Tregs sponsored by Sangamo Therapeutics,

authorized by the UK MHRA and the US (NCT04817774), and

targeting kidney transplanted patients . Several other

biopharmaceutical companies are closely pursuing similar

initiatives, with Quell Therapeutics focusing on CAR Tregs for

liver transplanted recipients, indicative of the growing interest and

potential in this field (149). An additional study involving HLA-A2-
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specific CAR Tregs, termed LIBERATE (Phase I/II), is started in

2022 and its primary completion estimated in 2025. Notably, this

study will uniquely investigate both clinical outcomes and

immunosuppression in the context of liver transplantation (QEL-

001). This forward-looking initiative aims to provide valuable

insights into the potential efficacy and broader implications of

CAR Treg therapy in the realm of liver transplantation (150).

During liver transplantation and autoimmune liver diseases,

Tregs are important to prevent GvHD and self-cell destruction.

Thus, the future prospects would be the development and

administration of Tregs in-vitro cultured or genetically engineered

for expressing specific antigens required for self-cell destruction by

other immune cells. While, during HCC progression, it is necessary

that the Treg numbers are under control for the cytotoxic T cell

population to eliminate tumor cells. To summarize, the

dysregulation of Tregs is deleterious on the liver disease.
Conclusion

Tregs play an important role in the monitoring of immune

balance and have a protective role against excessive inflammation.

Tregs are heterogenous cell populations differentiated based on

their site of localization, cell markers, homing receptors and

chemokine secretions. Tregs play different roles in chronic liver

diseases and their progression towards HCC. During liver fibrosis,

Tregs have a protective role in preventing chronic inflammation,

but in liver tumor microenvironment, the increase in Tregs’

numbers can be detrimental because Tregs target the T effector

and NK cells which are required for killing tumor cells and

preventing tumor progression and metastasis. Thus, it could be

concluded that Tregs play an important role in the progression of

chronic liver diseases toward carcinogenesis. Also due to the recent

advances in the field of immunotherapy, studies are focusing on

using these cells in preventing autoimmune diseases, while using

specific blockers to inhibit their activity or altering their phenotype

to reduce the immunosuppressive properties in tumor

microenvironment. Thus, deeply understanding the mechanism

of Tregs behavior in chronic liver diseases can be useful for

elucidating the therapeutic options to adopt for preventing the

progression of the chronic liver disease to HCC.
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