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Identifying and assessing a
prognostic model based on
disulfidptosis-related genes:
implications for immune
microenvironment and tumor
biology in lung adenocarcinoma
Jin Wang, Kaifan Liu, Jiawen Li, Hailong Zhang, Xian Gong,
Xiangrong Song, Meidan Wei, Yaoyu Hu and Jianxiang Li*

School of Public Health, Suzhou Medical College of Soochow University, Jiangsu, Suzhou, China
Introduction: Lung cancer, with the highest global mortality rate among cancers,

presents a grim prognosis, often diagnosed at an advanced stage in nearly 70% of

cases. Recent research has unveiled a novel mechanism of cell death termed

disulfidptosis, which is facilitated by glucose scarcity and the protein SLC7A11.

Methods: Utilizing the least absolute shrinkage and selection operator (LASSO)

regression analysis combined with Cox regression analysis, we constructed a

prognostic model focusing on disulfidptosis-related genes. Nomograms,

correlation analyses, and enrichment analyses were employed to assess the

significance of this model. Among the genes incorporated into the model,

CHRNA5 was selected for further investigation regarding its role in LUAD cells.

Biological functions of CHRNA5 were assessed using EdU, transwell, and CCK-

8 assays.

Results: The efficacy of the model was validated through internal testing and an

external validation set, with further evaluation of its robustness and clinical

applicability using a nomogram. Subsequent correlation analyses revealed

associations between the risk score and infiltration of various cancer types, as

well as oncogene expression. Enrichment analysis also identified associations

between the risk score and pivotal biological processes and KEGG pathways. Our

findings underscore the significant impact of CHRNA5 on LUAD cell proliferation,

migration, and disulfidptosis.

Conclusion: This study successfully developed and validated a robust prognostic

model centered on disulfidptosis-related genes, providing a foundation for

predicting prognosis in LUAD patients.
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1 Introduction

Lung cancer remains the leading cause of cancer-related death

worldwide, and its mortality accounts for approximately 18% of

all types of cancer (1). Non–small cell lung cancer (NSCLC) is the

most common lung cancer subtype, and it comprises two major

histological types: lung squamous cell carcinoma (LUSC) and lung

adenocarcinoma (LUAD). In addition to conventional therapies

such as surgery, chemotherapy and radiotherapy, targeted therapy

and immunotherapy for lung cancer have also developed rapidly in

recent years. However, these therapies can only benefit some

patients and have many limitations, such as side effects and high

costs (2, 3). Nearly 70% of patients with NSCLC are initially

diagnosed at a locally advanced stage and suffer from a poor

prognosis (4). The 5-year survival rate is less than 3% for patients

with advanced NSCLC (5). Therefore, exploring new diagnostic and

prognostic markers is an important way to improve the early

diagnosis and prognosis of lung cancer.

In the past few years, an increasing number of forms of cell

death have been discovered, providing more possibilities for

humans to combat various diseases (6). Activating specific forms

of death through agonist treatment can provide new strategies for

cancer treatment. Recent research has revealed a novel form of cell

death, disulfidptosis, which is a form of cell death induced by

glucose deficiency and SLC7A11 (7, 8). Specifically, disulfidptosis

was triggered when cells with high SLC7A11 protein expression

were subjected to glucose starvation. Treatment with glucose

transporter (GLUT) inhibitors can induce disulfidptosis in cancer

cells with high SLC7A11 expression without significant toxicity to

normal tissues, thus effectively inhibiting tumor growth (7). This

new form of death opens new doors for the development of cancer

treatment strategies. Although the basic concept of disulfidptosis

has been proposed, its detailed mechanisms remain unclear,

especially its role across different cell types and under disease
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conditions. Currently, GLUT inhibitors are the only known

inducers of disulfidptosis, highlighting the limited understanding

of their mechanisms and therapeutic targets (9).

In this study, disulfidptosis-related genes (DRGs) identified

from CRISPR–Cas9 screenings were obtained from a previous

study (8), and they were used to establish a prognostic model

based on the LUAD dataset in the TCGA database and another

LUAD dataset in the GEO database using the least absolute contact

and selection operator (LASSO) and Cox regression analysis

(Figure 1). The model-derived risk factors were further analyzed

for associations with immune cell infiltration, tumor suppressor

gene expression, tumor-related biological functions and drug

sensitivity. Moreover, the key genes in the model were further

validated by in vitro assays.
2 Methods

2.1 Data collection

The LUAD data of 572 patients, including 59 normal tissues

adjacent to cancer tissues, 513 tumor tissues and corresponding

clinical information, were retrieved from The Cancer Genome Map

(TCGA) database. The expression profile and clinical results are

open and accessible. To validate the prognostic model based on the

TCGA LUAD cohort, another LUAD dataset (GSE13213) was

retrieved from the Gene Expression Omnibus (GEO) database as

an external validation dataset. The GSE13213 (10) dataset contains

gene expression data and prognosis information for 117 primary

lung adenocarcinoma samples.

The disulfidptosis-related genes (DRGs) were extracted

via CRISPR–Cas9 screening from a previous study (8). Genes with

|normZ values| > 2 and P values< 0.05, including 399 suppressors and

409 synergists, were further screened to construct a prognostic model.
FIGURE 1

Workflow diagram of this study. DRGs: disulfidptosis-related genes. LASSO, least absolute contact and selection operator. AUC, area under the
curve; TCGA, cancer genome map; LUAD, lung adenocarcinoma.
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2.2 Prognostic model construction
and validation

The chi-square test was used to analyze the differences between

the training set, the internal test set and the total dataset in terms of

sex, age, tumor stage, depth of invasion (T), lymph node metastasis

(N), distal metastasis (M) status and smoking history. The

univariate Cox model was used to study the relationship between

continuous expression levels of DRGs and OS. The risk ratio (HR)

and P value from the univariate Cox regression analysis were used

to identify candidate survival-related DRGs. DRGs with an HR > 1

were considered risky DRGs, and those with an HR< 1 were defined

as protective DRGs. DRGs that met the criterion of a P value<0.05

were identified as survival-related DRGs and further included in

LASSO and multivariate Cox regression analyses to construct a

prognostic model. The risk score for each LUAD patient was

calculated based on the expression of DRGs (Expi) and Cox

coefficients (coefi) Risk score =  on
i=1Expi �  coefi. All patients in

each dataset were divided into high- or low-risk groups according to

the median value. K−M plots were generated to evaluate patient

survival in each dataset between the high- and low-risk groups.

Moreover, multivariate Cox regression analysis was performed

to estimate whether the risk score was independent of

clinicopathological features. To investigate the performance of the

prognostic model in predicting LUAD patient outcomes, the area

under the curve (AUC) of the ROC curve (AUC) was calculated. In

addition, the expression of each MRG in the model and its

correlation with clinicopathological features were also analyzed.

All analyses were performed with R software (version 4.3.1) and

the corresponding fundamental package. The “care” package was used

to randomly divide the patients into two datasets at a ratio of 6:4

according to their survival status, which were used as training sets and

internal test sets, respectively. The “glmnet” package was used for

LASSO regression model analysis. In addition, the “survival” and

“survminer” packages were used to perform univariate and

multivariate Cox analyses and to generate Kaplan−Meier plots. The

“TimeROC” package was used to generate the time-dependent receiver

operating characteristic (ROC) curve, and the “survivalROC” package

was used to calculate the area under the curve (AUC). Nomogram plots

were generated with the “rms” package.
2.3 Enrichment analysis

Based on the correlation analysis between the risk score and all

mRNAs, gene set enrichment analysis (GSEA) was further

performed by using the “ClusterProfiler” package of R software

(version 4.3.1).

In addition, the differentially expressed genes (DEGs) between

the low and high groups were identified based on the R package

“limma”with the thresholds of log(fold change) >1 and P value< 0.05.

The DEGs were further input into the DAVID online tool (https://

david.ncifcrf.gov/) for pathway and biological process enrichment.
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2.4 Correlation analysis

To further explore the biological role and clinical significance of

the DRG prognostic model, correlation analysis was performed

between the risk score and the expression of oncogenes, tumor

mutation burden (TMB), immune regulatory gene expression,

immune cell infiltration and tumor immune dysfunction and

exclusion (TIDE) score. Correlation analysis was performed with

the Spearman method based on the “psych” package.

The oncogenes were extracted from the ONGene database

(http://www.ongene.bioinfo-minzhao.org) (11). A total of

73 immunomodulatory genes (IMGs) (12) were extracted

from previous studies. The immune cell infiltration score was

calculated by using the XCELL algorithm (13). Moreover, the

TIDE score, dysfunction score and exclusion score of each patient

in the datasets were predicted using the TIDE online tool (http://

tide.dfci.harvard.edu/) following standard procedures (14).

The Genomics of Drug Sensitivity in Cancer (GDSC) database

was developed by the Sanger Research Institute to collect data on

the sensitivity and response of tumor cells to drugs (15).

“OncoPredict” was used to calculate the drug sensitivity of each

sample in the training and validation datasets based on the GDSC

V2.0 database (16).
2.5 shRNA and overexpression
plasmid construction

CHRNA5 shRNA sequences were designed according to BLOCK-

iT™ RNAi Designer (https://rnaidesigner.thermofisher.com/

rnaiexpress), and the annealed double-stranded shRNA was cloned

and inserted into the pGreen vector. After testing the knockdown

efficiency of several candidate shRNAs, the sequence 5’-

GGGTCACTATGGAGTTCAAAG-3’ targeting CHRNA5 and the

sequence 5’-GCAGCTGAAATATCCTAAACT-3’ targeting FTO

were selected for subsequent experiments. A scrambled nonspecific

control shRNA (shNC) was also cloned and inserted into the same

vector and used as a negative control. For overexpression, the full-

length coding sequence of CHRNA5 was amplified and cloned and

inserted into the pCDH plasmid.
2.6 Cell culture and transfection

The human lung cancer cell lines A549 and H1299 were

purchased from the American Type Culture Collection (ATCC).

All cells were cultured in DMEM (Thermo Fisher Scientific, Inc.)

supplemented with 10% FBS (Thermo Fischer Scientific, Inc.) at

37°C in the presence of 5% CO2.

GC cells were seeded in 6-well plates in each well and grown for

24 h. Then, the cells were transfected with 2.5 mg of shCHRNA5 or

shNC using Lipofectamine 6000 reagent (Beyotime, China)

following the manufacturer’s protocol.
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2.7 Cell proliferation and migration assays

For cell proliferation, lung cancer cells were initially seeded into

6-well plates. These cells were then incubated with 10 mM EdU for 2

hours. Next, the cells were stabilized with 4% paraformaldehyde and

permeabilized using 0.3% Triton X-100, a process conducted in a

PBS environment. A subsequent step involved incubating the cells

with a click reaction solution, a product provided by the Beyotime

Institute of Biotechnology in China. Within a 24-hour timeframe,

images of the cells were obtained using an inverted fluorescence

microscope, and the resulting data were analyzed with the

assistance of NIH ImageJ software (version 1.8.0).

In terms of the cell migration assay, cells from each group were

methodically placed in the upper chambers of each Transwell

membrane (Corning, Inc., USA). Next, 1 ml of medium without FBS

and 2 ml of complete medium were added to the bottom chamber.

After a 24-hour incubation period at 37°C in an environment with 5%

CO2, the cells were stabilized inmethanol and stained with 0.5% crystal

violet for 30 minutes. The final stage involved washing the cells in the

upper chamber with phosphate-buffered saline (PBS, provided by

Gibco, USA) three times. The cells were then imaged using a

microscope and evaluated with NIH ImageJ software (version 1.8.0).
2.8 Western blot

Total protein from lung cancer cells was extracted using RIPA

lysis buffer (Beyotime, China). Protein concentrations were

quantified via an Enhanced BCA Kit (Beyotime, China). The

proteins, in equivalent quantities, were separated via SDS−PAGE,

and 30 mg of each protein was transferred onto a PVDF membrane

(Millipore Sigma, Billerica, MA). After blocking with 5% BSA, the

membranes were incubated at 4°C overnight with the following

primary antibodies: anti-E-cadherin (CDH1, ProteinTech Group,

Inc., USA) and anti-N-cadherin (CDH2, ProteinTech Group, Inc.,

USA), both at a 1:1,000 dilution. Anti-GAPDH (1:1,000 dilution, Cell

Signaling Technology Inc., USA) was used as a loading control. The

membranes were then incubated with HRP-labeled secondary

antibodies for 2 hours at room temperature and subsequently

washed three times with TBST. The protein bands were visualized

using an enhanced chemiluminescence (ECL) substrate and the

GeneTools GBox system (Syngene) and were scanned and

quantified with ImageJ software (National Institutes of Health, NIH).
2.9 Disulfidptosis assays

Glucose-free DMEM was used to simulate glucose deprivation

conditions. When CHRNA5 was knocked down or overexpressed in

cells, the culture medium was replaced with glucose-free medium,

and the regulatory effect of the gene on dysfildptosis was

determined by measuring cell viability and apoptosis.
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2.10 Statistical analysis

Statistical analyses were conducted using GraphPad V8.3.0

software (GraphPad Software, LLC), and the data are presented as

the means ± standard deviations. To ascertain the existence of

statistically significant differences between the means of two or

more groups, Student’s t test and analysis of variance (ANOVA)

were employed. All the statistical tests were two-tailed, and a P value

less than 0.05 was considered to indicate statistical significance.
3 Manuscript formation

3.1 Data collection

Three LUAD cohorts and corresponding clinical data were

obtained from the TCGA and GEO databases. The demographic and

clinical data for the training, internal testing and independent

validation sets are summarized in Table 1. After filtering out the

samples with missing clinical information from the TCGA LUAD

dataset, a total of 504 LUAD patients, including 183 living patients and

321 patients who died at the end of follow-up, were included in this

study (median follow-up: 2.474 years). This dataset was randomly

divided into a training set (n = 303, 60%) and an internal testing set

(n = 201, 40%). As expected, no significant differences were found in

the major clinicopathological features between the training, testing and

entire TCGA LUAD datasets (Table 1). In addition, this study also

included a GEO dataset (GSE13213) including 117 LUAD patients,

which included 41.88% of deaths at the end of follow-up (median

follow-up time was 5.306 years).
3.2 Construction and validation of the
prognostic model according to the DEGs
in LUAD patients

Based on the CRISPR–Cas9 screenings, a total of 808 DRGs

were screened with the criteria of |normZ values| > 2 and P value<

0.05 (Supplementary Figure 1). Forty prognosis-related DRGs were

identified based on the TCGA training set using univariate Cox

regression analysis (Figure 2A). Consequently, LASSO-penalized

Cox analysis further identified 20 DRGs for multivariate analysis

(Supplementary Figures 2A-B). The multivariate Cox proportional

hazard model was built stepwise using the likelihood-ratio forward

method to reach the highest significance. Hence, 14 DRGs were

further screened to construct a risk model to assess the prognostic

risk of patients with LUAD: risk score = (0.577 × GNG12 Exp) +

(0.358 × UQCRB Exp) + (0.317 × AP3B1 Exp) + (0.313 × SLC35E3

Exp) + (0.298 × CHD1L Exp) + (0.237 × DDIT4 Exp) + (0.219 ×

KCNJ14 Exp) + (0.204 × CHRNA5 Exp) + (0.180 × LEFTY1 Exp) +

(-0.119 × LAX1 Exp) + (-0.265 × SLC46A3 Exp) + (-0.288 × MYO6

Exp) + (-0.445 × IVD Exp) + (-0.456 × GDPD1 Exp) (Figure 2B).

ROC curves demonstrated that the risk score serves as a significant
frontiersin.org
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predictor of the OS of LUAD patients, with AUCs greater than

0.730 at 1-5 years (Figure 2C). Samples in the training set were

classified into low- and high-risk groups based on the median value

of the risk score. KM survival analysis indicated that the low-risk

group had significantly favorable OS for LUAD patients

(Figure 2D). The distribution of risk scores between the low-risk

and high-risk groups and the survival status and survival time of

patients in the two different risk groups are depicted in Figure 2E.

The relative expression of the 14 DRGs for each patient is shown

in Figure 2F.

To further verify the accuracy and reliability of the prognostic

model obtained from the training set, we applied it to the internal
Frontiers in Immunology 05
testing set and other independent validation cohorts, viz. GSE13213. By

using the same prognostic model, the classifier could also successfully

subdivide patients in the internal testing set (n = 201) into high-risk or

low-risk groups with marked differences in overall survival (P = 0.008;

Supplementary Figure 3). In addition, the same observation was also

found in the entire TCGA LUAD dataset (training set and internal

testing set, Figure 3A), as well as in the GSE13213 validation cohort

(Figure 3B). Additionally, ROC curves indicated that the risk score was

an effective predictor of the OS of LUAD patients in both the TCGA

LUAD (Figure 3C) and GSE13213 (Figure 3E) datasets, with AUCs

greater than 0.750. Consistent with the results demonstrated in the

training set, the KM survival analysis indicated that the DRG risk score
TABLE 1 Clinical features of the LUAD patients in the training set, testing set and validation set.

Characteristics

TCGA-LUAD

GSE13213
n = 117

Training set
(60%)
n = 303

Testing set
(40%)
n = 201

All data
n = 504

c2
P value

Gender

female 162 (53.47%) 108 (53.73%) 270 (53.57%)
0.998

57 (48.72%)

male 141 (46.53%) 93 (46.27%) 234 (46.43%) 60 (51.28%)

Age

≤60 95 (31.99%) 63 (31.98%) 158 (31.98%)
1.000

52 (44.44%)

>60 202 (68.01%) 134 (68.02%) 336 (68.02%) 65 (55.56%)

M

M0 206 (93.64%) 129 (92.14%) 335 (93.06%)
0.863

M1 14 (6.36%) 11 (7.86%) 25 (6.94%)

N

N0 195 (66.33%) 129 (65.82%) 324 (66.12%)
0.993

87 (74.36%)

N1/2/3 99 (33.67%) 67 (34.18%) 166 (33.88%) 30 (25.64%)

T

T1/2 258 (85.15%) 180 (89.55%) 438 (86.90%)
0.357

104 (88.89%)

T3/4 45 (14.85%) 21 (10.45%) 66 (13.10%) 13 (11.11%)

Stage

Stage I/II 239 (78.88%) 151 (75.12%) 390 (77.38%)
0.615

79 (67.52%)

Stage III/IV 64 (21.12%) 50 (24.88%) 114 (22.62%) 38 (32.48%)

Smoke history

Nonsmoke 120 (39.60%) 80 (39.80%) 200 (39.68%)
0.999

Smoke 183 (60.40%) 121 (60.20%) 304 (60.32%)

OS time

≤2 171 (56.44%) 114 (56.72%) 285 (56.55%)
0.998

13 (11.11%)

>2 132 (43.56%) 87 (43.28%) 219 (43.45%) 104 (88.89%)

OS

Live 188 (62.05%) 133 (66.17%) 321 (63.69%)
0.641

68 (58.12%)

Dead 115 (37.95%) 68 (33.83%) 183 (36.31%) 49 (41.88%)
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was a significant risk factor for OS in LUAD patients in the above 2

datasets (all P< 0.001, Figure 3D, F). Importantly, when the other 3

survival indicators, namely, disease-specific survival (DSS), disease-free

interval (DFI) and progression-free interval (PFI), were considered,

Kaplan–Meier curves and receiver operating characteristic (ROC)

curves indicated that the low-risk group had significantly favorable

outcomes for LUAD patients (Supplementary Figure 4).
Frontiers in Immunology 06
3.3 The DRG risk score is independent of
clinical features

As depicted in Supplementary Table 1, the DRG risk score was

related to several clinicopathological features in the TCGA-LUAD

dataset, including sex, lymph node metastasis, invasion depth and

stage. To assess whether the risk score is an independent indicator in
A B

D

E

F

C

FIGURE 2

Construction of the prognostic model of DRGs. (A) Univariate Cox regression analysis for the selection of DRGs correlated with the OS of LUAD
patients. (B) Forest plot showing the multivariate Cox regression analysis of 14 DRGs. (C) ROC curves for 1-year OS in the training set. (D) K−M curve
of OS in the training group. (E) Risk score distribution and survival status of the training group. (F) Heatmap showing the expression of 14 DRGs in
the training group. DRGs, disulfidptosis-related genes; OS, Overall survival; ROC, receiver operating characteristic curve.
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LUAD patients, the effect of each clinicopathologic feature on OS was

analyzed by univariate Cox regression (Figure 4A). As shown in

Figure 4B, after multivariable adjustment, the risk score remained a

powerful and independent factor in the entire TCGA-LUAD dataset.

Moreover, the risk score was verified as an independent factor based

on the GSE13213 dataset (Supplementary Figures 5A–B).
Frontiers in Immunology 07
The discrepancies in OS stratified by lymph node metastasis (N)

and invasion depth (T) stage were analyzed between the low- and

high-risk groups in the entire TCGA-LUAD dataset. According to

the subgroups classified by N and T stage, the OS of the low-risk

group was superior to that of the high-risk group (Supplementary

Figures 6A-D).
A

B

D

E

F

C

FIGURE 3

Validation of the prognostic model with 14 DRGs constructed from the training dataset. Risk score distribution, survival status and expression of 14
DRGs in the TCGA-LUAD dataset (A) and external validation datasets, viz. and GSE31213 (B). ROC curves for overall survival in the TCGA-LUAD (C)
and GSE31213 (D) datasets. K−M curves of OS in the TCGA-LUAD (E) and GSE13213 (F) datasets. DRGs, disulfidptosis-related genes; ROC, dependent
receiver operating curve; TCGA, the cancer genome map; LUAD, lung adenocarcinoma.
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To ensure the robustness and practicability of the 14-DRG

prognostic model, a prognostic nomogram for predicting overall

survival in LUAD patients was established using the TCGA-LUAD

and GSE13213 datasets (Figure 4C and Supplementary Figure 5C).

Major clinicopathological features and risk scores were included in the

nomogram. The nomogram was internally validated by computing the
Frontiers in Immunology 08
bootstrap C-index (≥ 0.700 both in TCGA-LUAD and GSE13213) and

a calibration plot (Figure 4C and Supplementary Figure 6E). The ROC

curve confirmed that the score calculated based on the nomogram was

highly predictive of overall survival, with AUCs of 0.830 and 0.905 at 1

year in the TCGA-LUAD cohort and GSE13213 cohort, respectively

(Figure 4C and Supplementary Figure 6F).
A

B

D E

C

FIGURE 4

The DRG risk score was an independent prognostic factor for OS in the TCGA-LUAD dataset. Univariate (A) and multivariate (B) Cox regression
analyses of the risk score and clinicopathological features for overall survival in the TCGA-LUAD dataset. (C) The nomogram consists of the 14-gene
risk score and 6 clinical indicators based on the TCGA-LUAD dataset. The points from these variables are combined, and the locations of the total
points are determined. The total points projected on the bottom scales indicate the probabilities of 1-year, 3-year and 5-year overall survival.
Calibration plots (D) and receiver operating characteristic (ROC) curves (E) were used to validate the prognostic nomogram constructed based on
the TCGA-LUAD dataset. DRGs, disulfidptosis-related genes; ROC, dependent receiver operating curve; TCGA, the cancer genome map; LUAD,
lung adenocarcinoma.
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3.4 The DRG risk score is associated with
the immune landscape

Based on the XCELL algorithm and TCGA-LUAD dataset, the

DRG risk score was found to be associated with infiltration of

multiple immune cell types (Figure 5A), including CD4+ T cells,

Th2 cells, common lymphoid progenitors, mast cells, and B cells, as

well as the microenvironment and immune score. Additionally, the

risk score was associated with infiltration of many types of immune

cells, as was the immune score based on the GSE13213 dataset

(Figure 5B). In addition, a significant negative correlation between

the risk score and dysfunction score was found based on the TIDE

algorithm in the TCGA-LUAD dataset (r = -0.239), and the low-

risk group had a higher TIDE score (Figure 5F). A positive

correlation was found between the exclusion score and the risk

score (r = 0.457), and the high-risk group had the highest score

(Figure 5G). After comprehensive consideration of the dysfunction

and exclusion scores, a positive correlation was found between the

TIDE score and the risk score (r = 0.169), and the high-risk group

had a higher score (Supplementary Figures 7A-B). Additionally, the

same results were found in the GSE13213 validation dataset

(Supplementary Figures 7C-H). Overall, the TIDE results suggest

that the DRG risk score may be associated with poorer immune

checkpoint inhibition therapeutic efficacy.
3.5 DRG risk score is associated with
cancer progression

Correlation analysis revealed that the DRG risk score was

significantly related to multiple oncogenes in both the TCGA-

LUAD (Figure 6A) and GSE13213 (Figure 6B) datasets. After the

intersection of the oncogenes correlated with the risk score in both

datasets, 35 positively correlated and 4 negatively correlated

oncogenes were identified (Figure 6C), including FOSL1, FOXM1,

CDK1, and CCNB2. By analyzing the differentially expressed genes

(DEGs) between the high-risk and low-risk groups in the TCGA-

LUAD and GSE13213 datasets, we obtained a total of 554 genes that

were upregulated in both datasets and 401 genes that were

downregulated (Supplementary Figure 8). The enrichment

analysis revealed that these DEGs were significantly enriched in

several important biological processes and pathways, including lung

alveolus development, G2/M transition of mitotic cell cycle,

extracellular matrix organization, cell proliferation, DNA

replication, cell adhesion and immune response (Figure 6D), as

well as drug metabolism, ABC transporters, p53 signaling pathway,

ECM-receptor interaction, cell cycle and PI3K-Akt signaling

pathway (Figure 6E). Moreover, GSEA was performed to

investigate the biological processes and pathways potentially

related to the DRG risk score. As depicted in Figure 6F, the DRG

risk score was related to multiple cancer-related biological

processes, including DNA replication, recombination repair,

double-strand break repair, cell cycle checkpoint signaling and

the B-cell receptor signaling pathway, as well as other vital

processes, in both the TCGA-LUAD and GSE13213 datasets

(Figure 6G). Additionally, the risk score was related to several
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cancer-associated pathways (Figure 6H), mainly the proteasome,

cell cycle, DNA replication, mismatch repair and RNA degradation

pathways, as well as other crucial pathways (Figure 6I).
3.6 CHRNA5 contributes to lung
cancer progression

Among these DRGs in the constructed risk model, CHRNA5

had a high normalized Z score (normZ = 2.23, Figure 7A) and the

highest correlation with SLC7A11 (r = 0.432, Figures 7B-C).

Survival analysis revealed that patients with lower CHRNA5

expression had longer overall survival in both the TCGA-LUAD

datasets (Supplementary Figure 9A). When considering

disease-specific survival and progression-free survival, a better

prognosis was found for patients with low CHRNA5 expression

(Supplementary Figures 9B-C). CHRNA5 expression was greater in

tumors than in normal tissues in multiple LUAD datasets

(Figure 7D). Further correlation analysis revealed that CHRNA5

expression was significantly correlated with multiple oncogenes

(Figure 7E). Additionally, CHRNA5 expression was positively

correlated with the sensitivity to several antitumor drugs

(Figure 7F). Correlation analysis of immune cell infiltration

revealed that CHRNA5 was significantly correlated with several

cell types (Figure 7G), including DC4+ T cells (Th1/2), cancer-

associated fibroblasts (Figure 7H), monocytes, mast cells, and M2

macrophages, as well as the microenvironment, stroma and

immune score. Moreover, CHRNA5 expression was correlated

with tumor stemness in the TCGA-LUAD cohort (Figure 7I).

GSEA further demonstrated that CHRNA5 is related to many

cancer-related KEGG pathways (Figures 7J-K) and biological

processes (Supplementary Figure 9D), including the cell cycle

(NES = 2.868), DNA replication (NES = 2.586), the JAK-STAT

signaling pathway (NES = -2.198) and cell adhesion molecules

(NES = -2.823), as well as several other vital terms.
3.7 CHRNA5 regulates proliferation,
migration and disulfidptosis in LUAD cells

To evaluate the biological function of CHRNA5 in LUAD cells,

we constructed shRNA plasmids to knock down CHRNA5 and a

plasmid to overexpress CHRNA5 (Supplementary Figure 10). EdU

assays revealed that CHRNA5 knockdown attenuated LUAD cell

proliferation, while CHRNA5 overexpression amplified proliferation

in A549 and H1299 cells (Figures 8A-B). The transwell migration

assay indicated that CHRNA5 knockdown significantly reduced cell

migration, while CHRNA5 overexpression significantly increased cell

migration (Figures 8C-D). The western blotting results demonstrated

that CHRNA5 knockdown significantly promoted CDH1 expression

(Figures 8E-F) but inhibited CDH2 expression (Figure 8G).

Conversely, CHRNA5 overexpression resulted in the upregulation

of CDH2 and the downregulation of CDH1 (Figures 8E-G).

To further evaluate the synergistic role of CHRNA5 in

disulfidptosis, we used glucose-deprived medium to culture

LUAD cells. The results of the CCK-8 assay revealed that
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FIGURE 5

The DRG risk score is correlated with the immune landscape. Lollipop plots showing the results of the correlation analysis between the risk score
and immune cell infiltration based on the XCELL algorithm in the TCGA-LUAD (A) and GSE13213 (B) datasets. Scatter plots showing the results of the
correlation analysis between the risk score and sensitivity to antitumor drugs in the TCGA-LUAD (C) and GSE13213 (D) datasets. (E) Heatmap
showing the intersection of the drugs significantly correlated with the risk score. *, **, *** represent P value of correlation analysis less than 0.05,
0.01, 0.001, respectively. Correlation analysis between the risk score and dysfunction score (F) and exclusion score (G). ***, P value of t-test < 0.001
betweenh igh and low risk groups. DRGs, disulfidptosis-related genes; TCGA, the cancer genome map; LUAD, lung adenocarcinoma.
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FIGURE 6

The DRG risk score is associated with cancer progression. Scatter plots showing the results of the correlation analysis between the risk score and
oncogenes in the TCGA-LUAD (A) and GSE13213 (B) datasets. (C) Heatmap showing the intersection of the oncogenes significantly correlated with
the risk score. *** represent P value of correlation analysis less than 0.001. Lollipop plots showing the enrichment analysis of the differentially
expressed genes between the high-risk group and low-risk group for biological processes (D) and KEGG pathways (E). (F) Heatmap showing the
intersecting biological processes in the TCGA-LUAD and GSE13213 datasets based on GSEA. (G) GSEA plots showing the enrichment results of three
biological processes related to the risk score. (H) Heatmap showing the intersecting biological processes in the TCGA-LUAD and GSE13213 datasets
based on GSEA. (I) GSEA plots showing the enrichment results of three biological processes related to the risk score. GSEA, gene set enrichment
analysis; TCGA, the cancer genome map; LUAD, lung adenocarcinoma.
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FIGURE 7

CHRNA5 is highly expressed in LUAD and is related to cancer progression. (A) The lollipop plot shows the normalized Z score of the DRGs in the risk
model. (B) The lollipop plot shows the correlation between SLC7A11 and the DRGs in the risk model. (C) Scatter plot showing the correlation
between the expression of SLC7A11 and CHRNA5. (D) Heatmap showing the change in CHRNA5 expression in tumors compared with normal tissue
in multiple datasets. ** and *** represent P value of t-test less than 0.01 and 0.001 between tumor and normal groups, respectively. (E) Volcano plot
showing the results of the correlation analysis between the expression of CHRNA5 and that of oncogenes. (F) Lollipop plot showing the correlation
between CHRNA5 and antitumor drug sensitivity. (G) Lollipop plot showing the correlation between CHRNA5 and immune cell infiltration. (H) Scatter
plot showing the correlation between SLC7A11 expression and the infiltration of cancer-associated fibroblasts in the TCGA-LUAD dataset. (I) Scatter
plot showing the correlation between SLC7A11 expression and tumor stemness calculated by the RNA-seq algorithm based on the TCGA-LUAD
dataset. Lollipop plot (J) and GSEA plot (K) showing the results of GSEA of CHRNA5 for KEGG pathways. GSEA, gene set enrichment analysis; DRGs,
disulfidptosis-related genes; TCGA, the cancer genome map; LUAD, lung adenocarcinoma.
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CHRNA5 knockdown significantly attenuated cell death induced by

glucose deprivation, while CHRNA5 overexpression significantly

amplified cell death (Figures 8H-I).
4 Discussion

Disulfidptosis is a new form of regulated cell death in cancers

with high SLC7A11 expression under glucose starvation conditions,

providing a novel therapeutic strategy for treating malignant

tumors (7, 8). Here, we established a prognosis prediction model
Frontiers in Immunology 13
based on DRGs using LASSO and Cox regression analysis and

further screened a key gene in the model, CHRNA5, for functional

analysis in lung cancer cells.

Recently, several studies have built risk prediction models for

different cancers, including cervical cancer (17), bladder cancer (18,

19), colorectal cancer (20) and lung cancer (21, 22), based on DRGs.

With respect to lung cancer, a previous study identified 465 DRGs

based on correlation analysis and established a 21-gene-based risk

prediction model with an AUC = 0.747 at 1 year (22). Additionally,

another study devised a 7-gene-based model with an AUC = 709 at

1 year (21). Compared to these studies, the present study established
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FIGURE 8

CHRNA5 promotes cell proliferation, migration and disulfidptosis in LUAD. Representative images (A) and the quantified results (B) of the EdU cell
proliferation assay in LUAD cells with CHRNA5 knockdown or knockdown. Representative images (C) and the quantified results (D) of the transwell
cell migration assay in LUAD cells with CHRNA5 knockdown or knockdown. Representative images (E) and the quantified results (F-G) of western
blotting for CDH1 and CDH2 in LUAD cells with CHRNA5 knockdown or expression. A CCK-8 assay was used to measure the cell death induced by
glucose deprivation in A549 (H) and H1299 (I) cells with CHRNA5 knockdown or expression. LUAD, lung adenocarcinoma. #, ## and ### represent
P value less than 0.05, 0.01 and 0.001 versus shNC group, respectively. ** and *** represent P value less than 0.05, 0.01 and 0.001 versus Blank
group, respectively.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1371831
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1371831
a risk prediction model with an AUC of 0.805 in lung cancer based

on DRGs obtained from CRISPR/Cas9 screening. The superiority of

this model was further validated in internal testing and external

validation sets, with AUCs of 0.786 and 0.783, respectively. The

robustness and practicability of this model were measured by the

nomogram, and the nomogram based on the risk score showed

better prediction accuracy, with an AUC = 0.830. These results

revealed that our DRG risk score model has good predictive

accuracy and certain practical value.

The tumor microenvironment (TME) has attracted increasing

attention due to its important role in tumor immunosuppression,

distant metastasis and drug resistance (23). The TME is mainly

composed of tumor cells, infiltrating immune cells, cancer-related

stromal cells, endothelial cells and other components (24, 25). The

generation and progression of tumors largely depend on external

signals received from the surrounding immune cells and

nonimmune cells of the TME (26). Our correlation analysis

revealed that the risk score was positively correlated with the

immune score, microenvironment score and infiltration of mast

cells and other cell types. Mast cells are located at the edge of the

tumor and TME, usually around blood vessels (27), and have both

protumor and antitumor properties. After activation and

degranulation, they become highly proinflammatory and actively

recruit cells from the innate immune system, mainly neutrophils,

macrophages, and eosinophils, as well as cells from the acquired

immune system (B cells and T cells), to coordinate antitumor

immune responses (28). In contrast, they may also support

angiogenesis and MMP9 degradation in the ECM and promote

metastasis by releasing VEGF, which is beneficial for tumor

progression (28). In addition, the risk score is also correlated with

dysfunction and exclusion of T cells, as is the TIDE score, which can

predict the clinical response to cancer immunotherapy (14). Further

GSEA revealed that the risk score was correlated with DNA

replication, the cell cycle, cell adhesion and the immune response,

as well as several vital KEGG pathways. Moreover, positive

correlations were found between the risk score and the expression

of multiple oncogenes and the sensitivity to several antitumor

drugs. These results suggest that our DRG risk prediction model

may serve as a potential indicator for the prediction of immune

microenvironment homeostasis, the evaluation of immune

checkpoint blockade therapy, and the evaluation of the biological

functional status of tumors.

Among the 14 DRGs included in the risk prediction model, we

selected CHRNA5, which had a high normalized Z score based on

CRISPR screening and the highest correlation with SLC7A11, to

further investigate its regulation of biological function and

disulfidptosis in LUAD cells. CHRNA5, a member of the

nicotinic acetylcholine receptor superfamily, is a key modulator of

nicotine-dependent lung cancer and other malignancies (29, 30).

CHRNA5 accelerates lung cancer progression via the MAPK and

VEGF pathways (31), influences melanoma growth via Notch1

regulation (32), and promotes radioresistance in oral squamous

cell carcinoma by modulating E2F transcription factors (33). In this

study, we found that CHRNA5 might function as an oncogene, as
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evidenced by its upregulation in lung cancer and its positive

correlation with oncogene expression. Moreover, survival analysis

indicated that patients with high CHRNA5 expression generally

have a poorer prognosis. Furthermore, in vivo experiments revealed

that knocking down CHRNA5 significantly reduced both

cell proliferation and migration in LUAD cells. We also

investigated its regulatory role in disulfidptosis under glucose-

deprived conditions. The results revealed that CHRNA5

knockdown inhibited cell death induced by glucose deprivation,

whereas CHRNA5 overexpression enhanced cell death. These

findings underscore the significant influence of CHRNA5 on

the proliferation and migration of LUAD cells, as well as

on disulfidptosis.

In conclusion, our study successfully established and validated a

robust risk prediction model rooted in disulfidptosis-related genes

(DRGs) for LUAD patients. Notably, this risk score is associated

with the homeostasis of the immune microenvironment and the

biological function of tumors. CHRNA5, a critical component of

this model, has been confirmed to enhance cell proliferation,

migration, and disulfidptosis in LUAD cells.
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