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Acting through a combination of direct and indirect pathogen clearance

mechanisms, blood-derived antimicrobial compounds (AMCs) play a pivotal

role in innate immunity, safeguarding the host against invading

microorganisms. Besides their antimicrobial activity, some AMCs can neutralize

endotoxins, preventing their interaction with immune cells and avoiding an

excessive inflammatory response. In this study, we aimed to investigate the

influence of unfractionated heparin, a polyanionic drug clinically used as

anticoagulant, on the endotoxin-neutralizing and antibacterial activity of

blood-derived AMCs. Serum samples from healthy donors were pre-incubated

with increasing concentrations of heparin for different time periods and tested

against pathogenic bacteria (Acinetobacter baumannii, Enterococcus faecium,

Escherichia coli , Klebsiella pneumoniae, Pseudomonas aeruginosa ,

Staphylococcus aureus) and endotoxins from E. coli, K. pneumoniae, and

P. aeruginosa. Heparin dose-dependently decreased the activity of blood-

derived AMCs. Consequently, pre-incubation with heparin led to increased

activity of LPS and higher values of the pro-inflammatory cytokines tumor

necrosis factor a (TNF-a) and interleukin 6 (IL-6). Accordingly, higher

concentrations of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa

were observed as well. These findings underscore the neutralizing effect of

unfractionated heparin on blood-derived AMCs in vitro and may lead to

alternative affinity techniques for isolating and characterizing novel AMCs with

the potential for clinical translation.
KEYWORDS

antibacterial activity, antimicrobial compounds, endotoxin neutralization, host defense
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1 Introduction

The innate immune system, constitutes the first line of defense

against infections, encompassing a diverse array of synergistic

mechanisms designed to rapidly recognize and eradicate invading

pathogens. As part of this defense, human whole blood contains a

vast repertoire of antimicrobial compounds (AMCs), including

antimicrobial peptides (AMPs), complement proteins, collectins,

and other immune factors (1–4).

AMPs, also known as host defense peptides, are short cationic

amphiphilic molecules with a unique combination of anti-

inflammatory, antimicrobial, and immunostimulatory properties

(5–7). Among the different antimicrobial activities of AMPs, their

most prominent role is to function as antibacterial agents against

Gram-positive and Gram-negative bacteria (8). The mechanism of

action mainly relies on a rapid and direct interaction with the

bacterial cell wall (9). These positively charged peptides engage with

the negatively charged lipids present on the bacterial surface, i.e.,

endotoxins (lipopolysaccharides, LPS) in the outer membrane of

Gram-negative bacteria or lipoteichoic acid in case of Gram-

positive bacteria. This interaction leads to the accumulation of

peptides on the membrane, the formation of pores and channels

that compromise its integrity, ultimately resulting in membrane

collapse and lytic cell death (10–12). Certain AMPs can also

translocate into the bacteria and act on intracellular targets, being

able to disrupt protein biosynthesis by inhibiting transcription,

translation, and protein assembly (9, 13, 14). Defensins,

cathelicidins, and bactericidal/permeability-increasing protein

(BPI) are prime examples of AMPs found in serum (15, 16).

In the presence of infectious agents, another set of proteins

promptly become activated – the complement system and

collectins. Activation of the complement cascade results in

opsonization of pathogens through the activated product C3b,

enhancing phagocytosis. This cascade leads to the formation of a

membrane attack complex that inserts into the microbial

membrane, resulting in direct lysis. Additionally, short peptides

such as C3a and C4a are produced, exhibiting both antimicrobial

properties and anaphylactic activity (3, 17). Collectins, a family of

C-type lectins, are also capable of recognizing and binding to

various pathogens, resulting in antimicrobial activity through

membrane disruption, as well as opsonization (18). Mannose-

binding lectin (MBL) is a specific example of a collectin found in

serum with antimicrobial activity against Gram-negative and

Gram-positive bacteria, and viruses (19, 20).

During bacterial division and cell death, LPS can be released

into the bloodstream, leading to an interaction with host pattern

recognition receptors, such as toll-like receptors (TLRs), triggering

immune cells to produce and release cytokines (21). Under certain

circumstances, this can result to a dysregulation of the immune

response, ultimately resulting in life-threatening conditions, such as

sepsis (22–24). Within AMCs, certain molecules, referred to as

endotoxin-neutralizing compounds (ENCs), can mitigate

inflammatory responses through direct binding and neutralization

of LPS, as well as by downregulating the expression of pro-

inflammatory cytokines (25–28).
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Recent studies have shown that ENCs can be neutralized by

unfractionated heparin, therefore restoring the LPS activity in

serum/plasma samples (29–31). Heparin, a negatively charged

polysaccharide with anticoagulant and anti-inflammatory

properties, has clinically used in septic patients (32). We

hypothesized that heparin can interfere and neutralize blood-

derived AMCs. Therefore, in the present study, we investigated

the impact of unfractionated heparin on the antibacterial and

endotoxin-neutralizing activity of AMCs from serum samples

against pathogenic bacteria (A. baumannii, E. faecium, E. coli,

K. pneumoniae, P. aeruginosa, S. aureus) and endotoxins from

E. coli, K. pneumoniae, and P. aeruginosa (Figure 1).
2 Materials and methods

2.1 Sample collection, bacterial strains,
and lipopolysaccharides

Human whole blood was drawn from healthy volunteer donors

into vacutainer tubes (Vacuette CAT Serum Clot Activator tubes,

Greiner Bio-One, Kremsmünster, Austria). After clotting, samples

were centrifuged at 3500 x g for 10 min, and serum was frozen in

aliquots at -20°C until further use. The bacterial strains used were

A. baumannii (ATCC 19606), E. faecium (DSM 20477), E. coli (ATCC

25299), K. pneumoniae (ATCC 13882), P. aeruginosa (NCTC 10662),

and S. aureus (DSM 20232). These strains were preserved in glycerol

stocks at -80°C for long-term storage and reactivated by culture on

nutrient agar plates (NA, Carl Roth GmbH & Co. KG, Karlsruhe,

Germany) at 37°C overnight, prior to each experiment. LPS from E.

coli O55:B5, K. pneumoniae ATCC 15380, and P. aeruginosa ATCC

27316 were obtained from Sigma Aldrich (St. Louis, MO).
2.2 AMC-depleted filtrate

Citrated plasma from a pool of 12 healthy donors with same

blood group (B-) (Red Cross Blood Center Linz, Austria) was spiked

with 500 mMCa2+ and 250 mMMg2+ to induce clotting. Serum was

separated from the clot by centrifugation (3500 x g, 10 min) and

recirculated through a high-flux filter (Ultraflux EMiC2, Fresenius

Medical Care, Bad Homburg, Germany). Filtration conditions and

parameters for native serum and the AMC-depleted filtrate are

specified in Supplementary Table 1.
2.3 Endotoxin-neutralizing activity of
blood-derived AMCs

Serum samples were independently spiked with 50 ng/mL LPS

from E. coli, K. pneumoniae, and P. aeruginosa, respectively, and

incubated for 0, 1, 3, and 6 h at room temperature. As control, LPS

was spiked into physiological saline solution (Fresenius Medical

Care) containing 1% human serum albumin (HSA, Kedrion,

Biopharma, Vienna, Austria) and 1 mM Mg2+ (Merck,
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Darmstadt, Germany) (albumin solution). LPS was quantified using

the kinetic chromogenic Limulus amebocyte lysate (LAL) assay

(Endosafe Endochrome-K, Charles River, Wilmington, MA)

according to the instructions of the manufacturer.
2.4 Exposure time and concentration of
heparin required to inhibit the endotoxin-
neutralizing activity of AMCs

To assess the optimal heparin concentration for the maximum

inhibition of AMCs, serum samples were pre-incubated with

increasing concentrations of heparin (5, 10, 50, 100, and 150 IU/

ml unfractionated heparin, Gilvasan Pharma GmbH, Vienna,

Austria) for 1 h at room temperature. To assess the influence of

exposure time, serum samples were pre-incubated with 100 IU/mL

heparin for 0, 1, 3, and 6 h at room temperature. As a control,

incubation was performed in albumin solution and in native serum.

After pre-incubation, samples were spiked with 50 ng/mL LPS from

E. coli, K. pneumoniae, and P. aeruginosa, respectively, and

incubated for 1 h at room temperature. LPS was quantified as

described above.
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2.5 Evaluating the established pre-
incubation conditions in serum from
healthy donors: endotoxin-
neutralizing activity

The endotoxin-neutralizing activity was tested directly through

quantification of LPS and indirectly through the release of TNF-a
and IL-6. Fresh serum samples from six donors were independently

pre-incubated with 100 IU/mL heparin for 1 h at room temperature.

After incubation, heparin-spiked serum and native serum were

incubated for 1 h at room temperature with 50 ng/mL LPS (for LPS

quantification) or with 5 ng/mL LPS (for cytokine quantification)

from E. coli, K. pneumoniae, and P. aeruginosa. The quantification

of LPS was performed using the LAL assay. To assess LPS-induced

cytokine release, blood was drawn into vacutainer tubes (Vacuette

9NC Coagulation Trisodium Citrate 3.2% tubes, Greiner bio-one).

Plasma was separated from blood cells by centrifugation (3500 x g,

10 min). LPS-spiked samples were mixed at 1:1 ratio with the fresh

blood cells and incubated at 37°C. After 4 h, samples were

centrifuged (3500 x g, 10 min) and the supernatant was employed

to quantify TNF-a and IL-6 by the Luminex Multiplex Bead Array

(R&D Systems, Minneapolis, MN), following the protocol provided
FIGURE 1

Experimental set-up. Serum from healthy donors was pre-incubated with increasing concentration of heparin and for different time periods. After
pre-incubation, the antibacterial and the endotoxin-neutralizing activity were tested. AMCs, antimicrobial compounds; CFU, colony forming units;
qPCR, real time polymerase chain reaction; RT, room temperature; SEM, scanning electronic microscope. Created with BioRender.com.
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by the manufacturer, using a Bio-plex-200 Analyzer (Bio-Rad

Laboratories, Hercules, CA).
2.6 Antibacterial activity of blood-
derived AMCs

A bacterial suspension with an optical density of 2.0 ± 0.2 at 600

nm (equivalent to 3x108 colony forming units (CFU)/mL based on

McFarland standards) in Luria Broth (LB) medium (Carl Roth)

from A. baumannii, E. faecium, E. coli, K. pneumoniae,

P. aeruginosa, and S. aureus was prepared and progressively

diluted 10-fold with LB until 3x103 CFU/mL. Each bacterial

dilution was incubated at 1:1 ratio with serum (overnight at

37°C). Controls were performed in AMC-depleted filtrate. After

incubation, bacterial growth was measured indirectly by

determining the absorbance at 600 nm.
2.7 Exposure time and concentration of
heparin required to inhibit the antibacterial
activity of AMCs

The influence of heparin on the antibacterial activity was

examined using qPCR and kinetic absorbance monitoring. Serum

samples were pre-incubated with increasing concentrations of

heparin (5, 50, 100, 250 IU/mL) for 0, 4, and 10 h at 37°C. As a

control, the same experimental setups were conducted in AMC-

depleted filtrate and in native serum. After pre-incubation, samples

were mixed with an equal volume of bacterial suspension (3x104

CFU/mL) in Luria Broth (LB, Carl Roth) from A. baumannii,

E. coli, K. pneumoniae, and P. aeruginosa. Samples were subjected

to a kinetic absorbance monitoring for 20 h in a plate reader at 37°C

and 600 nm, with measurements taken hourly. The detailed qPCR

protocol and the sequence of the in-house designed primers used in

this study are given in Supplementary Table 2.
2.8 Evaluating the established pre-
incubation conditions in serum from
healthy donors: antibacterial activity

Serum samples from six donors were pre-incubated with 250

IU/mL heparin for 4 h at 37°C. After incubation, heparin-spiked

serum and native serum were incubated at a 1:1 ratio with a 3x104

CFU/mL suspension from each strain. The bacterial growth in the

samples was monitored using a plate reader for 20 h at 37°C, with

measurements recorded hourly at 600 nm. For the qPCR, the CFU

counting and scanning electron microscope (SEM) images, after

adding the bacterial strains, samples were incubated at 37°C for 6 h

and subjected to qPCR and CFU counting. The bacteria integrity

following incubation with heparin-spiked serum and native serum

was assessed by SEM. Samples were filtered through 0.2 µm

membrane filters (Isopore™, Cork, Ireland). The collected

bacteria were washed with saline solution and fixed with a 2.5%
Frontiers in Immunology 04
glutaraldehyde solution (Carl Roth). The fixed samples were

gradually dehydrated by increasing ethanol solutions (10-100%)

and sputtered with gold (Q150R ES Sputter Coater, Quorum

Technologies Ltd., East Sussex, England) prior to the examination

with SEM (FlexSEM 1000, Hitachi, Tokyo, Japan).
2.9 Statistical analysis

Unless otherwise indicated, all experiments were conducted in

duplicates (two donors, two measurements per donor). Statistical

tests were carried out using GraphPad Prism 9.3.1 (GraphPad

Software, Boston, MA). Normal distribution was checked

applying the Kolmogorov-Smirnov Test. Normally distributed

data were compared using the t-Test. For non-normally

distributed data, the Mann-Whitney Rank Sum Test was used.

P-values ≤ 0.05 were considered as statistically significant.
3 Results

3.1 Endotoxin-neutralizing activity of
blood-derived AMCs

In comparison to albumin solution, human serum showed a

higher endotoxin-neutralizing capacity, indicated by decreased LPS

activity in serum samples (Figure 2A) spiked with LPS from E. coli,

K. pneumoniae, or P. aeruginosa, respectively. After 1 h, the LPS

values of E. coli, K. pneumoniae, and P. aeruginosa were reduced by

a factor 9.9, 9.2, and 3.4, respectively, when compared to albumin

solution. For all further experiments, a 1-hour incubation of LPS

with serum was used.
3.2 Exposure time and concentration of
heparin required to inhibit the endotoxin-
neutralizing activity of AMCs

The results demonstrated a dose-dependent increase in LPS values

with rising heparin concentration, reaching maximum LPS values at

100 IU/mL heparin (Figure 2B). This was consistent across LPS from

all strains tested. Pre-incubating serum with 100 IU/mL heparin led to

an increase of the LPS levels by a factor of approximately 11.9, 10.4,

and 6.6 for spikes from E. coli, K. pneumoniae, and P. aeruginosa,

respectively, compared to native serum. Lower concentrations of

heparin reduced endotoxin-neutralizing activity of AMCs as well.

Five IU/mL heparin increased the LPS values by a factor of 8.1, 6.8,

and 4.4, respectively. Regarding the optimal exposure time, heparin-

spiked samples pre-incubated for 1 h showed an increase in the LPS

values by a factor of 10.2, 6.5, and 5.8 from E. coli, K. pneumoniae, and

P. aeruginosa, respectively, compared to the native serum (Figure 2C).

LPS values in heparin-spiked serum samples were nearly equivalent to

the albumin solution used as control. Based on these findings, for

further experiments, 1 h pre-incubation with 100 IU/mL heparin

was established.
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3.3 Evaluating the established pre-
incubation conditions in serum from
healthy donors: endotoxin-
neutralizing activity

We found a statistically significant difference (p ≤ 0.001) between

native and heparin-spiked serum in the recovery of LPS values from

E. coli, K. pneumoniae and P. aeruginosa (Figure 3A). The pre-

incubation with heparin yielded a 9.3-fold increase in LPS values

from E. coli compared to native serum. In case of K. pneumoniae and

P. aeruginosa LPS, heparin-spiked samples had 6.9 and 4.9-fold

increase LPS levels compared to native serum samples. The results

from the cytokine quantification showed a significant increase in

TNF-a and IL-6 in serum samples incubated with heparin compared

to native serum (Figures 3B, C).
3.4 Antibacterial activity of blood-
derived AMCs

Within our experimental conditions, the capacity of serum to

inhibit bacterial growth varied depending on the strain. Serum

could inhibit the growth of A. baumannii and K. pneumoniae up to

107 CFU/mL, and for E. coli and P. aeruginosa up to 105 CFU/mL.

Serum did not exhibit significant inhibitory effects on the Gram-

positive bacteria tested. Based on this outcome, 104 CFU/mL

bacterial suspensions were used for further experiments.
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3.5 Exposure time and concentration of
heparin required to inhibit the antibacterial
activity of AMCs

The results from bacterial target quantification (based on qPCR)

showed a correlation between the increasing heparin concentrations/

pre-incubation times with the growth of A. baumannii, E. coli,

K. pneumoniae, and P. aeruginosa, compared to native serum

(Figure 4). Ct values decreased in the Gram-negative strains tested

when increasing heparin concentration and pre-incubation times.

Concentrations of 100 and 250 IU/mL heparin had an immediate

AMC neutralizing effect, with Ct values of 17.2, 15.9, 16.9, and 16.2

(250 IU/ml heparin) in A. baumannii, E. coli, K. pneumoniae, and

P. aeruginosa, compared to the 24.2, 21.8, 21.5, and 22.07 Ct values of

native serum, respectively. In case of 5 and 50 IU/mL, the lowest Ct

values were obtained after 10 h incubation. The bacterial growth

curves obtained from the kinetic absorbance monitoring in

A. baumannii, E. coli, K. pneumoniae and P. aeruginosa had the

same tendency as the qPCR data (Supplementary Figure 1).
3.6 Evaluating the established pre-
incubation conditions in serum from
healthy donors: antibacterial activity

The native serum had a strong antibacterial effect against A.

baumannii, E. coli, K. pneumoniae, and P. aeruginosa with 0 CFU/
B C

A

FIGURE 2

Neutralization of LPS by serum and the influence of heparin on blood-derived AMCs. (A) Endotoxin-neutralizing activity: serum and the albumin
solution were spiked with 50 ng/mL LPS from E. coli, K. pneumoniae, and P. aeruginosa and incubated for 0, 1, 3, and 6 h at room temperature. LPS
was quantified using the kinetic chromogenic LAL assay according to the protocol provided by the manufacturer (n = 2). (B) Concentration
assessment: serum was pre-incubated with increasing concentrations of heparin (5, 10, 50, 100 and 150 IU/ml) for 1 h at room temperature. The
albumin solution and native serum were used as controls. After pre-incubation, samples were spiked with 50 ng/mL LPS from each strain and
incubated for 1 h at room temperature. LPS was quantified using the LAL assay (n = 2). (C) Exposure time assessment: serum was pre-incubated with
100 IU/mL heparin for 0, 1, 3, and 6 h at room temperature. The albumin solution and native serum were used as controls. After pre-incubation,
samples were spiked with 50 ng/mL LPS from each strain and incubated for 1 h at room temperature. LPS was quantified using the LAL assay (n = 2).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1373255
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cont et al. 10.3389/fimmu.2024.1373255
mL after 6 h incubation (Figure 5A), which was significantly

reversed upon pre-incubation with heparin (p ≤ 0.0001). In case

of E. faecium and S. aureus, as already detailed above, native serum

did not exhibit an antibacterial effect against the Gram-positive

bacteria included in this study. Regarding the qPCR results, the Ct

values obtained from the heparin-spiked serum were lower than for

native serum, correlating to a higher concentration of bacterial

DNA-targets in the samples (Figure 5B). Thus, the results obtained

with the absorbance measurements (Figure 5C) showed the same

tendency as the CFU count and the Ct values. In the native serum,

an increase in absorbance values was not noticed in the Gram-

negative strains, which remained undetectable over the
Frontiers in Immunology 06
whole period of incubation. In the heparin-spiked samples,

however, the measurements showed a progressive increase in the

absorbance values.
3.7 Visualization of bacterial integrity
using SEM

Differences in the bacterial integrity of Gram-negative bacteria

were observed in the SEM images when comparing the serum

samples incubated with heparin and the native serum (Figure 6). In

the images obtained from the heparin-spiked samples, A.
B

C

A

FIGURE 3

Evaluating the established pre-incubation conditions in serum from healthy donors: endotoxin-neutralizing activity. Serum samples from six different
donors were pre-incubated with 100 IU/mL heparin for 1 h at room temperature. After incubation, 50 ng/mL LPS (for LPS quantification) or 5 ng/mL
LPS (for cytokine quantification) from E. coli, K. pneumoniae, and P. aeruginosa were added to the heparin-spiked serum and native serum samples
and incubated for 1 additional hour at room temperature. LPS was quantified using the LAL test (A). TNF-a (B) and IL-6 (C) released in response to
LPS were quantified as described in the materials and methods section (n = 6). * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.
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baumannii, E. coli, K. pneumoniae, and P. aeruginosa appear to be

intact, while in the native serum no morphologically intact bacteria

where found, in contrast to E. faecium and S. aureus.
4 Discussion

Human whole blood contains a repertoire of ENCs, AMPs

being a crucial constituent within this group (12, 33, 34). These

molecules represent a challenge in detecting endotoxins in clinical

samples using conventional endotoxin-detection assays (35–37).

Our previous research revealed the potential of heparin, a

polyanionic anticoagulant, to enable the detection and

quantification of endotoxins in blood-derived samples using the

Limulus amebocyte lysate assay while also notably enhancing their

immunostimulatory properties. Our underlying hypothesis

postulated that polyanionic heparin binds to the cationic ENCs,

preventing their interaction with endotoxins (negatively charged)

(29, 31).

In this study, we assessed the influence of unfractionated

heparin on the endotoxin-neutralizing and antibacterial activity of

blood-derived AMCs. The antibacterial activity was evaluated

against 5 out of 6 ESKAPE pathogens and E. coli. The term

ESKAPE is an acronym comprising the scientific names of six

bacterial pathogens including E. faecium, S. aureus, K. pneumoniae,

A. baumannii, P. aeruginosa, and Enterobacter sp. with high clinical

relevance (38). Although not officially recognized as part of the

ESKAPE pathogens, E. coli was also included in the study since is a

major cause of bloodstream and urinary tract infections (39). We

were able to confirm our hypothesis that unfractionated heparin

interferes with and neutralizes blood-derived AMCs, resulting in
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higher bacterial growth and endotoxin activity in serum samples

spiked with heparin, compared to native serum.

We initially evaluated the activity of native serum against the

above-mentioned strains and LPS types. Exposing serum to LPS

from E. coli, K. pneumoniae, and P. aeruginosa led to a reduction of

over 70% in the LPS levels within just one hour. This highlights the

rapid and effective capacity of serum to neutralize endotoxins.

Regarding the antibacterial activity, serum effectively inhibited the

growth of A. baumannii and K. pneumoniae up to 107 CFU/mL,

and for E. coli and P. aeruginosa up to 105 CFU/mL. However, this

effect was not observed for the Gram-positive bacteria tested, i.e.,

E. faecium and S. aureus. The pathogenicity of the bacteria found in

septicemia depends in part on their ability to evade the bactericidal

effect of serum. It is worth noting that within the same bacterial

species, serum-sensitive and serum-resistant isolates can be found

(40–43). Although certain blood-derived AMPs, such as defensins

and cathelicidins, are recognized for their broad-spectrum

antibacterial activity against Gram-negative and Gram-positive

bacteria (15, 44), this activity within serum was insufficient in the

E. faecium and S. aureus strains we tested. Moreover, it is plausible

that AMPs targeting Gram-positive bacteria are stored within the

granules of leukocytes and platelets, potentially being released upon

the activation of blood cells by Gram-positive associated PAMPs,

like lipoteichoic acids or peptidoglycans.

Incubating serum with heparin resulted in a decrease in both

endotoxin-neutralizing and antibacterial activities. The highest

decrease in the endotoxin neutralization occurred with the

exposure of serum to 100 IU/mL heparin for one hour, when

compared to native serum. Notably, this effect was evident even at

lower heparin concentrations, beginning with 5 IU/mL (lowest

heparin concentration tested), being consistent for all three types
FIGURE 4

Ct values from A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa incubated in heparin-spiked serum and native serum samples. Serum samples
were pre-incubated with increasing concentrations of heparin (5, 50, 100, and 250 IU/mL) for 0, 4, and 10 h at 37°C. AMC-depleted filtrate and native
serum were used as controls. After pre-incubation, samples were incubated for 6 h with 3x104 CFU/ml suspension of A. baumannii, E. coli,
K. pneumoniae, and P. aeruginosa at 37°C. Ct values for each strain were determined as described in the materials and methods section (n = 2).
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of LPS tested. In the serum-sensitive pathogenic strains, there was a

correlation between the decline of the antibacterial activity of serum

and increasing heparin concentration and exposure time. While

heparin concentrations of 5 IU/mL required pre-incubation for

more than 4 hours for achieving a reduction in the antibacterial

activity, higher concentrations required shorter exposure. However,

the minimal required concentrations and exposure times depended

on the bacterial species. This suggests that each species possesses a

different level of sensitivity to AMCs, requiring specific

concentrations of heparin to inhibit their antibacterial activity. It

is known that serum contains other heparin-binding molecules,

such as different proteases/esterase inhibitors, growth factors,

chemokines. These molecules may potentially compete with the

blood-derived AMCs, whereby only a portion of the available

heparin gets bound by AMCs (45). This implies that isolated

AMCs may experience the similar neutralization effect with a

reduced concentration of heparin required.

To further assess the impact of heparin on the activities of

AMCs, we used sera obtained from six healthy donors. Serum pre-

incubated with 100 IU/mL heparin for one hour exhibited increased

LPS values in the LAL assay compared to the native serum.

Additionally, the levels of TNF-a and IL-6 were higher in the
Frontiers in Immunology 08
heparin-treated serum. Similar effects were noted in the

antibacterial activity when serum was pre-incubated with 250 IU/

mL heparin for 4 h. In this case, qPCR, colony counts, and

absorbance monitoring showed an increased in the concentration

of the serum-sensitive strains in the heparin-treated samples

compared to native serum. In conclusion, incubation of serum

with heparin enables bacterial growth and restores endotoxin

activity in comparison to un-spiked serum.

Our data demonstrate that unfractionated heparin effectively

neutralizes blood-derived AMCs in vitro. The recognition of the

affinity of AMCs to heparin and LPS offers the possibility to use

affinity-based techniques to isolate AMCs from human whole blood

samples. Employing this isolation strategy could facilitate the

identification of potential novel AMCs, which may serve as

support for novel antibiotics design.

If heparin exhibits a strong affinity for blood-derived AMCs, it

is plausible to consider that heparan sulfate, a major component of

the endothelial glycocalyx, could yield similar effects. This suggests

the presence of an equilibrium between AMCs bound to the blood

vessel surface and those free in the serum. Such a mechanism may

represent a novel, yet unknown strategy of the innate immune

system to establish a protective barrier along the blood vessel
B

C

A

FIGURE 5

Evaluating the optimized pre-incubation conditions in serum from healthy donors: antibacterial activity. Serum samples from six different donors
were pre-incubated with 250 IU/mL heparin for 4 h at 37°C. After incubation, 3x104 CFU/mL suspension of A. baumannii, E. coli, K. pneumoniae, and
P. aeruginosa were added to the heparin-spiked serum and native serum. Differences between the two groups were analyzed by colony forming
units (CFU) counting (A), qPCR (B), and absorbance measurements at 600 nm (C) as described in the materials and methods section (n = 6).
*** p ≤ 0.001; **** p ≤ 0.0001.
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surface, preventing the entry of pathogens into the bloodstream and

mitigating systemic inflammation during localized infections.

Our findings raised intriguing questions about whether this

neutralization effect translates to in vivo situations, specifically in

patients diagnosed with septicemia who receive heparin as part of

the supportive treatment to mitigate the activation of coagulation. It

remains to be elucidated whether this effect is specific to
Frontiers in Immunology 09
unfractionated heparin or if other anticoagulants, such as low

molecular weight heparin, could yield to similar outcomes.

Further research in this area could not only have the potential to

refine the use of anticoagulants in septicemia but also offers insights

into novel therapeutic strategies that could benefit patients facing

similar clinical conditions.
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