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Identification and validation of
immune-related gene signature
models for predicting prognosis
and immunotherapy response in
hepatocellular carcinoma
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Wendi Xu1, Jueliang Lu1, Chunmeng Wang2,3* and Xundi Xu1,4*

1Department of General Surgery, The Second Xiangya Hospital of Central South University,
Changsha, China, 2Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer
Center, Shanghai, China, 3Department of Oncology, Shanghai Medical College, Fudan University,
Shanghai, China, 4Department of General Surgery, South China Hospital of Shenzhen University,
Shenzhen, China
Background: This study seeks to enhance the accuracy and efficiency of clinical

diagnosis and therapeutic decision-making in hepatocellular carcinoma (HCC),

as well as to optimize the assessment of immunotherapy response.

Methods: A training set comprising 305 HCC cases was obtained from The

Cancer Genome Atlas (TCGA) database. Initially, a screening process was

undertaken to identify prognostically significant immune-related genes (IRGs),

followed by the application of logistic regression and least absolute shrinkage

and selection operator (LASSO) regression methods for gene modeling.

Subsequently, the final model was constructed using support vector

machines-recursive feature elimination (SVM-RFE). Following model

evaluation, quantitative polymerase chain reaction (qPCR) was employed to

examine the gene expression profiles in tissue samples obtained from our

cohort of 54 patients with HCC and an independent cohort of 231 patients,

and the prognostic relevance of the model was substantiated. Thereafter, the

association of the model with the immune responses was examined, and its

predictive value regarding the efficacy of immunotherapy was corroborated

through studies involving three cohorts undergoing immunotherapy. Finally,

the study uncovered the potential mechanism by which the model contributed

to prognosticating HCC outcomes and assessing immunotherapy effectiveness.

Results: SVM-RFE modeling was applied to develop an OS prognostic model

based on six IRGs (CMTM7, HDAC1, HRAS, PSMD1, RAET1E, and TXLNA). The

performance of the model was assessed by AUC values on the ROC curves,

resulting in values of 0.83, 0.73, and 0.75 for the predictions at 1, 3, and 5 years,

respectively. A marked difference in OS outcomes was noted when comparing

the high-risk group (HRG) with the low-risk group (LRG), as demonstrated in both

the initial training set (P <0.0001) and the subsequent validation cohort

(P <0.0001). Additionally, the SVMRS in the HRG demonstrated a notable

positive correlation with key immune checkpoint genes (CTLA-4, PD-1, and

PD-L1). The results obtained from the examination of three cohorts undergoing
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immunotherapy affirmed the potential capability of this model in predicting

immunotherapy effectiveness.

Conclusions: The HCC predictive model developed in this study, comprising six

genes, demonstrates a robust capability to predict the OS of patients with HCC

and immunotherapy effectiveness in tumor management.
KEYWORDS

hepatocellular carcinoma, machine learning, predictive model, immunotherapy
efficacy, immune checkpoint inhibitors
Introduction

Hepatocellular carcinoma (HCC), a predominant subtype of

primary liver cancer, constitutes approximately 75–85% of all such

cases and ranks as one of the most prevalent malignancies affecting

the digestive system on a global scale (1). Data from CLOBOCAN

2020 reveal that the global annual incidence of new liver cancer

cases per year has increased to 905,677 (1). Correspondingly, it is

ranked the sixth most common form of malignancy. With a death

toll of 830,1.8 million, it is also ranked third in terms of mortality

(1). In addition, a persistent increase is projected in the number of

new liver cancer cases, potentially establishing it as the foremost

cause of cancer-related deaths in many countries (2). However,

patients with early-stage HCC can improve their chances of survival

by undergoing radical treatment. Nonetheless, it is important to

note that even with this aggressive approach, the 5-year recurrence

rate remains as high as 70% (3). Hence, facilitating the identification

of patients at risk of unfavorable clinical outcomes is essential for

the prompt detection of recurrence and metastasis in HCC. Such

progress is key for timely treatment and mitigation of the disease

burden on patients with HCC.

At present, immune checkpoint inhibitors (ICIs) are widely

used to treat patients with advanced HCC. In this context, two

extensive clinical trials have demonstrated that combining ICIs and

VEGFR-targeted drugs is superior to sorafenib in treating patients

with advanced HCC (4, 5). Among these studies, the IMbrave150

trial highlighted that administering a combination therapy of

atezolizumab (PD-L1 inhibitor) and bevacizumab outperformed

sorafenib in augmenting overall survival (OS) and progression-free

survival (PFS) outcomes in individuals with advanced, unresectable

HCC when utilized as the first-line treatment (4). The ORIENT-32

trial, which assessed the effectiveness of combining Sintilimab (PD-

1 inhibitor) with IBI305 (bevacizumab biosimilar) in treating

unresectable HBV-associated HCC in a Chinese patient cohort,

revealed notable improvements in both OS and PFS compared to

the sole administration of sorafenib as a first-line treatment (5).

Thus, the pivotal challenge lies in pinpointing biomarkers capable

of accurately predicting the response of patients with HCC to ICIs.
02
Such identification is essential to protect patients from unbeneficial

therapies and to diminish both healthcare and financial burdens (6).

Our study initially screened immune-related genes (IRGs)

associated with patient prognosis, followed by the application of

various machine learning techniques for modeling. Once the

optimal model was selected, its clinical application value was

validated using our cohort and multiple data sets from various

sources. Thus, the primary objective was to establish a model that

can be utilized for prognostic evaluation to precisely diagnose

HCC, while also predicting adverse clinical outcomes and offering

timely intervention. Furthermore, the model demonstrated a

notable potential in predicting the efficacy of immunotherapy,

with an objective to categorize the immunotherapeutic responses

in patients with HCC and to aid in the optimization of

clinical pharmacotherapy.
Materials and methods

Data acquisition and processing

The TCGAbiolinks package (version: 2.28.4) (7) in R (version:

4.2.2) software was utilized to retrieve liver hepatocellular

carcinoma (LIHC) patient data, including clinical information

and gene expression spectrum matrix, from The Cancer Genome

Atlas Program (TCGA) database (https://portal.gdc.cancer.gov/) on

November 15, 2022. The training set consisted of 305 samples with

HCC, PFS, and OS data for a period of at least 30 days. These

samples had complete clinical stage information, prognostic follow-

up information, and expression profile matrix. The transcript

abundance data measured in transcripts per kilobase (TPM) and

the gene symbol table associated with the ENSID were acquired

separately. When there were multiple matches between the gene

symbol and ENSID, the median value of expression data was

selected. Additionally, genes with no expression (TPM = 0) in

more than half of patients with LIHC were excluded.

In addition, the DNA methylation- and RNA-based stemness

score (RNAss), was obtained from the UCSC Xena database
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(https://xenabrowser.net/datapages) (8) on December 11, 2022.

This data was used for the subsequent analysis of tumor stemness

correlation in the training sets.

The validation datasets of this study consisted of 54 patients

who were diagnosed and treated for stage I-IV HCC between

January 1, 2015, and December 31, 2016. These patients were

identified based on strict admission criteria using pathology. The

primary inclusion criteria were as follows: 1) initial diagnosis made

at our hospital; 2) absence of any other malignancies; 3) availability

of complete follow-up data. OS was delineated as the duration from

the initial identification of HCC in a patient to the point of either

their death or the conclusion of the follow-up period. The follow-up

concluded on December 31, 2021, incorporating outpatient

consultations and telephone-based follow-ups. The present

research received approval from the Clinical Research Ethics

Committee of the Second Xiangya Hospital, Central South

University (Approval No. LYF2022070). Prior to hospitalization,

all patients had provided their explicit consent by signing informed

consent forms. Another independent ICGC−LIRI−JP HCC cohort

data were extracted from 231 patients with HCC and their

corresponding clinical information in the International Cancer

Genome Consortium (ICGC) database (https://dcc.icgc.org/).

Additional three validation datasets containing gene expression

and clinical information were obtained from TIGER (http://

tiger.canceromics.org) (9) on March 20, 2023. These datasets,

which are independent of the main dataset, include three cohorts:

Melanoma-phs000452 (10), non-small cell lung cancer (NSCLC)-

GSE135222 (11), and renal cell carcinoma (RCC)-Braun_2020 (12).

Specifically, the Melanoma-phs000452 cohort involved 153 patients

receiving an anti-PD-1 drug, the NSCLC-GSE135222 cohort had 27

patients undergoing treatment with an anti-PD-1 drug, and the RCC-

Braun_2020 cohort consisted of 311 patients who received treatment

with a combination of anti-PD-1 and Everolimus drugs. The IRGs

were singled out from the ImmPort database (accessible at https://

www.immport.org/shared/genelists) (13) on December 20, 2022. A

total of 1793 IRG were identified after eliminating duplicate genes.
Univariate survival analysis

To pinpoint the genes implicated in the OS and DFS among

patients in the training set, a univariate survival analysis was carried

out using the Survival package (version 3.3–1) in the R 4.2.2

software environment. Next, the two gene sets mentioned above

were compared with IRG. After identifying the overlapping genes,

the expression matrix of these genes was extracted from the

verification set for further modeling. The survival curve was

generated utilizing the ggsurvplot function from the survminer

package (version: 0.4.9). The optimal threshold for gene

classification was established using the surv_cutpoint function,

which facilitated classifying genes into high- and low-expression

groups based on this threshold. Subsequently, the hazard ratio

(HR), along with its 95% confidence interval (CI) and P-values

for the genes incorporated in the model, were graphically depicted

using the forestploter package (version 1.0.0).
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Logistic and least absolute shrinkage and
selection operator regression analysis

In medical research, logistic regression stands out as a crucial

statistical method for analyzing the intricate relationship between

diseases and their pathogenic factors, providing valuable insights

into the underlying mechanisms of disease development (14).

LASSO regression, on the other hand, offers the advantage of

flexibility in handling both continuous and discrete dependent

variables with minimal data requirements, making it widely

applicable, while also facilitating variable selection and reducing

model complexity (15).

Following the processing of the gene expression profile and

patient survival data, Logistic and LASSO regression models were

built using the glmnet package (version: 4.1–6) (16, 17). Among

them, logistic regression was employed to model the survival status

of patients, using it as the dependent variable. The regression

analysis involved the use of glm and step functions, with the

direction set as “both”. Finally, variables with a significance level

of P <0.05 were selected for the construction of the logistic

regression model. In the LASSO regression analysis, the family

was set to “binomial”, alpha was set to “1”, nfolds was set to “10”,

and lambda.1se was selected based on the coef function the

acquisition of the regression coefficients of each gene.

Subsequently, the LASSO regression model was then constructed

based on this selection. The risk scores of the two aforementioned

models were obtained using the predict function and designated as

the logistic regression risk score (LRRS) and the LASSO-associated

risk score (LARS), respectively.
Support vector machine-recursive feature
elimination analysis and modeling

SVM-RFE, as an embedded method widely utilized in pattern

recognition and machine learning, demonstrates its practical value

by effectively employing structural risk minimization to enhance

learning performance, utilizing a sequential backward selection

algorithm to iteratively refine feature sets, and ultimately enabling

the construction of prognostic models and analysis of

immunotumor microenvironment correlations through targeted

gene screening (18, 19). The significant variables identified in the

logistic regression analysis were combined with the variables used in

constructing the LASSO regression model. The resulting Venn

diagram was generated using the Vennerable package (version

3.0). After integrating the above-mentioned variables with the

patient survival information, the caret package (version: 6.0–94)

(20) was used for the Recursive Feature Elimination (RFE);

herein, the function was set to “caretFuncs”, the method was set

to “cv”, and the number was set to “10”. After filtering out

the optimal factors for modeling, SVM modeling was conducted

using the e1071 package (version 1.7–14), the type was specified as

“C-classification”, and the kernel was set to “radial”. The decision

values of this model were utilized as risk scores and designated as

support vector machine risk score (SVMRS).
frontiersin.org

https://xenabrowser.net/datapages
https://dcc.icgc.org/
http://tiger.canceromics.org
http://tiger.canceromics.org
https://www.immport.org/shared/genelists
https://www.immport.org/shared/genelists
https://doi.org/10.3389/fimmu.2024.1371829
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1371829
Model evaluation

Cutoff values for risk scores across the three models were

established through the surv_cutpoint function in the survminer

package. Based on these values, patients were categorized into high-

risk group (HRG) and low-risk group (LRG). The risk scores and

groupings from the three models were then combined with the

patient data for further evaluation of the models.

To assess the differentiation of the aforementioned models, we

utilize the cindex function from the pec package (version:

2023.04.12) (21) for both evaluation and visualization purposes.

Subsequently, decision curve analysis (DCA) was conducted

utilizing the rmda package (version 1.6) to ascertain the clinical

net benefit derived from the three models. The predictive

performance of each mode was examined by computing the area

under the curve (AUC) values at three different time intervals: 1

year, 3 years, and 5 years. For these calculations, the timeROC

package (version: 0.4) (22) was utilized, and the results were visually

represented through the receiver operating characteristic (ROC)

curves. In addition, the confusion matrices were examined and

graphed using the yardstick package (version 1.2.0). To assess the

model’s ability to accurately recall patients who experienced a fatal

clinical outcome, we utilized modEvA (version: 3.9.3) (23) to

generate precision-recall curves (PRC) and calculate their AUC

values. Finally, to evaluate the level of calibration of the models, the

calibration curves and nomogram diagrams were drawn using the

calibrate functions and nomogram functions of the rms package

(version: 6.5.0). The evaluation and comparison of all the

aforementioned differentiat ions and calibrations were

consolidated to establish the ultimate prognostic model suitable

for the study cohort. The risk factor correlation diagrams, ROC

curves, and survival curves were generated based on the risk score,

patient survival, survival time, and gene expression of each model.
Correlation analysis between SVMRS or
IRGs and clinical pathological features of
TCGA-LIHC

From the clinical information of TCGA-LIHC patients, a

representative set of features, including stage, comorbidities, and

Eastern cooperative oncology group (ECOG) performance scores,

were selected. We then analyzed whether these clinical pathological

features exhibited significant differences and correlations between

patient groups based on SVMRS values and the TPM expression

levels of the six IRGs utilized in the construction of models.
Real-time quantitative polymerase chain
reaction and validation of the prognostic
value of models

For RT-qPCR analysis, total RNA from 54 liver tissue samples

(from patients in our cohort) embedded in paraffin was isolated

utilizing the BIOG RNA FFPE Tissue Kit in accordance with the
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guidelines specified by Baidai (Changzhou, China). The synthesis of

cDNA was accomplished utilizing the Evo M-MLV RT Mix kit

complemented with gDNA Clean (Accurate Biotechnology, Hunan,

China). To ascertain the SVMRS, the detection of the expression of

the genes to be tested was conducted through qPCR utilizing the

SYBR® Green Pro Taq HS qPCR KIT (Accurate Biotechnology,

Hunan, China). The gene expression levels were standardized using

the 18S rRNA as a reference. The primers and their corresponding

sequences are documented in Supplementary Table S1. We utilized

the SVMRS (Support Vector Machine Regression Score) of each

patient, along with their prognosis and survival information, as well

as gene relative expressions in our cohort. Subsequently, the risk

factor correlation diagrams, ROC curves, and survival curves were

generated to validate the prognostic significance of the model.

The aforementioned analytical approaches were also utilized in

the independent ICGC−LIRI−JP HCC cohort to validate the

prognostic predictive value of the model.
Tumor stemness and immune cell
infiltration analysis

The data from the TCGA database exhibited a positive

association between the stemness score of HCC and unfavorable

clinical outcomes in patients. This finding implies a notable

correlation of the tumor stemness score with the OS and PFS in

the context of TCGA-LIHC (24). Consequently, we examined the

disparities in six tumor stemness scores between the HRG and LRG.

This comparison was done as per the tumor stemness scores derived

from 305 samples and the corresponding risk groups of patients in

the training set. Moreover, a prominent association was identified

between the stemness scores and the tumor immune

microenvironment (TIME) (24). Consequently, the distribution of

22 different types of immune cells in the training set was analyzed

using the CIBERSORT package (version: 0.1.0) (25). Subsequently,

we examined the variations in immune cell types between groups

based on the HRG and LRG of patients.
Analysis and validation of immunotherapy
efficacy prediction

The genes examined in this study were IRG, which may possess

specific prognostic significance for immunotherapy effectiveness.

To substantiate this hypothesis, we initially examined the variations

in expression levels of four frequently utilized immunotherapy drug

targets: CTLA-4, PDCD1 (PD-1), CD274 (PD-L1), and PDCD1LG2

(PD-L2), between HRG and LRG. Subsequently, the expression

correlations between SVMRS and the aforementioned four genes

were examined based on the classification into HRG and LRG. This

analysis aimed to make an initial assessment of the potential

immune prediction value.

Subsequently, we employed three distinct validation cohorts

that had undergone immunotherapy. These cohorts were then

classified into HRG and LRG using SVM-RFE modeling following
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the same methodology. The study then focused on examining the

differences in SVMRS between the HRG and LRG, with an

emphasis on evaluating the immunotherapy responses in the

validation cohorts. The predictive performance of the model for

the immunotherapy responses was further verified by conducting

survival analyses in conjunction with the prognostic information

of patients.
Functional enrichment and
pathway analysis

To delve into the mechanistic underpinnings of differentiating

the HRG from the LRG, we initially analyzed the differentially

expressed genes (DEG) using the limma package (version: 3.56.2)

(26). This investigation was carried out with a fold change threshold

of “2” and a false discovery rate (FDR) of “0.05”. The list of DEGs

was used to conduct Gene Ontology (GO) enrichment analysis

through the application of the clusterProfiler package (version:

4.8.3) (27, 28). The data were graphically depicted using the

GOplot package (version 1.0.2) (29). Subsequently, the gene list

and fold change value were utilized to conduct gene-set enrichment

analysis based on the Kyoto Encyclopedia of Genes and Genomes

(GSEA-KEGG). A threshold of P <0.05 was set to ascertain the

statistical significance of the results. Visualization of the GSEA

results was achieved through the dotplotGsea function in the

GseaVis package (version: 0.0.9) and the gseaNb function from

the same package. Additionally, the cnetplot function from the

enrichplot package (version: 1.20.3) was used for visualization.

The identified pathways of interest were retrieved from the

PathCards database (https://pathcards.genecards.org/) (30). The

expression matrix of these genes was extracted and used for

expression correlation analysis with SVMRS. Each gene was

analyzed individually. The ComplexHeatmap software (version

2.16.0) (31, 32) was used for visualization.
Statistical analysis

The data in this study underwent statistical analysis using

GraphPad Prism software (version 9.0.0, San Diego, California,

USA) for both statistical analysis and image rendering. The

software package of the method utilized default parameters for

the parameters that were not specified. Additionally, the ggplot2

package (version: 3.3.5) (33) was employed for data visualization,

which was not explicitly mentioned. Spearman correlation

analysis was used for correlation analysis. The scatterplots were

generated using Sangerbox (http://www.sangerbox.com/tool)

(34). Additionally, the study utilized the Mann-Whitney rank

sum test for the analysis of continuous variables of skewed

distribution between two groups. In contrast, when data

conformed to a normal distribution with consistent variance,

the Student’s t-test was utilized for executing a comparative

analysis between the two groups. For the comparative analysis

of multiple sets of data that satisfy the assumptions of
Frontiers in Immunology 05
homogeneity of variance and normal distribution, Ordinary

one-way ANOVA should be employed, followed by Holm-

Šı ́dák’s multiple comparisons test for pairwise comparisons

within the groups. However, if these assumptions are not met,

the Kruskal-Wallis test should be utilized for the comparison

among multiple groups, accompanied by Dunn’s multiple

comparisons test for within-group comparisons. For discrete

variables, the Chi-square test was used for comparison between

groups. A significance level of P <0.05 was used to determine

statistical significance (*P <0.05, **P <0.01, ***P <0.001,

****P <0.0001).
Results

The SVM-RFE model was developed using
6 prognosis related genes

The analytical flow chart for this study is shown in Figure 1. As

observed, the univariate survival analysis revealed that there were

6608 genes influencing PFS and 9772 genes influencing OS in the

training set. Furthermore, 81 genes were obtained after the

intersection with IRG, which were used for subsequent modeling

(Supplementary Figure S1). Additionally, logistic regression

analysis identified eight genes, while LASSO regression analysis

screened seven genes. Among these, two genes were found to be

common to both methods. Therefore, a total of 13 genes were

selected for SVM-RFE modeling (Figure 2A). Following the RFE

analysis, a total of six genes were selected to be included in the

construction of the final model (Figure 2B). The HR, 95% CI, and P-

values for these genes in the univariate analysis are shown in

Figure 2C, demonstrating that all six genes were identified as risk

factors. Moreover, these six genes were identified as prognostic

markers and were found to have an impact on the OS of patients in

TCGA-LIHC. The specific genes are as follows: CMTM7

(P <0.0001, HR = 1.05, Figure 2D), HDAC1 (P <0.0001, HR =

1.01, Figure 2E), HRAS (P <0.0001, HR = 1.01, Figure 2F), PSMD1

(P <0.0001, HR = 1.07, Figure 2G), PAET1E (P = 0.00017, HR =

6.97, Figure 2H), TXLNA (P <0.0001, HR = 1.03, Figure 2I).
SVM-RFE model was found to be the best
model in this study

As per the aforementioned outcomes, the SVM-RFE model

exhibits the advantage of having a limited number of constituent

genes. Thus, to further verify the optimal nature of this model in our

study, we conducted additional evaluations focusing on

differentiation and clinical applicability. Upon analyzing the

fluctuation of the C-statistic in relation to the OS time, we

determined that the SVM-RFE model exhibited the highest level

of effectiveness (Figure 3A). Similarly, the DCA outcomes indicated

that all three models were capable of enhancing the net benefit, with

the SVM-RFE model exhibiting the greatest increase in net benefit

(Figure 3B). Additionally, the time-dependent ROC curve analysis
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revealed that the SVM-RFE model achieved AUC values of 0.83,

0.73, and 0.75 for the 1-, 3-, and 5-year OS predictions, respectively

(Figure 3C). In addition, the SVM-RFE model was found to

outperform both the logistic regression model (Supplementary

Figure S2A) and the LASSO regression model (Supplementary

Figure S2B). Furthermore, the accuracy of the SVM-RFE model

(75.08%) was higher (Figure 3D) than that of the logistic regression

model (70.16%, Supplementary Figure S2C), as well as the LASSO

regression model (69.51%, Supplementary Figure S2D). Meanwhile,

we constructed the Precision-Recall Curve (PRC) to evaluate the

efficacy of these three models in accurately identifying dead

samples. As observed, the use of the logistic, LASSO, and SVM-

RFE models improved the probability of detecting dead cells from

an initial 33.77% (103/105) to 63.2% (Supplementary Figure S2E),

52.3% (Supplementary Figure S2F), and 68.9% (Figure 3E),

respectively, with the SVM-RFE model having the highest

precision-recall rate among the three models. Thus, the SVM-RFE

model proved to be the most effective model in this study. In

addition, the risk score of the model also indicated a high goodness

of fit (Figures 3F, G).
Frontiers in Immunology 06
The model has potential value in
prognostic prediction

By calculating the Survival-associated Variable Model Risk

Score (SVMRS) for each patient and integrating the survival

status and gene expression values, risk factor association diagrams

were generated to assess the prognostic prediction of the risk score

for the 305 patients. Figure 4A demonstrates the arrangement of

patients based on their risk scores, ranging from low to high. The

optimal cut-off value for SVMRS (-0.9214) was employed to classify

patients into HRG and LRG. The mortality rate in the HRG was

significantly higher than that in the LRG, and all the genes with

elevated expression levels were exclusively found in the HRG,

indicating that these genes were all associated with increased risk.

Additionally, the ROC curve demonstrated an AUC value of 0.76

for this model’s ability to predict patient mortality in the training set

(Figure 4B). Furthermore, a statistically noteworthy contrast in the

OS rate was found between the HRG and LRG (Figure 4C). This

result indicates that individuals with an elevated SVMRS risk score

were more prone to unfavorable outcomes.
FIGURE 1

Flow chart of this study.
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Similarly, the prognostic performance of this model was verified

using our validation cohort. As indicated by the risk factor diagram

(Figure 4D), all six genes were confirmed to be risk factors. In addition,

the ROC curve of our validation cohort indicated that the model

accurately predicted patient mortality, as evidenced by an AUC value of

0.77 (Figure 4E). The results of survival analysis also demonstrated a

significantly poorer clinical prognosis in the HRG compared to the

LRG (Figure 4F). In the independent ICGC−LIRI−JP HCC cohort, we

also observed consistent results with those mentioned previously.

Specifically, the risk factor diagram (Supplementary Figure S3A),

ROC curves (Supplementary Figures S3B, C), survival curve

(Supplementary Figure S3D), and confusion matrix (Supplementary

Figure S3E) all indicated that the model effectively stratified patients

into risk groups and accurately predicted their OS. Thus, based on the

analysis and validation conducted, it can be concluded that this model

holds promise in predicting OS in patients with HCC.
SVMRS and the six IRGs were correlated
with selected clinicopathologic features of
HCC patients

Further clinical correlation analysis of SVMRS and the

expression profiles of six IRGs utilized in model construction
Frontiers in Immunology 07
revealed that HRAS (Supplementary Figure S4A), PSMD1

(Supplementary Figure S4B), and SVMRS (Supplementary Figure

S4C) were associated with T stage, with their values generally

increasing alongside T stage progression. Additionally, PSMD1

(Supplementary Figure S4D) was found to be related to N stage,

exhibiting significantly higher expression in the N1 group. HRAS

(Supplementary Figure S4E), PMSD1 (Supplementary Figure S4F),

TXLNA (Supplementary Figure S4G), and SVMRS (Supplementary

Figure S4H) were associated with stage, where higher values

corresponded to later stages. These findings further validate the

prognostic predictive value of our constructed model.

Moreover, from the perspective of patients’ comorbidities,

RAET1E (Supplementary Figure S5A) and SVMRS (Supplementary

Figure S5B) were associated with comorbidities. Specifically, TXLNA

was linked to hepatitis B (Supplementary Figure S5C), SVMRS to

hepatitis C (Supplementary Figure S5D), and RAET1E to non-

alcoholic fatty liver disease (Supplementary Figure S5E). Regarding

ECOG performance scores, the expression levels of HDAC1

(Supplementary Figure S5F), PSMD1 (Supplementary Figure S5G),

and CMTM7 (Supplementary Figure S5H) correlated with them,

where higher scores corresponded to increased gene expression.

Similarly, SVMRS demonstrated a correlation with ECOG scores,

as shown in Supplementary Figure S5I. This suggested that higher

SVMRS values are associated with comorbidities and increased
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C

FIGURE 2

Construction of the SVM-RFE model. (A) Venn diagram of the genes included in the three models during the initial screening; (B) Line chart for the
change in accuracy with the increase in variables during the analysis; (C) Univariate survival analysis forest plot, based on the gene symbol, HR, 95%
CI, and P value; D–I. Survival curves plotted as per the optimal cut-off value for each gene group; the genes were: (D) CMTM7, (E) HDAC1, (F) HRAS,
(G) PSMD1, (H) RAET1E, and (I) TXLNA, respectively.
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ECOG scores, indicating a poorer prognosis for patients with HCC.

The clinical correlation analysis of risk grouping exhibited high

consistency with SVMRS, except for hepatitis C, where no

significant statistical differences were observed. However, the

differences in T stage, overall Stage, comorbidities, and ECOG

scores aligned with SVMRS (Supplementary Table S2), suggesting

the feasibility of the risk grouping approach employed in this study.
Differences in RNAss and immune cell
infiltration between HRG and LRG

The investigation into tumor stemness unveiled a noteworthy

difference in the RNAss and the epigenetically regulated RNAss

(EREG.EXPss) between the HRG and LRG. Accordingly, the values
Frontiers in Immunology 08
of RNAss (P = 0.0035) and EREG.EXPss (P = 0.0217) were

prominently augmented in the HRG compared to the LRG

(Figure 5A). Given the correlation between this value and the

TIME, we proceeded to perform a detailed analysis of the

differences in the proportion of 22 different types of immune cell

subtypes between the two groups. The distribution of immune cells

in 305 samples in the training set was depicted in Figure 5B,

while the comparison of proportions between the HRG and

LRG was illustrated in Figure 5C. The analysis comparing

HRG and LRG revealed that the LRG exhibited a higher

proportion of T cell CD4 memory resting (P = 0.0113),

monocytes (P = 0.0003), and mast cells resting (P = 0.0055).

Moreover, the HRG exhibited a higher proportion of T cells CD4

memory activated (P = 0.0415), macrophages M0 (P <0.0001), and

neutrophils (P = 0.0264) (Figure 5D).
A B

D
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C

FIGURE 3

Model evaluation. In the training set: (A) The C-statistic (vertical coordinate) was plotted with the patient’s OS (horizontal coordinate) changes; (B) DCA
of the three models; the horizontal coordinate represents the risk threshold, and the vertical coordinate represents the net benefit. (C) The ROC curves
were drawn based on the risk score of the SVM-RFE model and the 1-, 3- and 5-year OS time recorded. (D) The confusion matrix was plotted according
to the classification of HRG and LRG of patients by the model, combined with the actual death status of patients; (E) The PRC was drawn according to
the accuracy and recall rate of the model; (F) The calibration curve of the SVM-RFE model was plotted at 400 days (the time point comprised the best
calibration degree). The horizontal coordinate denotes the predicted survival situation, and the vertical coordinate denotes the actual survival situation.
Every 100 people were divided into groups and resampled 1000 times. (G) Nomogram developed according to the risk score, the total points, and its
corresponding 1-, 3-, and 5-year OS probability.
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FIGURE 4

Prognostic value of the model. (A) Risk factor association diagram of the model in the training set includes a histogram of the high and low
distribution of the patient’s risk score, the scatter plot of the patient’s survival situation distribution, and the heat map of the change of gene
expression value with the associated risk scores. The horizontal coordinate represents the number of patients ranked by risk score from low to high;
the ordinates represent risk score, OS, and model-related genes. (B) ROC curve drawn as per the risk score calculated by the model and the survival
state of the patient in the training set; (C) Survival curve was drawn as per the optimal value of the risk score (SVMRS = -0.9214) in the training set.
(D) Risk factor correlation diagram of the model in our cohort; (E) ROC curve based on the model’s risk score and the survival status of patients in
our cohort. (F) Survival curve drawn by the HRG and LRG as per the optimal value of the risk score (SVMRS = -0.9981) in our cohort.
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The model has potential value in predicting
immunotherapy response

The outcomes of the analytical investigations revealed

significant differences in immune checkpoint gene (ICG)
Frontiers in Immunology 10
expression between HRG and LRG. Specifically, the expression

levels of four widely utilized immunotherapy drug targets, viz.,

CTLA-4 (P <0.0001), PD-1 (P <0.0001), PD-L1 (P = 0.0124), and

PD-L2 (P = 0.0182), were notably higher in the HRG compared to

the LRG (Figure 6A). In addition, the correlation analysis indicates
A B

D

C

FIGURE 5

Immune microenvironment analysis of the model. In the training set: (A) RNA-based stemness scores were analyzed between HRG and LRG and
represented using a boxplot; (B) Stacking histogram representing the proportion of 22 types of immune cells; (C) Heat map representing the
proportion of 22 kinds of immune cells between the HRG and LRG; (D) Boxplot for the difference of 22 types of immune cells between the HRG and
LRG; *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001.
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that CTLA-4 (P = 0.0018, R = 0.28, Figure 6B), PD-1 (P = 0.03,

R = 0.20, Figure 6C), and PD-L1 (P = 0.03, R = 0.21, Figure 6D)

exhibited a significant positive correlation with SVMRS in the HRG.

However, no correlation was observed in the LRG. Thus, while the

statistical significance of the correlation between PD-L2 and

SVMRS in HRG was not established, a noticeable trend could be

observed (P = 0.07, R = 0.17, Figure 6E). Hence, we hypothesized

that the HRG may exhibit greater susceptibility to immunotherapy.

To verify the aforementioned hypothesis, three independent

cohorts from different platforms were utilized as immunotherapy

validation datasets for further analysis. All patients in the three

cohorts received treatment with anti-PD-1 medications, and both

the effectiveness of the drugs and the prognosis of the patients were

recorded. The analysis of differences revealed that the SVMRS in the

group of individuals who responded was significantly greater than

that in the group of individuals who did not respond in the

Melanoma-phs000452 cohort (P = 0.0004). Similar results were

observed in the NSCLC-GSE135222 cohort (P = 0.0112) and the

RCC-Braun_2020 cohort (P = 0.0236) (Figure 7A). Furthermore,

the survival analysis demonstrated statistically significant disparities

between the HRG and LRG in all three cohorts: Melanoma

phs000452 (P <0.0001, Figure 7B), NSCLC-GSE135222

(P = 0.0001, Figure 7C), and RCC-Braun_2020 (P <0.0001,

Figure 7D). Previous analyses have revealed that the HRG, which

had a worse prognosis, experienced significantly longer survival

after undergoing immunotherapy. This survival advantage was
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notably superior to that of the LRG, indicating that the HRG

could derive substantial benefits from immunotherapy. Thus, it

was verified that the model possesses the capability to predict

immunotherapy effectiveness.
Signaling pathways related to
tumorigenesis and immune progression
were activated in the HRG

The differential expression analysis of DEGs between HRG and

LRG identified a total of 341 genes. Among these DEGs, 89 exhibited

upregulated expression and 252 exhibited downregulated expression in

the HRG (as shown in Figure 8A; Supplementary Table S3). Further,

the GO enrichment analysis of these 341 DEGs pointed to their

potential roles in the regulation of the top 10 biological processes,

cell components, and molecular functions (Figures 8B–D). The details,

as well as the corresponding GO enrichment results, are shown in

Supplementary Table S4. As observed, these genes are found to be

primarily associated with tumor metabolism. Further analysis of the

GSEA-KEGG pathway revealed the top 10 pathways that were either

suppressed or activated. These pathways are presented in Figure 8E and

are ranked based on the normalized enrichment score (NES).

Additionally, it is evident that the inhibited pathways exhibited an

increase in metabolic activity, whereas the stimulated pathways were

associated with the development of tumors and immune processes.
A B

D EC

FIGURE 6

Correlation analysis between risk score and the expression of ICGs. In the training set: (A) The differences of 4 commonly used ICGs between HRG and
LRG were analyzed and shown using a boxplot; B–E. Scatter plots for the correlation analysis between SVMRS and (B) CTLA-4, (C) PD-1, (D) PD-L1, and
(E) PD-L2 in the HRG and LRG. *P <0.05, ****P <0.0001.
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Nine pathways that were activated in the HRG were selected

from all the relevant pathways (as shown in Supplementary Table

S5). The pathways associated with tumorigenesis comprised the cell

cycle, DNA replication, and the Toll-like receptor (TLR) signaling

pathway (Figure 8F). In addition, the tumor progression pathways

identified were microRNAs in cancer, transcriptional dysregulation

in cancer, and pathways in cancer (Figure 8G). Moreover, the

immune-related pathways identified were antigen processing and

presentation, primary immunodeficiency, and IL-17 signaling

pathway (Figure 8H). Subsequently, visualization of the

interconnection network among the aforementioned 9 exemplary

pathways was performed, and a strong correlation between all 9

pathways was observed (Figure 9A). Finally, the study focused on

examining the expression profiles of key genes involved in the TLR

signaling pathway, which are associated with tumorigenesis and

immune processes. Notably, a correlation analysis was conducted to

examine the relationship between the SVMRS and the expression of

the six genes constituting the model, as depicted in Figure 9B. All

the key genes in the TLR signaling pathway exhibited statistically

significant correlations with SVMRS or the six genes utilized in the

modeling. This indicates that these key genes in the model are likely

to have an immunoregulatory and cancer-promoting function by

participating in the regulation of this pathway. This could also be

one of the intrinsic mechanisms contributing to the unfavorable
Frontiers in Immunology 12
prognosis and heightened vulnerability to immunotherapy in the

HRG of patients.
Discussion

In recent years, numerous studies have focused on using

sequencing data to identify markers that can impact the prognosis

of patients with HCC and develop corresponding models, aiming to

enhance the accuracy of patient prognosis prediction and provide

guidance for clinical practice (35–37). For instance, Wang et al. (35)

developed four gene signature models associated with disulfidptosis

to predict OS outcomes in the context of HCC. Herein, the calculated

AUC values of ROC for OS at 1, 3, and 5 years in the training set were

0.766, 0.736, and 0.699, respectively, demonstrating noteworthy

potential in predicting the effectiveness of anti-tumor therapy.

Furthermore, Chen et al. (36) constructed a model to predict the

OS of patients with HCC using five genes related to cuproptosis. In

the training set, the calculated AUC values of ROC for the model

were recorded at 0.775, 0.685, and 0.670 for 1, 3, and 5 years,

respectively. In addition, Shi et al. (37) have successfully developed

a ten epithelial-mesenchymal transition (EMT)-related genes

signature prognostic model for HCC, validating its accuracy in

stratifying patients into high and low-risk groups using datasets
A B

DC

FIGURE 7

Predictive value of the model for immunotherapy response. (A) Boxplot of the difference of SVMRS between the response and no response group
using the three immunotherapy validation datasets. (B–D). Survival curve as per the patient’s risk groups and the survival status of patients in three
immunotherapy validation cohorts, (B) Melanoma-phs000452, (C) NSCLC-GSE135222, and (D) RCC-Braun_2020; *P <0.05, ***P <0.001.
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from TCGA and International Cancer Genome Consortium (ICGC),

and its risk score tightly correlates with tumor stage, grade, and

immune cell infiltration, exhibiting significant prognostic value with

ROC AUC values of 0.767, 0.694, and 0.680 at 1-, 2-, and 3- year OS

in the training set, respectively. In our study, we developed a

prognostic model based on machine learning consisting of six IRGs

for predicting the survival of patients with HCC. Accordingly, the

calculated AUC values of ROC for 1-, 3-, and 5-year OS were 0.83,

0.73, and 0.75, respectively, demonstrating the significance of

predicting OS in patients with HCC.
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All of the six key genes used to build the model were IRG, of

which CMTM7, belonging to the Chemokine-like factor (CKLF)-

like MARVEL transmembrane domain-containing proteins

(CMTM) family, plays a crucial function in the immune system

and is abundantly expressed in immune tissues (38). CMTM7

functions as a tumor suppressor in various types of cancer within

the field of cancer research. For example, knockdown of CMTM7

was observed to impair the process of autophagy and accelerate the

development of tumors in lung cancer (39). Moreover, CMTM7 was

also found to serve as a potential biomarker for identifying
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FIGURE 8

Functional enrichment analysis of key differential genes in the model. In the training set: (A) The volcano plot is based on risk groups for differential analysis,
where the horizontal ordinate denotes the log2 Fold Change and the longitudinal coordinates denote the -log10 P value. Use |log2fold change|=1 to draw
the vertical dotted line and P = 0.05 to draw the horizontal dotted line. (B–D) Ranked by P value, chord diagrams of the top 10 results of (B) biological
process, (C) cellular component, (D) molecular function plotted from GO enrichment analysis of DEG. (E) Ordered by NES, the top 10 suppressed or
activated pathways were shown according to the GSEA-KEGG pathway analysis results. (F–H). Pathways associated with (F) tumorigenesis, (G) tumor
progression, and (H) immune progression that were activated in the HRG, as selected from the GSEA-KEGG pathway analysis results.
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immunological traits and predicting immunotherapy effectiveness

in breast cancer (40). On the other hand, HDAC1 is critically

involved in regulating gene expression by modulating the

acetylation of both histone and non-histone proteins (41).

Correspondingly, its overexpression has been frequently

associated with the progression, metastatic potential, and

prognostic outcomes of multiple cancer types, including colon,

gastric, prostate, and breast cancers. In addition, HDAC1 is

linked to unfavorable prognosis and resistance to chemotherapy

in cases of pancreatic cancer (42). Moreover, HDAC inhibitors

exhibit potent anticancer effects in hematological malignancies and

hold promise as potential therapeutic agents for treating colorectal

cancer (43) and triple-negative breast cancer (44). HRAS also

comprises a prevalent oncogene, which is positioned upstream of

the RAS/MAPK signaling pathway and plays a pivotal role in

transmitting signals from the extracellular environment to the

nucleus, leading to cell growth, division, proliferation, and
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differentiation (45). HRAS mutations have the ability to trigger

YAP1-AXL signaling, leading to metastasis in head and neck cancer

(46). Moreover, HRAS overexpression in gastroenteropancreatic

neuroendocrine tumors is strongly associated with a notable

response to lenvatinib (47). Additionally, PSMD1 is classified as

an innate immune gene, and its up-regulation is strongly associated

with the progression of different types of cancers. Correspondingly,

it has been used as a prognostic marker for conditions like

oropharyngeal cancer (48), chronic myeloid leukemia (49), and

HCC (50), among others. Furthermore, in HCC, PSMD1 is found to

be significantly correlated with changes in the TIME as well as

immune cells (50). In addition, RAET1E, belonging to the RAET1

gene family, is classified as a major histocompatibility complex class

I–related molecule (51). Earlier studies have shown that elevated

levels of RAET1E expression may be linked to poor prognosis in

both cervical cancer (52) and ovarian cancer (53). Conversely,

TXLNA, also referred to as IL-14, is identified as a high-
A

B

FIGURE 9

Pathways regulated by the key genes of the model. (A) The interaction network constructed by the nine representative pathways; each gray dot
represents a gene; different pathways were represented using different colors; (B) SVMRS and the six genes used in modeling correlated well with
the expression of key genes involved in the TLR signaling pathway. The lower left half triangle in each column represents the correlation coefficient.
Blue represents a negative correlation and red represents a positive correlation; the darker the color, the stronger the correlation. The upper right
half triangle represents the results of Spearman correlation analysis; *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001.
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molecular-weight B cell growth factor, and its ectopic expression

has often been linked to dismal prognostic outcomes in glioma (54).

Earlier research indicates an association between TXLNA

expression and the proliferative activity and low differentiation of

HCC cells (55). This suggests a poor prognosis, thus leading to its

use as a marker for assessing the malignancy of HCC (55). To

summarize, these six IRGs that constitute our model are all related

to the formation and progression of tumors to a certain degree.

Thus, additional studies are necessary to explore these connections

in more detail.

Throughout the progression of cancer, tumor cells undergo a

gradual loss of their original differentiation phenotype and acquire

certain stem-like characteristics. This transformation enables tumor

cells to have stronger abilities for proliferation and migration, thus

facilitating the progression of cancer (24, 56, 57). In this context,

Malta et al. (24) discovered a correlation between the RNAss and

the prognosis of TCGA-LIHC. Accordingly, a higher stemness score

indicated a worse prognosis in terms of OS and PFS in patients with

TCGA-LIHC. Our study yielded similar findings, indicating that as

the patient prognosis worsened, both the SVMRS and the RNAss

increased. Furthermore, they also highlighted a notable association

between the RNAss and TIME (24). Therefore, we conducted an

examination of the disparity in the ratio of immune cell infiltration

between the HRG and LRG. Our findings indicate notable

distinctions between the groups in five distinct immune cell types,

namely CD4 memory T cells, monocytes, macrophages M0, mast

cells, and neutrophils. Among them, CD4 memory T cells have been

reported to have the ability to recognize and attack tumor cells,

thereby aiding in the regulation of tumor growth and metastatic

potential (58). The findings of our study show that the HRG had a

greater percentage of activated T cell CD4 memory. This suggests

that the HRG may be more susceptible to immunotherapy, which

was confirmed during subsequent analysis. Monocytes exhibit dual

roles in tumor immunity. On the one hand, monocytes have the

ability to influence the TIME through different mechanisms, induce

immune tolerance and angiogenesis, and increase the proliferation

of tumor cells; on the other hand, monocytes can also produce

antitumor effectors and activate antigen-presenting cells (59, 60).

Moreover, monocytes also have the ability to differentiate into

macrophages; these M0 macrophages, in their initial state, are

also referred to as naive macrophages (61). Exosomes released by

lung tumor cells have been documented to expedite the macrophage

transformation of the M0 phenotype into the M2 phenotype,

thereby promoting carcinogenic activities (62). Earlier studies

have shown that patients with HCC with a high level of

infiltration of macrophage M0 cells tend to have a negative

prognosis (63). Furthermore, genes associated with macrophage

M0 cells may offer insights into potential clinical treatment

approaches for patients with HCC (63). The results of our study

also revealed that the HRG, characterized by a poor prognosis,

exhibited elevated levels of macrophage M0 infiltration. In addition,

mast cells can facilitate the onset and progression of HCC by

increasing the population of immunosuppressive cells, resulting in

a poor prognosis (64). In our study, we found that the HRG had a

lower proportion of mast cells in a resting state. Additionally,

although not statistically significant, a higher proportion of mast
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cells in the HRG were in an activated state, indicating that patients

in the HRG may have a poorer outcome. Additionally, the

involvement of tumor-infiltrating neutrophils has been identified

as a key factor in the malignant phenotypes of HCC. On the one

hand, tumor-infiltrating neutrophils express a protein called PD1

ligand PDL1, which hinders the function of CD4+ and CD8+T cells

by binding to PD1, and this interaction promotes the evasion of the

immune system by the tumor (65–67). On the other hand,

neutrophils release substances called CCL2 and CCL17, which

attract immunosuppressive macrophages and Treg cells (65–67).

Furthermore, the presence of both peritumoral and intratumoral

neutrophils in patients with HCC has been linked to a negative

prognosis. This observation implies that neutrophils may offer

promising avenues for targeted therapeutic strategies (67). In our

study, the HRG, which had a worse prognosis, demonstrated a

greater proportion of neutrophils, aligning with the previous

findings. Thus, the findings of our study are corroborated by

numerous prior studies, indicating the rationality of the HRG and

LRG employed in our study.

At present, the use of immunotherapy for HCC is in its initial

stage, and there is a lack of definitive biomarkers to predict its

effectiveness. However, the implementation of immunotherapy has

shown promising advancements in the treatment outlook for

advanced HCC (68–70). Hence, identifying biomarkers capable of

precisely predicting immunotherapy effectiveness is expected to

emerge as a prominent avenue in the treatment of HCC. Indicators,

such as immune cell infiltration, PD-1/PD-L1, and tumor

mutational burden/microsatellite instability in the TIME, are

considered to hold considerable potential in predicting

therapeutic efficacy (68–70). Our study revealed a notable

increase in the PD-1/PD-L1 expression in the HRG and

highlighted a positive correlation with the SVMRS. The analysis

of immune cell infiltration results also indicates that the HRG may

exhibit greater responsiveness to immunotherapy. Thus, we

confirmed this conjecture through the analysis of patients in the

three cohorts undergoing immunotherapy. Consequently, the

model employed in this study was found to exhibit promising

potential in predicting immunotherapy effectiveness. Further

functional enrichment analysis revealed that the HRG exhibited

activation of pathways associated with tumorigenesis and immune

processes. This activation may contribute to the improved efficacy

of immunotherapy, suggesting an internal mechanism. Among

them, TLR is a pattern recognition receptor found in many

different cells, which plays a crucial role in the innate immune

response. Correspondingly, TLRs on tumor cells can enhance the

stemness, proliferation, and metastasis of tumor cells, and resist

cytotoxic lymphocyte attack (71). In HCC, the signal transduction

pathway of TLRs is frequently associated with the progression (72).

TLR3 and TLR4, among these receptors, hold potential as candidate

prognostic indicators for treating HCC (72). Moreover, the TLR4

signaling pathway activation has been noted to foster the growth,

mobility, and invasive capabilities of HCC cells, hinder

programmed cell death, and accelerate resistance to tumor drugs

(73). This suggests that targeting the TLR4 pathway could be a

promising approach for immunotherapy in HCC. Moreover, TLR

serves as a crucial link connecting the innate and acquired immune
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systems, playing a significant role in the body’s immune response

(74). In the context of immunotherapy, the TLR signaling pathway

participates in the regulation of PD-1/PD-L1 and PD-L2 expression

(75). Furthermore, TLR9 agonists have also undergone extensive

research for their potential use in tumor treatment, either as

standalone therapies or in combination with other agents (76). In

this context, the potential clinical application prospects of targeting

TLR alone or in combination with other drugs have been

demonstrated (77, 78). In our study, both the SVMRS and the 6

key genes of the model were significantly correlated with the

majority of the key genes in the TLR signaling pathway.

Additionally, pathway analysis revealed that the pathway was

activated in the HRG. Thus, the activation of the TLR signaling

pathway may contribute to a negative prognosis and enhance

immunotherapy effectiveness in individuals at high risk.

Consequently, targeting this pathway may serve as a promising

therapeutic approach for this specific patient population.

Our study presents a novel approach for predicting OS and

immunotherapy effectiveness for HCC using six IRG. However, there

are still certain constraints that need to be acknowledged. First, the

study relies on information obtained from a publicly available dataset.

While we did utilize our own cohort to validate the findings,

additional experimental evidence is required to definitively confirm

the proposed hypothesis. However, our study revealed, via functional

enrichment analysis, that the six IRGs play a role in regulating various

pathways associated with tumor formation and progression. This

finding is likely to provide valuable insights for future research and

facilitate further investigation into the underlying molecular

mechanisms. Secondly, the presence of diverse detection platforms

and training methods in the datasets leads to variations in sequencing

backgrounds and normalization techniques. Consequently, it

becomes challenging to determine a universally applicable cut-off

value for SVMRS across all datasets. Hence, it is necessary to initially

acquire the threshold value of SVMRS through small sample

detection prior to its application, and subsequently refine the

threshold value through extensive clinical prospective studies. In

order to determine immunotherapy effectiveness, it is necessary to

conduct extensive prospective clinical trials to validate the use of high

SVMRS as a predictive factor. Thirdly, it should be noted that the

cohort of 54 patients under study did not undergo immunotherapy,

thereby rendering the prediction analysis of immunotherapy

response unfeasible. Meanwhile, the three cohorts used to validate

immunotherapy effectiveness were all composed of patients with

cancers other than HCC. Thus, further validation is required to

determine if the predictive value of our model for immunotherapy

efficacy in HCC cohorts is consistent.
Conclusions

To conclude, the current study successfully resulted in the

development of a prediction model for HCC using bioinformatics

analysis and machine learning. This model, based on a 6-IRG

signature, has the potential to accurately predict immunotherapy

response. The risk score and risk groups of our model exhibited
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substantial variations in tumor stemness, tumor immune cell

infiltration levels, ICG expression, and immunotherapy

effectiveness. The key genes in our model likely participate in the

regulation of various pathways associated with tumorigenesis and

immune processes. Thus, our study introduces a novel approach for

predicting the prognosis of HCC and evaluating immunotherapy

effectiveness, providing promising prospects for clinical application.
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