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Decisions FZ - LLC, Dubai, United Arab Emirates, 5Biorchestra Co., Ltd., Cambridge,

MA, United States, 6Sirius University of Science and Technology, Sirius, Russia
The research & development (R&D) of novel therapeutic agents for the treatment of

autoimmune diseases is challenged by highly complex pathogenesis and multiple

etiologies of these conditions. The number of targeted therapies available on the

market is limited, whereas the prevalence of autoimmune conditions in the global

population continues to rise. Mathematical modeling of biological systems is an

essential tool which may be applied in support of decision-making across R&D drug

programs to improve the probability of success in the development of novel

medicines. Over the past decades, multiple models of autoimmune diseases have

been developed. Models differ in the spectra of quantitative data used in their

development and mathematical methods, as well as in the level of “mechanistic

granularity” chosen to describe the underlying biology. Yet, all models strive towards

the same goal: to quantitatively describe various aspects of the immune response.

The aim of this review was to conduct a systematic review and analysis of

mathematical models of autoimmune diseases focused on the mechanistic

description of the immune system, to consolidate existing quantitative knowledge

on autoimmune processes, and to outline potential directions of interest for future

model-based analyses. Following a systematic literature review, 38 models

describing the onset, progression, and/or the effect of treatment in 13 systemic

and organ-specific autoimmune conditions were identified,mostmodels developed

for inflammatory bowel disease, multiple sclerosis, and lupus (5 models each). ≥70%

of the models were developed as nonlinear systems of ordinary differential

equations, others – as partial differential equations, integro-differential equations,

Boolean networks, or probabilistic models. Despite covering a relatively wide range

of diseases, most models described the same components of the immune system,

such as T-cell response, cytokine influence, or the involvement of macrophages in

autoimmune processes. All models were thoroughly analyzed with an emphasis on

assumptions, limitations, and their potential applications in the development of

novel medicines.
KEYWORDS

autoimmune diseases, mathematical modeling, quantitative systems pharmacology,
model-informed drug development, immune system modeling
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1371620/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1371620/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1371620/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1371620&domain=pdf&date_stamp=2024-03-14
mailto:alina.volkova@msdecisions.tech
https://doi.org/10.3389/fimmu.2024.1371620
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1371620
https://www.frontiersin.org/journals/immunology


Ugolkov et al. 10.3389/fimmu.2024.1371620
1 Introduction

Autoimmune diseases (ADs) are a group of diverse disorders

that occur widely and affect approximately 12.5% of the global

population, with a greater prevalence among childbearing women

(1). A landmark feature in ADs can be found in immune

disturbances causing autoreactivity of lymphocytes against

normal cells of the organism (2). Even though all ADs share a

common pathophysiological basis of development, their clinical

manifestations could vary from mild abnormalities in laboratory

measurements to life-threatening conditions such as organ failure

following serious tissue damage (3). Depending on the origin of

their manifestation, ADs could be restricted to a single organ

(organ-specific ADs) such as the thyroid gland in Hashimoto’s

thyroiditis (HT) or the pancreas in type 1 diabetes mellitus (T1DM)

or, on the other hand, affect multiple organs and tissues within the

body, such as systemic lupus erythematosus (SLE) or rheumatoid

arthritis (RA). Both types of ADs may exhibit a wide range of

symptoms and can be challenging to diagnose and treat (4).

The exact causes of autoimmunity are not fully understood.

Despite the presence of known genetic and epigenetic predisposing

factors, environmental factors are believed to be an essential trigger

of autoimmune response (5). The most well-studied example of

such an external stimulus are pathogenic microorganisms or

dysbiosis in commensal organisms, initiating either a non-specific

immune response, or an immune response specific to self-antigens

through molecular mimicry, like in the cases of the Epstein–Barr

virus (6) or the group A streptococcus (7). Other well-known

environmental factors leading to autoimmunity include smoking,

diet, and drug administration (e.g., immune checkpoint inhibitors

therapy); and more such factors remain to be defined (3, 8).

ADs exhibit multi-phase dynamics and complex pathogenesis,

including dysregulation in both adaptive and innate immune

systems (9). At preclinical stages of the disease, autoantibodies –

the hallmark of ADs – are expressed, in the absence of clinical signs
Abbreviations: Ab, Antibody; AD, Autoimmune disease; APC, Antigen-

presenting cells; BAFF, B-cell activating factor; CD, Crohn’s disease; CNS,

Central nervous system; CRP, C-reactive protein; DC, Dendritic cells; EASI,

Eczema Area and Severity Index; EAU, Experimental autoimmune uveitis; EC,

Epithelial cells; GI, Gastrointestinal; GM-CSF, Granulocyte-macrophage colony-

stimulating factor; HT, Hashimoto’s thyroiditis; IBD, Inflammatory bowel

disease; IC, Immune complex; IFN, Interferon; IL, Interleukin; IL-6R, IL-6

receptor; IPF, Idiopathic pulmonary fibrosis; JAK, Janus kinase; LN, Lupus

nephritis; MMP, Matrix metalloproteinase; MS, Multiple sclerosis; Mj,

Macrophages; NK, Natural killer; ODE, Ordinary differential equation; OSC,

Organ-specific cells; PD, Pharmacodynamics; PDE, Partial differential equation;

PDGF, Platelet-derived growth factor; PK, Pharmacokinetics; PPMS, Primarily

progressive multiple sclerosis; QSP, Quantitative systems pharmacology; R&D,

Research & development; RA, Rheumatoid arthritis; RRMS, Relapsing-remitting

multiple sclerosis; SLE, Systemic lupus erythematosus; SPMS, Secondary

progressive multiple sclerosis; T1DM, Type 1 diabetes mellitus; Tcon,

Conventional T-cells; Teff, Effector T-cells; TGF, Transforming growth factor;

Th, T-helper cells; TIMP, Tissue inhibitor of metalloproteinases; TNF-a, Tumor

necrosis factor-a; Treg, Regulatory T-cells; UC, Ulcerative colitis; uMCP-1, Urine

monocyte chemotactic protein-1.
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and symptoms of autoimmune disorders such as fever, rash, and

fatigue (10). A gradual involvement of functional elements of the

immune system over time, such as aberrant B- and T-cells, leads to

an eventual diversification of clinical phenotypes. However, despite

the evolving understanding of the autoimmunity mechanisms, there

are still numerous gaps in our knowledge regarding the role of

specific immune components within a tangled network with

multiple feedback loops in the pathophysiology of ADs, further

complicating the management of disease progression (11).

The first-line therapy to control ADs include conventional

immunosuppressive or anti-inflammatory therapies, such as

corticosteroids and methotrexate, which dampen the overactivated

immune system (12, 13). However, non-selective immunomodulators

do not always provide sufficient benefit in a heterogeneous

population of patients; also, their long-term administration leads to

the appearance of side effects, the most common ones being an

increased risk of infections and malignancies (14). Eventually, the

accumulated knowledge on the pathophysiology of ADs has

contributed to the development of targeted drugs with notably

higher benefit-risk ratios. These selective immunotherapies are

designed to suppress major pro-inflammatory signaling pathways

by blocking inflammatory cytokines (e.g., anti-interleukin (IL)-17 in

psoriasis), target immune cells (e.g., anti-B-cell activating factor

(BAFF) in SLE), or intracellular kinases (e.g., Janus kinase (JAK)

inhibitors in RA). Despite the tremendous success of targeted

therapies in ADs, unmet medical needs remain, in terms of long-

term safety as well as overall efficacy, since many patients do not

achieve disease remission (15). A deeper understanding of

mechanisms and of their corresponding heterogeneity in the

development of ADs would provide opportunities to overcome

these limitations, ultimately leading to a more personalized and,

therefore, a more efficient approach to treatment.

Mechanistic, physiologically-based mathematical modeling is

widely accepted as a supportive tool for better understanding and

interrogating diseases pathophysiology, given its ability to integrate

biological and pharmacological knowledge with a quantitative

description of the underlying processes, therefore making such

modeling essential in enhancing decision-making at all stages of

drug development (16, 17). For example, by reconstructing

biochemical or signaling cascades in silico, a researcher may

formulate and challenge theoretical hypotheses regarding the

contribution of certain signaling components, to support the

rational identification and validation of new drug targets (18, 19).

Mechanistic modeling can also be employed to explore the impact

of patient-specific factors, such as demographic characteristics and

comorbidities, on drug action, potentially explaining the

heterogeneity in treatment responses and providing options for

adjustments or changes in treatment strategies. Modeling may

further help in rationalizing the selection and application of drug

combinations, in optimizing dosing schedule, and more (16). In

summary, mechanistic mathematical modeling represents a tool to

support the targeting of the right molecular pathway in a given

disease context, with the right dose, and in the right patient

population or phenotype (20).

The aim of this work was to conduct a systematic review and

analysis of mathematical models of ADs focused on the mechanistic
frontiersin.org
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description of the immune system, to shape and consolidate the

current landscape of quantitative knowledge on autoimmune

processes, to outline most promising directions for further model

developments, and to perform model-informed analyses aimed at

support ing drug discovery and development against

autoimmune pathologies.
2 Methods

A systematic literature search was performed in the PubMed

database, to identify all mechanistic mathematical models with

relevance to ADs. The search query consisted of two semantic

components. The first one involved keywords related to

autoimmunity, specifically, 184 disease-specific terms from the list

of ADs (21) and general descriptors of autoimmune-related

processes (e.g., “autoimmune disease”, “autoinflammatory”, etc.).

The second one was used to seek out studies on mechanistic,

physiologically-based, or quantitative systems pharmacology

(QSP) models. Additional search conditions were implemented,

to eliminate records in non-English language and those focused on

clinical trial results, reviews, or meta-analyses. To derive and

compare the number of publications available in the PubMed

database on mechanistic models versus empirical ones, another

search was performed, with the second semantic component

replaced with terms related to pharmacokinetics (PK) and

pharmacodynamics (PD) analyses. The exact queries used are

listed in the Supplementary Methods.

The search resulted in 500 potentially relevant publications (last

accessed: 20 October 2023). Two authors (Y.U., A.V.)

independently screened the articles for duplication and eligibility.

Disagreements were resolved through discussion with independent

reviewers (V.S., K.P.). A prerequisite for transferring an article into

further analysis was the description of autoimmune-related

processes at any level of generalization and organization (e.g.,

molecular, cellular, tissue-level), including antigen presentation,

cytokine production, immune complex (IC) formation, etc., using

a mathematical framework such as ordinary differential equations

(ODEs), partial differential equations (PDEs), and others. A model

with any number of variables or parameters was considered

mechanism-based as long as it included more than one of the

above-mentioned components. In addition, articles featuring minor

modifications vs. previously published models within a single AD

were grouped and analyzed together.

Several classifications were used to categorize the models: by

target organ or system, by indication, by mathematical method, and

by associated data. The following criteria were applied to define the

latter: if only clinical vs. preclinical data were used for calibration,

fine-tuning of parameters, or model validation, the model was

tagged to the respective group (i.e., “Clinical” or “Preclinical”). If

both types of data, preclinical and clinical, were used, or the

parametrization was not within the scope of the research,

“Combined” or “Not specified” tags were assigned.
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Visualization and statistical analyses of the gathered data were

carried out using reproducible scripts in the R Statistics software

(version 4.0.2), using the R “tidyverse” package (version 1.3.0) (22).

A network diagram of immune components was prepared using the

R “igraph” package (version 1.2.7) (23).

3 Results

To illustrate the growing body of publications related to

mathematical modeling in ADs, the numbers of articles appearing

in the PubMed database following the search queries for either PK/

PD models or mechanistic models were visualized against years of

publication (Figure 1A). According to the search results, the first

papers matching the specifications date back to the 1970s. Since

then, the number of relevant articles increased exponentially,

reaching more than 200 publications per year by 2024. The ratio

of studies appearing in the search for mechanistic models vs.

empirical ones was small (~1-to-5).

Following a detailed investigation of these 500 publications

potentially associated with mechanistic models, 47 studies were

identified, which described the development, analysis, and

application of 38 unique physiologically-based models. These 38

models were categorized according to 13 related AD indications,

including alopecia areata, atopic dermatitis, autoimmune

myocarditis, experimental autoimmune uveitis (EAU), celiac

disease, HT, idiopathic pulmonary fibrosis (IPF), inflammatory

bowel disease (IBD), multiple sclerosis (MS), pulmonary

sarcoidosis, RA, SLE, T1DM, or classified into “Autoimmune

processes” category if the model investigated autoimmunity in a

more generic context rather than according to a specific AD

(Figure 1B). The most frequently featured pathologies were IBD,

MS, and lupus (5 models per disease), followed by RA (4 models),

atopic dermatitis and T1DM (2 models each).

These models predominantly employed nonlinear systems of

ODEs (71%) (Figure 1C). Some models were built using PDEs

(15.8%); others featured integro-differential equations, Boolean

networks, or Markov jump processes (13.2%). The models were

developed primarily based on clinical data (39.4%); a small

proportion of models made use of preclinical data only (5.3%),

while 26.3% of model used a combination of clinical and preclinical

data; 28.9% of models did not rely on quantitative data (Figure 1D).

Given the multitude of ramifications found in the immune

system, the mechanistic models we evaluated typically focused on

specific aspects of autoimmune conditions and the related

pathophysiology, and often at various levels of “mechanistic

granularity”. To identify those components and interactions

which occurred most frequently in the mathematical systems, we

extracted all variables from the modeling papers – except for the

Boolean network models – i.e., 214 variables from 36 models; we

then unified these variables into 60 terms and counted the incidence

of terms occurring simultaneously within a single model

(Supplementary Material; Table 1). If a term was encountered

together with another term for at least 3 times, the corresponding

interaction was added to the network diagram (Figure 2). The 31
frontiersin.org
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FIGURE 1

General statistics on model-based analyses in autoimmune diseases. (A) Number of publications in the PubMed database per year, following a
search for mechanistic or PK/PD models of ADs; (B) number of mechanistic models identified through a systematic review and classified by
indication; (C) percentage of mechanistic models using the described methodology; (D) percentage of mechanistic models by type of data used in
model development or validation. AD, autoimmune disease; ODE, ordinary differential equations; PD, pharmacodynamics; PDE, partial differential
equations; PK, pharmacokinetics.
TABLE 1 Summary of mechanistic models of autoimmune diseases.

Reference Indication Description Application Key limitations

Systemic autoimmune diseases

Lupus

Ruiz-Cerdá
et al. (24)

Systemic
lupus
erythematosus

A Boolean network model of
antigen presentation

Identification of promising biological targets (including
their combinations) as well as conditions defining the
treatment response.

1. Qualitative nature of the
Boolean network models.
2. The scope of the system is
limited to the
antigen presentation.

Yazdani
et al. (25)

Systemic
lupus
erythematosus

Mechanistic ODE-based model of
SLE at different stages of the
disease progression

Model-based assessment of immune system condition
at different stages of SLE (e.g., tolerance breach,
occurrence of fares, etc.) and the effect of mesenchymal
stem cell therapy.

1. Qualitative rather than
quantitative approach to model
parametrization.
2. Utilization of generic variables
not directly associated with
laboratory measurements.

Budu-
Grajdeanu
et al. (26)

Lupus
nephritis

Generic 4-ODE system describing
the dynamics of ICs, anti- and pro-
inflammatory mediators, and
tissue damage

Exploration of intersubject variability associated with
the treatment benefit.

1. Utilization of generic variables
not directly associated with
laboratory measurements.
2. The model was calibrated
using the data on 4 subjects.

Hao et al. (27)
Karagiannis
et al. (28)

Lupus
nephritis

A system of convection-diffusion
equations describing the
progression of renal fibrosis

Identification of promising biological targets for the
treatment of renal fibrosis.

Limited application of clinical
data for model development.

Gao et al. (29)
Systemic
lupus
erythematosus

The effect of exogenous IL-2 on the
ratio between conventional T-cells
and Tregs described using
ODE framework

1. Defining therapeutic window for IL-2 in patients
with SLE.
2. Search for covariates and predictive biomarkers
associated with the IL-2 treatment.

The scope of the model is
focused on the clinical issues
specific to the IL-2 therapy.

(Continued)
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TABLE 1 Continued

Reference Indication Description Application Key limitations

Rheumatoid arthritis

Rullmann
et al. (30)

Rheumatoid
arthritis

Application of the Entelos® RA
PhysioLab® platform

1. Validation of potential biological targets.
2. Prediction of the effect of hypothetical anti-IL-15 and
anti-IL-12 treatment on synovial cell density and
cartilage degradation rate.

Source code is not available.

Moise et al. (31)
Rheumatoid
arthritis

A system of PDEs describing
rheumatic joint (cartilage, synovial
membrane, synovial fluid
compartments) in the chronic state
of RA

1. Mathematical evaluation of the disease state.
2. Evaluation of the effect of conventional therapies
(methotrexate, infliximab, tocilizumab), and
hypothetical ones (anti-IL-23 and anti-IL-17), including
their combinations.

1. Simplified geometry of the
joint.
2. Focus on the behavior of the
mathematical system without
direct association with the
clinical data (e.g., model
validation or parameter
calibration against the
observed data).

Nakada
et al. (32)

Rheumatoid
arthritis

Five target engagement models of
cytokines and respective antagonists
in ODEs, linked with the
CRP dynamics

A robust quantitative model calibrated and validated
using data from multiple clinical trials and applied to
explain interpatient variability in support of dosing
strategy optimization for the considered compounds.

Limited roster of biological
entities (e.g., immune cells not
included) and
associated therapies.

Meyer-
Hermann
et al. (33)

Rheumatoid
arthritis

A system of ODEs quantifying
circadian variations of cortisol,
noradrenaline, and TNF-a in
healthy subjects and patients
with RA

1. Evaluation of the cortisol and noradrenaline response
under anti-TNF-a treatment.
2. Optimization of the clock time of
drug administration.

Immune response is represented
only by TNF-a.

Organ-specific autoimmune diseases

Gastrointestinal tract

Wendelsdorf
et al. (34)

Inflammatory
bowel disease

An ODE model that describes
innate and adaptive immune
response to bacteria stimuli in IBD
across gut lumen, lamina propria,
and mesenteric lymph node

1. Testing different rescue strategies (e.g., targeting Mj
or Treg) for IBD in silico.
2. Explaining the mechanisms behind PPARg-mediated
IBD prevention.

1. Relatively high-level
description (i.e., using generic
variables) of the biological
mechanisms.
2. The model was developed and
validated using preclinical data.

Lo et al. (35,
36)
Park et al. (37)

Inflammatory
bowel disease

An ODE model of T-cell
polarization in IBD

1. Exploration of the cytokine and transcription factor
balance associated with proper and pathological T-cell
immune response.
2. Evaluation of the treatment effect of anti-cytokine
therapies across 4 sub-groups of IBD patients defined
by the ratio of Th1 and Th2 transcription factors.

1. The quantities of T-cells are
represented by transcription
factors.
2. Part of the model parameters
were derived from the models of
other diseases.

Dwivedi
et al. (38)

Inflammatory
bowel disease

Mechanistic model of IL-6 signaling
adapted for IBD

Benchmarking different targets for IL-6 signaling
disruption based on CRP concentrations as a marker
of inflammation.

The focus of the modeling is
only on the IL-6 pathway.

Rogers et al.
(39, 40)

Inflammatory
bowel disease

Comprehensive mechanistic model
that includes detailed description of
innate and adaptive immune
response in IBD developed
in ODEs

1. Explaining the mechanisms behind IL-17 inhibition-
mediated disease worsening.
2. Utilizing virtual population approach to predict the
number of responders to different treatment options,
including the combination of anti-TNF-a and anti-IL-
12p40 compounds.

Large scale of the model (116
reactions and 334 parameters)
which makes it hard to adapt
and qualify.

Balbas-Martinez
et al. (41, 42)

Inflammatory
bowel disease

Boolean network model with 43
nodes spread across lymph node,
blood, lymph circulatory system,
and gut lumen compartments,
subsequently expanded with an
ODE sub-module

1. General description of the IBD condition and the
effect of several therapeutic interventions using Boolean
network approach.
2. Predicting the effect of recombinant human IL-10
administration on other cytokines in the system.

Qualitative nature of the
Boolean network models.

Demin
et al. (43)

Celiac disease

A mechanistic model in ODEs
attempting to describe immune
response in lamina propria
provoked by the consumption and
deamidation of gluten

Benchmarking potential biological targets, including
transglutaminase-2 inhibitors, for the treatment of
celiac disease.

Limited clinical data available
for model validation.

(Continued)
F
rontiers in Immun
ology
 05
 frontiersin.org

https://doi.org/10.3389/fimmu.2024.1371620
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ugolkov et al. 10.3389/fimmu.2024.1371620
TABLE 1 Continued

Reference Indication Description Application Key limitations

Nervous system and eyes

Nicholson
et al. (44)

Autoimmune
uveitis

A 10-ODE model that describes the
processes of antigen presentation
and T-cell activation on both sides
of the blood-retina barrier

Evaluation of the impact of blood-retina barrier
permeability and other factors (i.e., APC production)
on the disease state.

Biological mechanisms
represented in the model are
simplified and limited to several
generic variables.

Moise et al. (45)
Multiple
Sclerosis

A 27-PDE model describing
immune and inflammatory
interactions within the focal plaque

Quantifying the impact of stand-alone treatment and
combinations of IFN-b, glatiramer acetate, natalizumab,
and dimethyl fumarate on plaque growth

1. Simplified geometry of the
plaque.
2. Limited application of clinical
data for model development.

Vélez de
Mendizábal
et al. (46)

Multiple
Sclerosis

A generic model of the cross-
regulation between regulatory and
effector T-cell in MS in ODEs

Exploring the mechanisms behind different
MS phenotypes.

1. Limited number of immune
response components
considered in the model.
2. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.

Kannan
et al. (47)

Multiple
Sclerosis

A generic 4-ODE model of
inflammatory and anti-
inflammatory components,
demyelination, and neuronal death

Exploring the mechanisms behind different
MS phenotypes.

1. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.
2. Utilization of generic variables
not directly associated with
laboratory measurements.

Gross et al. (48)
Multiple
Sclerosis

A probabilistic model describing
transmigration and differentiation
of lymphocytes in the CNS

Assessing the effectiveness of immune-modulating
therapies without the need for lumbar punctures.

Limited clinical data available
for model validation.

Broome
et al. (49)

Multiple
Sclerosis

An ODE systems model describing
the interactions between reactive
oxygen and nitrogen species, the
permeability transition pore,
apoptotic factors, and eventual cell
death in oligodendrocytes

Identification of the promising biological targets for the
treatment of MS.

Limited number of immune
response components
considered in the model due to
the biochemical scope of
the model.

Skin

Dobreva et al.
(50, 51)

Alopecia
areata

An ODE model describing hair
follicles dystrophy as a function of
several immune components,
including autoreactive T-cells, IFN-
g, MHC-I and immune
privilege guardians

Exploring hypotheses on disease pathogenesis via
mathematical description of the alopecia
areata progression.

1. The model was developed
using preclinical data.
2. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.
3. Limited number of immune
response components
considered in the model.

Tanaka et al.
(52)
Domıńguez-
Hüttinger et al.
(53)
Christodoulides
et al. (54)

Atopic
dermatitis

An ODE-based system describing
the four phenotypes typical for
atopic dermatitis patients as a
function of pathogen load, immune
response, and the strength of
skin barrier

Optimization of treatment schedule and combinatory
effect of antibiotics, emollients, and corticosteroids in
terms of transition between pathogenic and
healthy phenotypes.

1. No clinical data was used in
model development.
2. Lack of temporal components
in drug PK and several major
factors affecting
disease phenotype.

Miyano
et al. (55)

Atopic
dermatitis

Modeling of the EASI efficacy score
as a function of pathogen load,
cytokine concentration, and skin
barrier integrity using
ODE framework

1. Indirect comparison of efficacy across 9 anti-cytokine
drugs.
2. Optimization of therapeutic strategy for dupilimab-
resistant patients and search for predictive biomarkers
associated with the dupilumab treatment-
mediated response.

1. Covariance in model
parameters was not considered
when generating virtual patient
population.
2. Each cytokine independently
affects skin barrier integrity and
infiltration by pathogens.
3. PK/PD relationship was not
explored was only maximum
dose of investigated compounds
was considered.

(Continued)
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TABLE 1 Continued

Reference Indication Description Application Key limitations

Endocrine system

Magombedze
et al. (56)

Type 1
diabetes
mellitus

A 6-ODE model capturing changes
over time in b-cells, effector T-cells,
Tregs, Mj (resting and activated),
and autoantigen

Exploring the mixture of factors causing the onset and
progression of T1DM, particularly the impact of Tregs
on the suppression of autolytic T-cells.

1. Limited number of immune
response components
considered in the model.
2. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.

Jaberi-Douraki
et al. (57)

Type 1
diabetes
mellitus

A concise model of integro-
differential equations reflecting the
interplay between b-cell, effector T-
cells and Tregs along with antigen
and IL-2

Describing the onset and progression of T1DM and
categorizing individuals based on the balance between
effector T-cells and Tregs, and T-cells avidity.

1. Limited number of immune
response components
considered in the model.
2. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.

Salazar-Viedma
et al. (58)

Hashimoto’s
thyroiditis

A 4-ODE model representing Th1,
Th17, thyrocytes and gut
microbiome dynamics

Identifying the scenarios in Th and intestinal
microbiota imbalance causing the development and
progression of HT.

1. Limited number of immune
response components
considered in the model.
2. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.

Lungs

Aguda et al.
(59)
Hao et al. (60)

Pulmonary
chronic
sarcoidosis

A system of convection-diffusion
equations describing cells
dispersion and cytokine diffusion
within granuloma

Benchmarking the effect of cytokine-targeting drugs
(anti-TNF-a, anti-IL-12, anti-IFN-g, TGF-b
enhancement) on the size of sarcoid granulomas.

1. Limited application of clinical
data for model development.
2. Simplistic geometrical
representation of the granuloma
as a sphere with uniform
distribution of Mj, Th1, Th17
and Treg.

Hao et al. (61)
Idiopathic
pulmonary
fibrosis

A system of convection-diffusion
equations describing the
progression of pulmonary fibrosis

Benchmarking the effect of cytokine-targeting drugs
(anti-TNF-a, anti-PDGF, anti-IL-13, anti-TGF-b) on
pulmonary fibrosis progression.

1. Limited application of clinical
data for model development.
2. Simplistic geometrical
representation of the lung tissue.

Cardiovascular

van der Vegt
et al. (62)

Autoimmune
myocarditis

A 4-ODE model capturing the
development of autoimmune
myocarditis under treatment with
immune checkpoints inhibitors

Establishing individual patient characteristics reflected
in the values of several key model parameters leading to
the development of autoimmune myocarditis under
treatment with nivolumab or ipilimumab.

1. Biological mechanisms
represented in the model are
simplified and limited to several
generic variables.
2. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.

General autoimmune reactions

Head et al. (63)
Autoimmune
processes

A systems model describing IC
formation, opsonization
and clearance

Evaluation of mathematical conditions resulting in an
increased production ICs to identify the states
associated with the high risk of the development of IC-
mediated autoimmune disease.

Focus on the behavior of the
mathematical system with
limited application of the
clinical data.

Arazi et al. (64)
Autoimmune
processes

A generic 3-ODE model reflecting
the quantities of autoreactive B-
cells, autoantigen, and ICs

Establishing how initial conditions affect the degree of
IC-mediated inflammation and which processes
contribute the most to it.

1. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.
2. Limited number of immune
response components
considered in the model.

Iwami
et al. (65)

Autoimmune
processes

A 3-ODE model of immune cells,
target cells, and damaged cells

Exploring different functional relationships and
parameter spaces explaining different states of immune
tolerance/dormancy and repeated flare-ups in AD.

1. Focus on the behavior of the
mathematical system with
limited application of the
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nodes which appeared on the diagram were next divided into 3

categories, by biological origin (i.e., cellular, or molecular) or effect

(e.g., fibrosis, inflammation, tissue damage). The most frequently

occurring terms were antigen and regulatory T-cells (Treg) (12

cases), followed by interferon (IFN)-g and macrophages (Mj) (9
cases each), tumor necrosis factor-a (TNF-a), T-helper cells (Th)
and Th1, (8 cases each), and Th17, inflammation, fibrosis (7 cases

each). Consequently, most frequent interactions (at least 5 per edge)

were observed between T-cells (Tregs, Th1, Th17) and related

cytokines (IFN-g, IL-2, IL-4, IL-6, IL-17).
Next, the 30 models associated with specific diseases (see

Figure 1B) were categorized into 2 groups: systemic- and organ-

specific. The latter category was, in turn, separated into 6 subgroups:

endocrine, lungs, skin, nervous system and eyes, cardiovascular, and
Frontiers in Immunology 08
gastrointestinal (GI) tract (Figure 3). Mathematical systems

describing autoimmune processes in a more generic sense (8

models) were kept in a separate category. All 38 models were

subjected to a comprehensive evaluation encompassing their

description, applications, and limitations, summarized in Table 1

and in the text below.
3.1 Lupus

Lupus is a chronic systemic AD with heterogeneous clinical

manifestations, ranging from mild joint and skin abnormalities to

life-threatening kidney, cardiac, or central nervous system (CNS)
TABLE 1 Continued

Reference Indication Description Application Key limitations

General autoimmune reactions

clinical data.
2. Utilization of generic variables
not directly associated with
laboratory measurements.

Khailaie
et al. (66)

Autoimmune
processes

A mechanistic model of the
interplay between conventional
and Treg

Delineating three regimes of immune activation
(complete lack of response, the first peak following by
complete clearance of the antigen and chronic
persistence of the antigen) primarily through the
differences in the renewal rate of naïve T-cells and
resting Tregs and antigen-stimulation thresholds.

1. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.
2. Limited number of immune
response components
considered in the model.

Louzoun
et al. (67)

Autoimmune
processes

A model representing the dynamics
of Th1, Th2, Mj their cytokines, as
well as naïve T-cells and pooled
Teff and Treg

Characterizing the progression of Th1-type
autoimmune diseases from Th1 to Th2 steady-state

1. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.
2. Utilization of generic variables
not directly associated with
laboratory measurements.

Hara et al. (68)
Autoimmune
processes

A 4-ODE model describing the
interplay between Th (reactive to
self-antigen or viral infection),
virus, and memory T cells

Identifying the conditions that trigger autoimmunity in
response to viral infection

1. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.
2. Utilization of generic variables
not directly associated with
laboratory measurements.

Ramos
et al. (69)

Autoimmune
processes

A system of integro-differential
equations and ODE describing the
interaction of self-APC, self-reactive
T cells and
immunosuppressive cells

Exploring of mathematical conditions resulting in the
regulatory effect of immunosuppressive cells on the
proliferation and activation of self-reactive T cells in an
autoimmune reaction.

1. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.
2. Limited number of immune
response components
considered in the model.

Valeyev
et al. (70)

Autoimmune
processes

An ODE model representing two
exemplar immune cell populations
and their mutual regulation
through cytokine signalling

Defining mathematical conditions leading to the
oscillating or trigger-based pathological
disease phenotype.

1. Focus on the behavior of the
mathematical system with
limited application of the
clinical data.
2. Utilization of generic variables
not directly associated with
laboratory measurements.
CNS, central nervous system; CRP, C-reactive protein; HT, Hashimoto’s thyroiditis; IBD, inflammatory bowel disease; IC, immune complex; IFN, interferon; IL, interleukin; MHC, major
histocompatibility complex; MS, multiple sclerosis; Mj, macrophages; ODE, ordinary differential equation; PDE, partial differential equation; PK, pharmacokinetics; RA, rheumatoid arthritis;
SLE, systemic lupus erythematosus.; T1DM, type 1 diabetes mellitus; Th, T-helper cells; TNF-a, tumor necrosis factor-a; Treg, regulatory T-cells.
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impairment (71). The etiology and pathophysiology of this AD is

complex and is still poorly understood. Multiple genetic,

immunological, and environmental factors may influence the loss

of immunological tolerance against self-antigens, leading to the

activation of autoreactive T- and B-cells. Dysregulation in T-cell

response results in an imbalance in cytokine production, attracting

an increasing number of immune cells to the affected tissue and

provoking further inflammation. Moreover, pathological B-cells

produce autoantibodies that cause organ damage by IC deposition

and complement system activation (72, 73).

The first endeavor in providing a comprehensive depiction of

systemic inflammation in SLE was a Boolean network model

developed by Ruiz-Cerdá and colleagues (24). This model employed

52 nodes, to represent components of antigen presentation by

antigen-presenting cells (APC) to T-cells, with 254 interactions

describing activation, inhibition, upregulation, or downregulation

processes between nodes. By knocking out or overstimulating

isolated nodes, the authors identified and classified perturbations

leading to a “lupus-like” phenotype in a virtual subject.

A recent example of another self-contained SLE model, built

upon ODEs, is the work by Yazdani et al. (25). These authors

created a system that delineates various stages of SLE progression,

encompassing the entire immune response in 13 variables: 8 of

these are generic (e.g., “proinflammatory mediators”, “damaged
Frontiers in Immunology 09
tissue”), and the other 5 reflect specific immune response

components: autoantibodies, antigens, IC, and mesenchymal stem

cells, as a potential approach for SLE treatment. Model parameters

were manually tuned to reproduce key immunological patterns at

different phases of SLE, such as tolerance breach, the onset of

systemic inflammation, the development of clinical signs, and the

occurrence of flares and remissions.

Subsequently, this model underwent modifications through the

incorporation of a tissue inflammation submodule, which, in turn,

was adopted from another model developed by Budu-Grajdeanu

and colleagues for lupus nephritis (LN) (26). This model describes

changes over time for 4 variables: IC, anti-inflammatory mediators,

pro-inflammatory mediators, and damaged tissue. The first two

variables are generic (i.e., not associated with specific biological

entities), whereas the last two variables represent urine biomarkers

measured in routine clinical practice: urine monocyte chemotactic

protein-1 (uMCP-1) and urine protein-to-urine creatinine ratio,

respectively. 4 sets of individual parameters were derived from the

model calibration procedure, based on individual data from 4

subjects with SLE – a first step towards the quantification of

inter-individual variability.

The pathophysiology of LN, specifically in relation to

the progression of renal fibrosis, is also the focus of another series

of articles published by Hao and colleagues (27, 28). The
FIGURE 2

Network diagram of immune components represented in mechanistic models of autoimmune diseases. Green color – cytokines; yellow color –
cells; red color – other components; size of a node – number of models with the component (3 to 11); edge width – number of interaction (3 to 6).
Ab, antibody; APC, antigen-presenting cells, DC, dendritic cells; EC, epithelial cells; GM-CSF, granulocyte-macrophage colony-stimulating factor; IC,
immune complex; IFN, interferon; IL, interleukin; Mj, macrophages; OSC, organ-specific cells; Teff, effector T-cells; Th, T-helper cells; TNF-a,
tumor necrosis factor-a; Treg, regulatory T-cells.
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publications describe the system as a set of 11 PDEs depicting the

dispersion of various types of cells involved in fibrosis, across

rectangular cross-section of the renal cortex, and regulated by a

network of cytokines and growth factors, including uMCP-1,

platelet-derived growth factor (PDGF), transforming growth

factor-beta (TGF-b), matrix metalloproteinase (MMP), and tissue

inhibitor of metalloproteinases (TIMP). Through a sensitivity

analysis, two parameters were identified as most influential for

the formation of interstitial fibrosis and were estimated based on

uMCP-1 time profiles measured in 84 subjects. Between-subject

variability was taken into account by dividing the subjects according

to their severity of fibrosis (low, intermediate, or high). The

estimated two parameters affect the production of TGF-b by

tubular epithelial cells (EC) and uMCP-1 synthesis by Mj;
modulating these has been shown to provide a potentially

beneficial therapeutic strategy for mitigating renal fibrosis.

As opposed to a rather qualitative assessment of drug effects in

the aforementioned models, another model considered in this

section was specifically designed to quantify the treatment effect

of exogenous IL-2 therapy in patients with SLE (29). The model by

Gao et al. consists of 10 ODEs and focuses on a limited number of

immune components directly associated with the therapeutic effect

of IL-2, including conventional T-cells (Tcon), Treg, and natural

killer (NK) cells – also taking into account differences in IL-2

receptor densities on each cell type and the formation of receptor-

ligand complexes. The model was applied to select an effective range

of IL-2 concentrations for treating SLE patients based on their

Tcon/Treg ratio. Furthermore, factors affecting the exposure-

response relationship were identified, and a new prognostic
Frontiers in Immunology 10
biomarker (Treg/CD4+ T-cells ratio) was proposed to separate

responders and non-responders prior to treatment initiation.

3.2 Rheumatoid arthritis

RA is a chronic, systemic AD characterized by joint

inflammation, synovial hyperplasia, and the progressive destruction

of cartilage and bone, leading to disability and impaired quality of life.

The disease pathophysiology is complex and involves a wide array of

elements of the innate and adaptive immune responses, including

Mj, dendritic cells (DC), NK cells, T- and B-cells, fibroblast-like

synoviocytes, as well as cytokines such as TNF-a and IL-6, along with

others: IL-7, IL-15, IL-17, IL-21, IL-23, and granulocyte-macrophage

colony-stimulating factor (GM-CSF) (74–77). Similarly to other ADs,

the heterogeneity in RA pathophysiology represents a major

confounding factor for the development of targeted RA therapies.

Despite several drugs available on the market, including anti-TNF-a
(infliximab, etanercept), anti-IL-6 (tocilizumab), anti-JAK

(tofacitinib), and anti-CD20 (rituximab), their effectiveness is

limited to subgroups of patients, while their administration is

associated with serious side effects such as ulcers, fatigue, reduced

immunity to infections, and osteoporosis (78, 79).

In our search, we identified 4 diverse examples of mechanistic

models applied to study RA disease and associated treatments. The

first study by Rullmann, published in 2005, describes the

application of the Entelos® (80) RA PhysioLab® platform to

validate potential biological targets as well as to predict the effect

of hypothetical anti-IL-15 and anti-IL-12 treatments on synovial

cell density and cartilage degradation rate (30). The model consists
FIGURE 3

Classification of existing models for autoimmune diseases by target organ or system. Only diseases for which mechanistic models were identified are
shown; the number of models for a given disease is indicated in brackets.
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of ODEs, is claimed to include several dozens of soluble factors, cell

surface molecules, and numerous types of cells in rheumatoid joint,

and can simulate virtual patients with various properties; the lack of

the source code, however, prevents a further detailed evaluation.

In 2018, Moise and Friedman developed their own model of a

rheumatic joint in a chronic RA state, using PDEs (31). The

system describes the dynamics, distribution, and cross-influence

of Th17 cells, fibroblasts, Mj, and associated cytokines and

chemokines (e.g., IL-17, GM-CSF, IL-6, fibroblast growth

factors, TNF-a, etc.) across cartilage, synovial membrane, and

synovial fluid compartments. In addition to an evaluation of

model behavior over time without treatment (i.e., disease

progression), the model was used to test theoretical effects of

conventional therapies (methotrexate, infliximab, tocilizumab),

and hypothetical ones (anti-IL-23 and anti-IL-17), including

their combinations. Cartilage degradation was used as a

surrogate measure of disease status.

One of the more recent works published by Nakada and Mager

(2022) describes a mechanistic ODE model focused on the interplay

between several key cytokines associated with RA pathophysiology:

IL-6, IL-17, TNF-a and IL-1 – complemented with the PK of

therapeutic agents such as tocilizumab, secukinumab, infliximab,

canakinumab, and anakinra (32). The dynamics of each cytokine

and respective antagonist(s) were described by a target-mediated

drug disposition module. Modules were connected through a

network of feedback mechanisms, with, at the top, C-reactive

protein (CRP) turnover as a marker of inflammation. The model

is highly quantitative, being informed by data from multiple clinical

trials based on the above-mentioned compounds and validated

using external datasets not used for model calibration. From a drug

development perspective, the model was applied to identify

covariates (primarily baseline cytokine concentrations) explaining

inter-patient variability in anti-inflammatory effects of the

considered anti-cytokine therapies.

The fourth and final model in this section does not focus on

inflammatory components but rather on circadian variations of

cortisol, noradrenaline, and TNF-a as key players, respectively, of

the endocrine, nervous, and immune system, in healthy subjects

and patients with RA (33). As such, the characterization of daily

oscillations of these markers under anti-TNF-a treatment can be

considered as the main output of this model-based research. In

addition, the authors demonstrated, via simulations, that

glucocorticoid treatment between midnight and 2:00 AM would

result in the strongest inhibitory effect on TNF-a secretion.
3.3 Gastrointestinal tract

The GI tract is a chain of interconnected organs that consists of

the oral cavity, pharynx, esophagus, stomach, small intestine, large

intestine, and anal canal. It is a system constantly exposed to the

elements of the environment, simultaneously providing an

organism with nutrition while keeping numerous pathogens at

bay. Multiple ADs (e.g., autoimmune hepatitis, autoimmune

pancreatitis, SLE) exhibit symptoms associated with the GI tract
Frontiers in Immunology 11
(81), while others are directly caused by abnormal immune

reactions within the organ system. Most common examples of the

latter are IBD, which includes Crohn’s disease (CD) and ulcerative

colitis (UC), and celiac disease (82). A large volume of empirical

knowledge has accumulated over the years, allowing us to define the

pathogenesis of these conditions with relative certainty. Firstly, the

right balance between a proper immune response to disease agents

and the lack of such for food-related antigens can be challenged by

an increased permeability in the gut and a loss of immune tolerance

to self-antigens (83). Secondly, inflammation may be provoked by

the dysregulation of Th processes, e.g., an increased activation of

Th1/Th17 or deactivation of the Th2/Treg pathway (84).

One of the first mechanistic models of IBD by Wendelsdorf and

colleagues attempts to quantify these processes across three

physiological compartments: the lumen, the lamina propria, and

the mesenteric lymph node (34). The model describes the

amplification of innate and adaptive immune responses in

response to bacteria stimuli which may cause depletion of the

epithelial lining. The model operates with 30 variables which can

be roughly divided between Mj (M0, M1, M2), DC, and T-cells

(both pro- and anti-inflammatory), as well as cytokines (activating

and deactivating). The model allows for a comprehensive sensitivity

analysis and a high-level hypothesis evaluation related to general

interactions between immune cells. For example, the model was

applied to propose rescue strategies that remove M1 from the site of

infection, which explains the mechanisms of proliferator-activated

receptor-g-mediated IBD prevention; the model also describes

effects of chemokine and cytokine deprivation that allow for Mj
to remain activated. However, the price for the large scale of the

model is a rather abstract description of mechanisms, a limitation

which has been partially compensated for by subsequent

modeling research.

For example, Lo and colleagues focused on aspects of T-cell

polarization during the initial steps of the inflammatory processes

in IBD, by modeling Th1, Th2 and Treg population densities as a

function of concentrations of transcription factors (T-bet, Gata3

and Foxp3) and four cytokines (IFN-g, IL-4, TGF-b and IL-2) (35).

The system was explored primarily along two scenarios: bacterial

infection and protozoan infection - under normal and abnormal

immune responses, through the modulation of model parameters. It

provides a better understanding of the delicate balance between

cytokine and transcription factors required for proper T-cell

immune response in the gut and the consequences of its

disruption. At the same time, the model lacks several essential

mechanistic components, including the polarizing effect of

cytokines produced by activated Mj. This limitation was

addressed in subsequent work by the same authors, where they

expanded on the developed model and added several additional

immune components, including Th17, M1 and M2 Mj, along with
IL-6, IL-10, IL-12, IL-21 and TNF-a (36). The model was applied to

characterize 4 subgroups of patients with CD, as defined by the ratio

of Th1 and Th2 transcription factors, relative to values in healthy

volunteers, based on biopsy data. A hypothetical anti-TNF-a
therapy was then tested in each subgroup, to find the population

most sensitive to the treatment. The article by Park et al. capitalizes
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on the work by Lo and colleagues and explores the effect of anti-IL-

12 and pro-IL-10 treatment along with TNF-a suppression in the

same system, with 4 cohorts of patients differing in their quantities

of Th1 and Th2 (37).

The model by Dwivedi et al. is another example of a systems

model focused on cytokine effects, IL-6 in particular (38), which

contribute to Th17 differentiation (85). This network of ODEs

is based on a previously developed model of IL-6-mediated

immune signaling, includes 3 compartments (liver, GI tract and

circulation), and describes IL-6 binding with its IL-6 receptor (IL-

6R) and gp130. The model was validated based on tocilizumab (an

anti-IL-6R antibody) data and used to benchmark different targets

for IL-6 signaling disruption using circulating levels of CRP, a

well-established marker of inflammation, as the primary

pharmacodynamic measurement.

The most ambitious attempt to quantify and integrate all

pathways and processes described above and beyond can be

attributed to a series of papers by Rogers and colleagues, who

describe a model with 116 reactions and 334 parameters (39, 40).

This model includes multiple cell types associated with innate

(DC, Mj, NK cells, and neutrophils) and adaptive immunity

(Th1, Th2, Th17, and Tregs), more than 10 cytokines, CRP

and fecal calprotectin as dependent variables, and was

parameterized for three types of subjects (healthy, CD, UC), using

a technique proposed by Allen et al. (86) to generate virtual

populations with baseline biomarker levels corresponding to

actual observations. Moreover, the model includes PK models of

anti-TNF-a (infliximab), anti-IL-12p40 (ustekinumab), anti-IL-23

(risankizumab and brazikumab), and anti-IL-6 (PF-04236921)

compounds. In the first part of their work, the authors performed

a sensitivity analysis to identify key mechanisms affecting fecal

calprotectin and CRP; they then applied the model to understand

mechanisms underlying the worsening of CD, in the case of IL-17

inhibition. In the second part, the model was thoroughly validated

against data on multiple existing compounds and was used to

predict responder rates based on biomarker cutoffs as well as the

effect of combined anti-TNF-a and anti-IL-12p40 treatments.

Another example of a comprehensive, yet qualitative model of

IBD is based on a Boolean network, rather than ODEs, created by

Balbas-Martines et al. (41). It consists of 43 nodes spread across

lymph node, blood, lymph circulatory system, and gut lumen,

with MMP being the main marker of tissue damage in the system.

The model was shown to correctly reflect the lack of response in

MMPs under IL-10 overexpression, IL-17 or IFN-g knockout and,
in turn, demonstrates marked improvement in disease condition

mediated by TNF-a suppression or granulocyte and monocyte

apheresis. Subsequently the system was ameliorated to a hybrid

model of ODEs and Boolean processes, to allow for the

characterization of the magnitude and dynamics of IL response,

to predict the effect of recombinant human IL-10 administration

on 14 cytokines involved in CD pathogenesis (42).

Aside from IBD, which holds the central place as the subject of

multiple model-based research, other GI tract-related ADs, such as

celiac disease, have been represented by a single model (43). It is

similar in principle to the model by Wendelsdorf et al. (34) and
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attempts to describe the dynamics of several key immune

components and disease progression elements, including gluten

deamidation, antigen presentation, T-cell activation, and the

formation of auto-antibodies, in the lamina propria. The model

was applied to evaluate potential targets for the treatment of celiac

disease, among which gluten-peptide analogues showed the

strongest effect on antibodies and the villous area, although the

clinical efficacy of DQ2 or DQ8 gene analogues remains, to date,

unknown (87).
3.4 Nervous system and eyes

Various ADs, including RA, SLE, and MS, might have

devastating effects on vision (88–90). However, the eyes

themselves can be the target of an autoimmune condition such as,

for example, EAU, which has been explored via the means of

mathematical modeling by Nicholson et al. (44). Similarly to

many other organ-specific autoimmune disorders, EAU is caused

by an abnormal influx of effector cells into the target organ. A

distinctive feature of EAU, however, is the presence of the blood-

retina barrier. Thus, Nicholson et al. developed a minimalistic

model of 10 ODEs that describes essential processes of antigen

presentation and T-cell activation on both sides of the blood-retina

barrier, with corresponding transitions. This allowed the authors to

evaluate the impact of permeability on disease state and highlight

other factors (i.e., APC production) which may contribute

significantly to abnormal inflammation.

The nervous system, comprised of the CNS and the peripheral

nervous system, regulates the functionality of organs through the

processing of internal and external information conveyed via

electrical impulses along an extensive network of nerve endings.

MS, a prevalent autoimmune neurological disorder, manifests itself

as demyelinating lesions in the CNS (91, 92). From a clinical

perspective, MS displays notable heterogeneity, divided among a

primarily progressive multiple sclerosis (PPMS) type, which is

characterized by a gradual accumulation of clinical disabilities,

and a relapsing-remitting multiple sclerosis (RRMS) type, which

is characterized by disease exacerbations followed by periods of

remission – although often switching to a secondary progressive

multiple sclerosis (SPMS) type in the long-term (93, 94). The

immune pathophysiology of MS involves bidirectional

interactions among peripheral immune cells (T-cells, B-cells,

myeloid cells) and resident CNS cells (microglia, astrocytes). For

the RRMS type, focal inflammatory demyelination caused by

peripheral immune cells infiltrating the CNS is believed to be the

cause of relapses, whereas for the progressive type, diffuse tissue

damage of white and gray matter is predominant (95).

In their model, Moise and Friedman focused on delineating

immune and inflammatory interactions within the focal plaque,

quantifying their impact on plaque growth (45). The authors

proposed a model based on 23 PDEs encompassing the dynamics

of Th, cytotoxic T-cells, Mj, astrocytes, oligodendrocytes,

chemokines, and 8 pro- and anti-inflammatory cytokines.

Additionally, 4 PDEs defined the PK of immunomodulators such
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as IFN-b, glatiramer acetate, natalizumab, and dimethyl fumarate,

which have all been evaluated in the treatment of MS. The authors

used the model to explore the effects of these drugs and their

combinations; the combination of the first three aforementioned

drugs resulted in a decrease in initial plaque volume under specific

dose combinations, emphasizing the potential efficacy of drug

combinations in MS treatment.

Other modeling studies have adopted a more generalized approach

to immune response dynamics (46–48). Vélez de Mendizabal et al.,

using a system of 6 ODEs, postulated that recurrent dynamics in

autoimmunity could arise from failures in cross-regulation

mechanisms between regulatory and effector T-cells (Teff), alongside

stochastic events triggering the immune response (46). Their model

incorporated concepts such as cross-regulation between regulatory and

Teff and tissue damage. By introducing reversible and irreversible tissue

damage, the model aimed at linking autoimmune activity with clinical

relapses in MS patients. Simulations suggested that weakened negative

feedback between effector and Treg enabled the immune system to

generate characteristic RRMS dynamics without additional

environmental triggers.

Another example of a generalized model has been proposed by

Kannan et al. (47). It includes 4 ODEs, reflecting inflammatory and

anti-inflammatory components, demyelination, and neuronal death

in MS. By embedding complex control mechanisms into the

equations, the authors were able to identify two key thresholds –

one in the immune components and another one in the CNS – that

separate distinct dynamical behaviors in the model, classifying

disease subtypes in silico as RRMS or progressive SPMS/PPMS,

based on these thresholds, once exceeded.

Expanding the ways in using mathematical tools to model

detailed biological processes, Gross et al. proposed a probabilistic

model to predict the differentiation and migration of lymphocyte

subsets in the CNS under homeostatic and neuroinflammatory

conditions (48). The 7-equation model aimed at reproducing the

acquired data on the location and differentiation states of

lymphocyte subsets, to provide quantitative assessments of

differentiation and transmigration rates and to predict the

qualitative behavior of immune-modulating therapies – thereby

enabling simulation-based predictions of lymphocyte subset

distributions. Validated based on data from patients with

somatoform disorders, RRMS patients, and patients undergoing

specific treatments, the model demonstrated accuracy in predicting

differentiation stages and distribution of lymphocyte subsets under

both steady-state conditions and neuroinflammatory diseases such

as MS.

Finally, Broome and colleagues attempted to describe MS

pathophysiology from a biochemical perspective, using a complex

model capable of predicting: interactions between reactive oxygen

and nitrogen species; the permeability transition pore; apoptotic

factors; and eventual cell death in oligodendrocytes (49). Immune

components within the model were represented only at a high level

by Mj, T-cells and several cytokines (IFN-g, TNF-a, and IL-1),

while the main focus of the model was on intracellular molecular

processes. The system reflects healthy, diseased, and treated states,
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and allows for the identification of trigger points for disease onset

and the exploration of potential drug therapies.
3.5 Skin

The skin is an organ constantly exposed to external factors such

as injuries and infections that can disrupt the barrier function and

initiate a dysregulated immune response, which may, in turn, cause

chronic inflammation and autoimmunity. Despite the prevalence of

autoimmune skin diseases, only two of them – alopecia areata and

atopic dermatitis – have been studied using mechanistic

mathematical models (50–55). Although the autoimmune nature

of the latter is a matter of debate, the well-known association with

multiple ADs and the presence of autoreactive T-cells and

autoantibodies provide sufficient evidence for including this

atopic dermatitis disorder to this review (96–99).

Atopic dermatitis (also known as eczema) is a chronic disease

affecting the upper level of the skin and characterized by persistent

skin inflammation. The pathogenesis of dermatitis involves

epidermal barriers abnormalities, leading to heterogeneous

immunological dysregulations predominantly in type 2 immunity

(Th2, IL-4, IL-13, IL-31), but also including varying degrees of

upregulation of the Th1 (IFN-g), Th17 (IL-17), and Th22 axes (IL-

22) (100). Tanaka and colleagues published several articles focused on

the interplay between the pathogen load, immune response, and the

degree of skin barrier integrity to describe recurrent dermatitis flares

associated with pathogen levels surpassing certain thresholds (52–55).

The model reproduces 4 types of dynamical phenotypes typically

observed in patients – recovery, chronic damage, oscillations, and bi-

stability –mirroring different stages of dermatitis severity. The model

was applied to evaluate the effects of first-line nonspecific therapies

(topical antibiotics, emollients, corticosteroids) on the transition from

pathologic to healthy state. The model gradually evolved over time,

for example, by introducing multiple subtypes of Th and their effector

ILs (IL-4, IL-13, etc.) (55). Another significant augmentation of the

modified model was the inclusion of clinical efficacy endpoints –

eczema area and severity index (EASI) – which enabled a comparison

of the efficacy of multiple anti-IL drugs.

Alopecia areata is an AD that causes the formation of distinct

hairless patterns on the scalp or other parts of the body. According

to a widely accepted hypothesis, hair loss occurs due to the collapse

of the immune privilege of hair follicles under environmental

factors, with subsequent migration of autoreactive lymphocytes

into the hair bulb (101). A set of modeling studies by Atanaska

Dobreva et al. describes the dynamics of autoreactive CD4+ and

CD8+ T-cells, immune privilege guardians and IFN-g involved in

the development of alopecia, and the hair follicle growth cycles

(50, 51). The developed model succeeds in capturing healthy

and pathological states of a subject, highlighting the key role of

IFN-g and immune privilege guardians in disease progression.

However, the uniqueness of the triggers and localness of the

disease challenges the applicability of this model to other

autoimmune disorders.
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3.6 Endocrine diseases

The endocrine system is a vital regulator of biological processes,

responsible for the development of the nervous system, growth,

reproductive function, metabolism, and more (102). As such,

autoimmune conditions associated with it usually lead to severe

health complications (103).

T1DM is one such disease known from ancient times and

considered fatal until the invention of recombinant insulin in the

early XXth century (104). The autoimmune response in T1DM is

directed primarily towards b-cells in the islets of Langerhans in the

pancreas, thereby depriving the organism of insulin hormone,

which in turn regulates glucose uptake by tissues. Since

recombinant insulin is the primary method of controlling the

disease, the majority of mathematical models for this indication

are focused on short- and long-term glycemic controls (105, 106).

However, two models stand out, in terms of characterizing

autoimmune processes relevant for the disease, and beyond

insulin-glucose cross-talks (56, 57). Both models contain 5 to 6

ODEs of a highly theoretical nature, which capture the quantities of

b-cells, Teff, Tregs, antigen, and other components (either Mj or

IL-2), and they allow for the exploration of the fundamental systems

behavior rather than addressing questions specific to drug

development. Jaberi-Douraki and colleagues highlight the impact

of T-cell avidity on disease outcomes in T1DM, whereas

Magombedze et al. emphasize the crucial role of the balance

between Treg and auto-reactive T-cells in diabetes progression.

HT is another example of a relatively common chronic

autoimmune condition, affecting the thyroid gland through an

infiltration of T- and B-cells (107). Excessively stimulated Th1

cells, Th17 cells, and Tregs play important roles in the

pathogenesis of HT (108). Thus, in their work, Salazar-Viedma

et al. investigated the immune response mediated by Th1 and Th17

on thyrocytes (3 ODEs) (58). Interestingly, the authors also

included gut microbiota into the model (a 4th ODE), thereby

linking autoimmunity with the function of the microbiome.

Results of the modeling suggest that an imbalance in the

intestinal microbiota could lead to an increase in Th17

lymphocyte activity, contributing to the development of HT.
3.7 Lungs

There are two mechanistic models describing autoimmune-

related lung diseases, namely pulmonary sarcoidosis and IPF (59–

61). It should be noted that the etiology and role of autoimmunity in

the development and progression of these diseases are still

unknown. However, genetic predisposition and external triggers

such as infection, inorganic materials, and environmental factors

are likely to lead to the development of an autoimmune response

(109–112). Mj and lymphocytes are key players involved in the

initiation of the immune response in the lung, in both indications:

Mj, serving as scavenger cells, ingesting and degrading the inhaled

antigenic load, initiate a typical Th1 immune response.

Interestingly, both diseases are characterized by a shift from the
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M1 (pro-inflammatory) to the M2 (anti-inflammatory) Mj
phenotype, which is considered responsible for the progression

from inflammation to interstitial fibrosis in IPF and formation of

granulomas in sarcoidosis.

The first model by Hao et al. considers the progression of

sarcoidosis in terms of a granuloma radius represented as a

conglomerate of Mj, Th1, Treg and Th17 cells, which affect each

other through a network of cytokines and chemokines (IL-2, IL-10,

IL-12, IL-13, chemokine ligand 20, IFN-g, TNF-a and TGF-b) (59,
60). The model shows the beneficial effect of infliximab (anti-TNF-

a) and other potential anti-cytokine therapies on the granuloma

radius. In subsequent work, the authors investigated the

progression of fibrosis in IPF by adding features unique to

pulmonary tissue fibrosis, based on their previous model of

kidney fibrosis (27, 61). This second model includes two Mj
phenotypes and takes into account the complex geometry of

lungs through a system of PDEs, to calculate the effective

interactions among model species: Mj , epithelial and

mesenchymal cells, extracellular matrix and molecular pro-

fibrotic mediators (TNF-a, TGF-b, PDGF, TIMP). The authors

explored the efficacy of four therapies (anti-TNF-a, anti-PDGF,
anti-IL13, anti-TGF-b) and showed that only targeting TGF-b
should result in a beneficial effect on pulmonary fibrosis.
3.8 Cardiovascular

The heart muscle, just like any other part of the body, is no

exception in terms of self-stimulated inflammation and tissue

damage. While rare, autoimmune myocarditis can be caused as a

side effect incurred by treatment using immune checkpoint

inhibitors – a large and effective class of anti-cancer therapies

(113, 114). Building up on the historical research of the immune

system, Van der Vegt and colleagues pioneered the modeling of

checkpoint-induced autoimmune reaction, in an effort to provide

an instrument that helps in balancing the benefits and risks of this

type of treatment (62). The core of the developed system consists of

4 ODEs, complemented with the pharmacodynamic effects of PD-1

and CTLA-4 inhibitors as explicit functions. The model was

subjected to stability and sensitivity analyses. Most importantly,

model evaluation results demonstrate that the development of

autoimmune myocarditis under treatment with high doses of

nivolumab or ipilimumab is practically inevitable, depending on

individual patient characteristics reflected in the values of several

key model parameters.
3.9 Generalized models of
autoimmune processes

Mathematical modeling, by implication, is a transformation of

empirical knowledge into a system of cause-consequence

relationships using the universal language of mathematics,

theoretically applicable to any object or phenomenon. As such,

not all models are necessarily associated with specific diseases but
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rather focus on the general behavior of immune response

components potentially leading to autoimmune disorders.

Although mostly qualitative, inferences derived from these

models significantly broaden our understanding of interactions

within the system of interest and provide a companion tool for

further experimental research.

A notable early example of such a mathematical system is the

ICMODEL developed by Martha Head et al. (63). This model

represents a theoretical interpretation of a mechanism for IC

formation, opsonization, and clearance. It consists of 3 sub-

modules: (1) production of antibodies and their interaction with

antigen (i.e., IC formation); (2) opsonization and clearance of IC;

(3) tissue damage and antigen release. The model was explored for

consistency with the known behavior of the immune system,

evaluated for stability, and then applied to identify processes

leading to a substantial rise or oscillations in pathogenic IC

concentrations (e.g., impaired antigen efflux, Fc-g-mediated

phagocytosis, complement synthesis). Such a model may be

beneficial in understanding the cyclical course of various

autoimmune disorders.

Later, Arazi and Neumann developed a more parsimonious

model focused on the same spectrum of processes as the

ICMODEL; it consists of 3 ODEs reflecting the quantities of

autoreactive B-cells, autoantigen, and IC (64). Thorough steady-

state, hysteresis, and parameter sensitivity analyses, as well as an

evaluation of the different functional relationships was performed,

to demonstrate that a positive feedback loop between IC and tissue

damage would not be sufficient to drive the system to a pathological

state - thereby confirming that the clearance rates of ICs and self-

antigens are one of the key factors triggering a clinically impactful

autoimmune response.

Another example, similar in principle to the work by Arazi and

Neumann, is a minimalistic ODE model by Iwami and colleagues

that includes 3 dependent variables: population size of target cells,

damaged cells, and immune cells (65). The authors proposed several

functional relationships (linear and non-linear) of target cell growth

and immune response followed by a stability analysis, to describe

mathematically different states of immune tolerance/dormancy and

repeated flare-ups.

Further modeling work can be found in a generalized model by

Khailaie et al., in a series of studies dedicated to the investigation of

T-cell activation (66). However, this paper is centered around

disturbances in the delicate balance between Tcon and Tregs

leading to autoimmunity. The authors methodically tested

different models, starting from the simplest structure with 2

ODEs describing the dynamics of activated T-cells and IL-2 and

ending with pathways of Tregs and Tcon renewal rates, activation,

proliferation, and reciprocal influences. They derived an antigen-

stimulation threshold (i.e., the proliferation rate of activated T-cells

depending on the avidity to an antigen) that defines three scenarios

of immune response: a complete lack of a response; a first peak

followed by complete clearance of the antigen; or the failure of such,

which would result in chronic persistence of the antigen, and is

primarily defined by the renewal rate of naïve T-cells and

resting Tregs.
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The balance of T-cells, although Th1 and Th2 instead of Tcon

and Tregs, is the subject of another model-based analysis,

performed by Louzoun et al. (67). This work, published in 2001,

thoroughly explores mathematical system that includes 5 cell types

(Th1, Th2, Mj, naïve T-cells, and pooled Teff and Treg) and 3 types
of cytokines, aggregated by associated cells (Th1, Th2, or Mj), to
characterize the transition from healthy condition (designated as

Th2 steady-state) to autoimmunity (designated as Th1 steady-

state). Although the rationale behind the model is based on the

preclinical observations (i.e., insulin-dependent diabetes and

experimental autoimmune encephalomyelitis mouse models),

proposed model is positioned as qualitative investigation of Th1-

mediated autoimmune diseases.

Another aspect of autoimmune disease onset, namely immune

response to self-antigen caused by cross-reactivity to viral antigen,

was investigated by Hara and Iwasa using a model in 4 ODEs, which

reflects the kinetics of Th-cells (reactive to self-antigen or viral

infection), viral antigen, and memory T-cells (68). As in the case of

previous qualitative model, characterization of general patterns in

the dynamics of the system through sensitivity analysis, including

the evaluation of autoimmune response relative to the different

modes of cross-immunity, rather than qualitative predictions of the

treatment-related effects was the focus of this research.

Continuing the thread of qualitative models, the study by

Machado Ramos et al. considers three cell populations associated

with autoimmune response – self-APCs, self-reactive T-cells, and

immunosuppressive cells (69). The model was developed using a

combination of integro-differential equations and ODEs to track the

total number of cells within each population and their respective

functional states and tested for robustness. Sensitivity analysis of the

model highlights the critical roles of proliferation of

immunosuppressive cell, destruction of self-APC and self-reactive

T-cell, and the tolerance of self-reactive T-cells to self-antigens in

regulating autoimmune responses effectively.

The last piece of modeling work evaluated in this section is

devoted to the mathematical description of two generic, inter-

dependent immune cell populations, mutually regulating one

another via cytokine production (70). The interactions between

the two cytokine production profiles reflect the point of a synergistic

balance, where both cell populations reach equilibrium. An

exhaustive screening of possible parameter values revealed that an

ADmay occur when the alteration of the feedback between immune

cells results in hyper-induced homeostasis or a loss of stability in the

system, leading to oscillations or trigger-based inflammatory

disease phenotypes.
4 Discussion

Mathematical modeling in drug development is an essential tool

necessary to transform heterogeneous experimental data from

numerous sources into a system of quantitative knowledge, with

an ultimate goal of facilitating the delivery of innovative therapies to

patients. The indispensability of this tool is especially noticeable in

therapeutic areas such as ADs, with non-trivial diversity in
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pathogenesis, etiology, manifestations, and the associated plethora

of unanswered questions related to drug development. Among

modeling methods, empirical PK/PD models first introduced in

the 1970s and focused on the direct assessment of the dose-

concentration-effect relationship can be considered as the most

established and frequently used models (115, 116). In ADs, this type

of research has been pioneered by Brooks et al., with a model-based

investigation of the clinical effects of concomitant use of

indomethacin and furosemide in RA patients (117). Since then,

the number of publications that could be attributed towards PK/PD

modeling in ADs grew almost exponentially (Figure 1A). However,

the utility of empirical models can be limited by their simplicity,

whereas multiple drug R&D questions, such as target selection,

animal-to-human translation, and others, require an in-depth

analysis of the underlying biological mechanisms (16, 17).

This is where mechanistic models may come into play. These

models represent a slice of knowledge in selected disease areas, and,

therefore, first understanding the scope of a given endeavor in this

field is important, to focus the efforts of subsequent research –

which is the main purpose of this review. In our systematic search

and curation, we identified 38 mechanistic models of ADs across 47

publications. While it is challenging to define the fine line between

mechanistic and non-mechanistic models, in this paper, we

attributed models to the former category if they contained a

description of autoimmune processes at any level of

generalization, regardless of the mathematical method used or the

number of equations featured. It is worth noting that the majority of

the identified models (>70%) are expressed as ODEs, similarly to

most systems pharmacology models, with a minimum of 3

equations being featured in their structure (Figure 1C) (118). In

addition to ODE models, two groups of models featuring PDEs

were found, with a distinct focus on tissue remodeling: a set of

publications by Wenrui Hao and colleagues (27, 28, 60, 61),

examining kidney and lung fibrosis, and models of plaque growth

in MS and cartilage degradation in RA, by Moise and Friedman (31,

45). A Boolean model was developed by Ruiz-Cerdá and colleagues,

to describe the antigen presentation process in lupus (24), and

another Boolean model with subsequent ODE extensions, by

Balbas-Martinez et al., was identified for IBD (41, 42). Finally, a

unique probabilistic (Markov jump processes) model by Catharina

Gross and colleagues was developed, to capture the differentiation

and migration of lymphocyte subsets to CNS (48).

The number of publications related to mechanistic modeling is

overall markedly smaller as compared to PK/PD modeling studies,

with a slower and shallower increase over time (Figure 1A), which

could be explained by the time and efforts, as well as the high

expertise in immunology required, to build such models.

Interestingly, while the search contained more than 180 terms for

different ADs (see Supplementary Materials), only models for 13

disease-specific were identified by the search, with models for 2

systemic conditions (SLE and RA) and 11 for organ-specific

indications (Figure 1B). Hence, the mechanisms for more than

150 other ADs, such as psoriasis, systemic sclerosis, involvement of

the urinary system and Sjogren’s syndrome, are not covered by the

currently available mathematical modeling literature, and thus
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present a high opportunity for further research. However, the

biological entities embedded in the identified models are all

linked to the immune response and are thus expected to overlap

in these other ADs. Indeed, the analysis of variables and their

interactions among currently available models revealed several

common clusters (Figure 2).

Approximately 1/3 of the models included antigens, in a broad

sense (e.g., pathogen load, commensal bacteria, damaged tissue), as

a dependent variable, which is not surprising considering ADs are

characterized by responses to self-antigen or may be triggered via

external microorganisms. A similar frequency of occurrence in the

models was observed for Tregs, important gatekeepers of the

immune system that inhibit the activation and expansion of Th,

cytotoxic T-cells and B-cells. Their role has been extensively

described in SLE, RA and MS (119). Overall, most of the models

explored T-cell-mediated immune response with an emphasis on

Th, with a different degree of generalization (i.e., either by pooling

different subtypes of cells into generic variables or by considering

them individually). In contrast, autoreactive cytotoxic T

lymphocytes characterized by cytolytic activities against target

cells are under-represented in the models and are often lumped

together into effector T-cell variables. Other types of lymphocytes

are modeled only in isolated cases, even in ADs classified as B-cell-

mediated or antibody-driven pathologies, such as SLE (120).

In addition to featuring immune cells, the models cover a wide

range of pro- and anti-inflammatory ILs as a critical part of cross-

regulation, proliferation, and polarization of Th subtypes. For

example, 6 out of 36 models incorporate the connection between

IL-2 and Tregs, as well as IFN-g and Th1. Furthermore, cytokines

with well-established roles in AD progression (e.g., TNF-a, IL-6, IL-
23, etc.) and respective therapeutic interventions are also frequently

included in the models. Despite this, none of them contain type I

IFN (e.g., IFN-a or IFN-b), although its substantial role has been

highlighted in several ADs, including SLE, where multiple approved

or developing therapies are designed to block the type I IFN-

inducible pathway of inflammation.

Lastly, tissue damage or fibrosis is also frequently modeled, as a

final outcome of AD progression. In Figure 2, tissue scarring is

associated with a cluster of Mj, GM-CSF, and a lumped term

“fibrosis” that includes MMPs, elements of the extracellular matrix,

fibroblasts, and several growth factors (e.g., TGF-b, FGF, PDGF).
Tissue damage is either modeled as a generic variable or through a

number of organ-specific cells, e.g., thyrocytes in HT. It is worth

noting that the main mechanisms of tissue damage, consisting of

cytotoxic activity of autoreactive CD8+ T-cells and IC-related

activation of complement system, are missing in these models,

with few exceptions that link IC to cell death.

While mathematical modeling is an essential tool to support

decision-making, the practical value of a particular model for drug

development is defined by the adherence to good modeling

practices and is inherently limited by the underlying assumptions

(121). The latter is directly tied to the data used for model

development and calibration. About 40% of the identified models

were built around clinical data only, whereas practically 29% of

models additionally involved animal data, when information in
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human was lacking or scarce (Figure 1D). Mixing such different

types of data may be a sensitive subject to perform model inference,

and it calls for further verification of the similarities in immune

mechanisms across species, as a distinct direction for future

analyses (122, 123). Among good modeling practices, several key

components could be named, e.g., extensive model calibration and

evaluation, including identifiability analyses, external validation,

sensitivity analyses, and more (124). Several models, e.g., the works

of Gao et al. (29), Nakada and Mager (32), Rogers et al. (39, 40), and

Miyano et al. (55) feature a broad array of these technical model-

based analyses. Furthermore, these models attempt to incorporate

subject inter-individual variability through the means of generating

realistic virtual populations; they also consider realistic PK models

of the compounds, driving the effects, which greatly expands the

applicability of such models to real-world scenarios. These models

may be considered as an exception, since the remaining models

discussed here do not rely on parameter identifiability, extensive

model diagnostics or advanced simulations. In fact, nearly a quarter

of all models considered in this review operate as a system without a

direct link to the observed time series of laboratory measurements

(Figure 1D) and do not make use of external validation techniques

(Table 1). This may be explained by differences in the relevant

questions that motivate the development of such models. For

example, modeling studies classified as describing general

autoimmune reactions as well as several others are built to

explore mathematical systems with specific behaviors, through an

analysis of stability and phase portraits (e.g., to describe periodical

nature of flares) (64, 66). Likewise, many models are primarily

developed to perform a sensitivity analysis, with parameter values

assumed or fine-tuned manually (65, 70). As a result, the potential

impact of such models can be limited to mechanistic hypothesis

generation and target validation. Because of that reason, our search

was restricted to the PubMed database, which specifically indexes

biomedical and life sciences journals. As such, it should be

mentioned that the total number of published model-based

analyses of autoimmune processes exceeds those discussed in

detail in this review e.g., (125–131). However, the focus of these

studies lies primarily in the analysis of specific patterns of

mathematical systems, their phase trajectories, steady-states, etc.,

rarely informed by the large quantities of clinical data and thereby,

while providing important insights into theoretical behavior of the

immune system, have limited practical applicability in model-

informed drug development.

In summary, the applicability of current mechanistic models of

ADs in drug development could be limited by several factors.

Firstly, the lack of evaluation of model performance against the

observed clinical data, including the assessment of uncertainty in

model parameters and the validation against independent data,

results in qualitative predictions of system behavior rather than

quantitative ones. Secondly, most existing models do not

incorporate PK submodules to describe drug exposure in target

compartments over time. Furthermore, some components of the

immune system are under-represented or simply are lacking in the

available models. For instance, current treatment options for SLE
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are focused primarily in three areas: disrupting type I IFN-mediated

inflammation, targeting B-cell response, and inhibiting intracellular

signaling; none of which are among the modeled immune

components (15). Finally, to provide insight into an actual clinical

benefit, the models should strive to incorporate clinical endpoints.

Currently available models are built upon inferences around

surrogate biomarkers or generic variables (e.g., tissue damage or

fibrosis), with a single exception by Miyano et al. (55), where the

EASI endpoint was described as a function of skin barrier integrity

and infiltrated pathogens.

This analysis follows the requirements of a robust systematic

review, with documented sources and search queries, and, to our

knowledge, is a unique venture to comprehensively identify and

categorize existing mechanistic models of ADs. It should not be

viewed as an objective effort to qualify the formidable effort that

each of the analyzed models represents, as the value of modeling is

always relative to its aim. Rather, it is an attempt to draw a

landscape of the ever-evolving quantitative knowledge on ADs in

the form of mathematical models to define the most desirable paths

of moving forward in relation to drug development. In this context,

the amount of robust QSP models, with extensive model calibration

and evaluation and built on clinical data, while maintaining a

delicate balance between the available data and model complexity,

is significantly lacking in the considered disease domain. This gap is

further broadened by the emergence of new therapeutic modalities

(e.g., chimeric antigen receptor T-cell), not yet covered by these

existing models (132). Taken together, these results highlight the

necessity and aspiration to enhance proactiveness and efforts in

mechanistic quantitative analyses in the intricate therapeutic area of

ADs, to facilitate the development of novel therapeutics.
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