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Introduction: The variability and unpredictability of immune checkpoint

inhibitors (ICIs) in treating brain metastases (BMs) in patients with advanced

non-small cell lung cancer (NSCLC) is the main concern. We assessed the utility

of novel imaging biomarkers (radiomics) for discerning patients with NSCLC and

BMs who would derive advantages from ICIs treatment.

Methods: Data clinical outcomes and pretreatment magnetic resonance

images (MRI) were collected on patients with NSCLC with BMs treated with

ICIs between June 2019 and June 2022 and divided into training and test sets.

Metastatic brain lesions were contoured using ITK-SNAP software, and 3748

radiomic features capturing both intra- and peritumoral texture patterns were

extracted. A clinical radiomic nomogram (CRN) was built to evaluate

intracranial progression-free survival, progression-free survival, and overall

survival. The prognostic value of the CRN was assessed by Kaplan–Meier

survival analysis and log-rank tests.

Results: In the study, a total of 174 patients were included, and 122 and 52 were

allocated to the training and validation sets correspondingly. The intratumoral

radiomic signature, peritumoral radiomic signature, clinical signature, and CRN

predicted intracranial objective response rate. Kaplan–Meier analyses showed

a significantly longer intracranial progression-free survival in the low-CRN

group than in the high-CRN group (p < 0.001). The CRN was also

significantly associated with progression-free survival (p < 0.001) but not

overall survival.
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Discussion: Radiomics biomarkers from pretreatment MRI images were

predictive of intracranial response. Pretreatment radiomics may allow the early

prediction of benefits.
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1 Introduction

Non-small cell lung cancer (NSCLC) is the predominant form

of lung cancer, accounting for around 80-85% of all reported cases

(1). Immune checkpoint inhibitors (ICIs) targeting programmed

cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), and

cytotoxic T-lymphocyte antigen-4 (CTLA-4) have shown

promising results in advanced NSCLC and prolonged patient

survival. ICIs have transformed the therapeutic prospect of

metastatic NSCLC (2, 3).

Approximately 25% of patients with NSCLC are diagnosed with

brain metastases (BMs) (4), and 20–40% of patients develop BMs

throughout their whole life (5, 6). Patients with NSCLC and BMs

have a high mortality rate (7). Although ICIs have resulted in

improvements in advanced NSCLC treatment, their effectiveness in

treating metastatic brain lesions remains controversial (8). Patients

with baseline BMs benefited from pembrolizumab treatment in the

KEYNOTE-189 study, whereas other studies, such as KEYNOTE-

024, found no benefit (9, 10). Among the patients who had

undergone therapy for brain metastases in the KEYNOTE-024 trial,

the pembrolizumab group exhibited a longer median progression-

free survival (PFS) in comparison to the chemotherapy group;

however, no statistically significant difference in survival outcomes

between the immunotherapy and chemotherapy groups. In a phase II

trial involving 37 patients diagnosed with asymptomatic BMs in

NSCLC, only a minority (29.7%) of individuals with PD-L1-positive

NSCLC exhibited a favorable response in terms of BMs (11). Previous

clinical trials have demonstrated that immunotherapy could

potentially be beneficial for patients with NSCLC with BMs, and

biomarkers to select patients who could benefit from ICIs are

required. Although the potential biomarkers for immunotherapy,

including PD-L1 expression levels, tumor-infiltrating lymphocytes

(TILs), and tumor mutation burden (TMB), have been investigated,

none of them have shown a significant association with the

intracranial response or prognosis (11–13).

New opportunities have arisen with the recent advent of

radiomics and quantitative imaging biomarkers. Different from

conventional biopsy-based tests that only capture a portion of the

tumor, imaging provides a complete perspective of the entire tumor

burden, offering valuable insights into each cancerous lesion through

a single non-invasive examination (14). Radiomics-based biomarkers

have been successful in predicting patient survival, tumor
02
microenvironment status, and the differentiation of malignant

tumors (15–18). However, little research has investigated the

correlation between radiomics and intracranial advancement in

patients diagnosed with NSCLC and BMs undergoing

immunotherapy. In this retrospective study, we employed contrast-

enhanced magnetic resonance imaging (CE-MRI) to develop a

radiomics nomogram that can predict the effectiveness of

intracranial immunotherapy in patients with NSCLC with BMs.
2 Materials and methods

2.1 Patients

The study received approval from the medical ethics committee

of the institutions, and the requirement for obtaining informed

consent was exempted. We identified 340 advanced NSCLC

patients with brain involvement who had received ICIs, including

sintilimab, camrelizumab, tislelizumab, and pembrolizumab,

between June 2019 and June 2022 at Shandong Cancer Hospital

and Institution, and Cheeloo Hospital in Jinan, China. The

inclusion criteria were (1) age ≥18 years; (2) Karnofsky

Performance Status (KPS) ≥ 70; (3) baseline CE-MRI performed

within 4 weeks before immunotherapy; and (4) BMs meeting the

criteria for measurable disease according to Response Assessment in

Neuro-Oncology Brain Metastases (RANO-BM) (≥ 0.5 cm) (19).

Patients were excluded if they had: (1) prior treatment with any ICIs

before being diagnosed with BMs; (2) low-quality MRI data due to

motion artifacts or inadequate contrast injection; or (3) incomplete

baseline data, or if there were no follow-up data available. The

selected patients were separated into a training cohort from

Shandong Cancer Hospital and Institution and an independent

external validation cohort from Cheeloo Hospital. The recruitment

process and exclusion criteria are shown in Figure 1A.

Baseline clinical characteristics, such as KPS score, age, gender,

history of smoking, clinical stages, number and diameter of BMs,

and blood indicators, were obtained from medical records, and

imaging of baseline MRI were also downloaded. Two experienced

neuroradiologists independently evaluated the quantifiable

intracranial target lesions according to the RANO-BM guidelines

and classified the intracranial response as good or poor, based on

intracranial objective response rate (ORR) after 4 cycles of ICIs. If
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there was any conflict over the results of the assessment, another

radiologist was invited to reach a final decision. Intracranial target

lesions with any of the following were defined as having a good

response: (1) intracranial complete response (iCR) or (2)

intracranial partial response (iPR). The poor response was defined

with any of the following: (1) intracranial progressive disease (iPD)

or (2) stable disease (iSD). Continuous patient follow-up was

performed throughout the study to ensure accurate ascertainment

of survival outcomes. Intracranial progression-free survival (iPFS)

pertains to the duration starting from the initiation of ICI treatment

until the documented occurrence of brain progression or mortality

due to any cause. Progression-free survival (PFS) is defined as the
Frontiers in Immunology 03
timeframe commencing from the first administration of ICI until

the recorded manifestation of progression in any lesion or death

resulting from any cause. Overall survival (OS) was determined by

computing the period beginning with the initial application of ICI

and ending at either demise or the most recent follow-up.
2.2 Magnetic resonance
imaging acquisition

Patients from Shandong Cancer Hospital were scanned using an

eight-channel phased-array surface coil on a 3.0T scanner system
B

A

FIGURE 1

Study overview. (A) Workflow of the study. (B) Workflow of the radiomics analysis.
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from Siemens (Magnetom Verio, Siemens, Erlangen, Germany)

according to the protocols: Repetition Time (TR)=270ms; Echo

Time (TE)=2.48ms; Slice thickness=5mm, Field of View (FOV) =

194×230mm, Matrix Size = 320×216. Patients from Cheeloo

Hospital were scanned using an eight-channel phased-array

surface coil on a 3.0T scanner system from GE (GE Signa HDX,

USA), according to the protocols: TR = 1400ms; TE = 9ms; Slice

thickness = 6mm, FOV = 179×230mm, Matrix Size = 320×187.

Prior to the MRI, gadodiamide (0.1 mmol/kg, Omniscan, GE

Healthcare) was intravenously injected using a power injector

with a speed of 2.5 mL/s. Subsequently, 20 mL saline solution was

injected at the same rate to clear any remaining contrast agent. The

scanning range in the supine position encompassed the scalp and

lower neck.

The radiomics analysis workflow comprised image

segmentation, feature extraction, feature selection, model

development, and model validation (Figure 1B).
2.3 Image segmentation and radiomic
feature extraction

Two experienced neuroradiologists, unaware of the patient’s

medical details, independently delineated the tumor region of

interest (ROI) using ITK-SNAP (version 3.8.0, http://

www.itksnap.org) on T1 contrast-enhanced MRI sequences

(T1CE). The tumor area was delineated on the slice with the

maximum tumor area, excluding peritumoral edema. The

peritumor region was defined as the 5 mm area surrounding the

tumor. Two ROIs were finally delineated for each metastatic brain

lesion: (1) the intratumoral ROI, the whole metastatic brain lesion;

and (2) the peritumoral ROI, extending 5 mm around the

intratumoral region.

The radiomic features were obtained from the two ROIs

utilizing Pyradiomics, an open-source Python package. Before

feature extraction, MRI images are preprocessed, including image

normalization, resampling, discretization, and filtering. Eight filters

were used including Gaussian Laplacian, logarithm, wavelet,

exponent, square, square root, ladder, and local binary mode.
2.4 Radiomic features selection and
signatures constructed

The feature-selection process mentioned above was executed

exclusively on a training set. After standardizing all radiomic

features using z-score normalization, three steps were used to

identify the optimal features of each ROI for predicting the

intracranial response to immunotherapy. First, the Mann–

Whitney U-test was performed to determine significant factors

that distinguish patients in the good and poor response groups.

Only the statistically significant features were retained for further

analysis. Second, to eliminate redundant radiomic features,

Spearman correlation analysis was performed, and features with

a strong correlation coefficient (Spearman correlation coefficient
Frontiers in Immunology 04
> 0.9) were excluded. Finally, least absolute shrinkage and

selection operator (LASSO) logistic regression with 5-fold

cross-validation using the minimum criteria were performed.

For predictive purposes, the intratumoral and peritumoral

radiomic signatures were constructed using support vector

mach ine (SVM) methods , by we ight ing the chosen

characteristics from the two ROIs with their corresponding

LASSO coefficients. Finally, two predictive models were

constructed: the Intratumoral Radiomic Signature (IRS) and the

Peritumoral Radiomic Signature (PRS).
2.5 Nomogram development and validation

The intracranial immunotherapy response was analyzed using

LASSO logistic regression with 5-fold cross-validation and

minimum criteria to identify clinically significant characteristics.

Significant characteristics were weighted based on their respective

LASSO coefficients and used SVM methods to construct Clinical

Signature (CS). Subsequently, to offer a visually quantifiable tool

for predictive purposes, a personalized clinical radiomics

nomogram (CRN) was developed using a multivariable logistic

regression algorithm in the training set, which effectively

integrated intratumoral and peritumoral radiomics and clinical

signatures. The prediction models were evaluated by analyzing the

receiver-operating characteristic (ROC) curve and comparing

them using the DeLong test on both the training and validation

sets. The model performance was evaluated by calculating the

average area under the curve (AUC) along with a 95% confidence

interval (CI), sensitivity (SEN), specificity (SPE), accuracy (ACC),

positive predictive value (PPV), and negative predictive value

(NPV). To evaluate and compare the clinical efficacy of each

model , decision-curve analysis (DCA) was employed.

Additionally, the nomogram was assessed using the Hosmer-

Lemeshow test, which quantified the correspondence between

the predicted and observed probabilities in the CRN, followed

by plotting a calibration curve. In order to evaluate the predictive

prognostic significance of CRN, we calculated individual CRN

scores for every participant and then classified them into high-risk

(high CRN) and low-risk (low CRN) categories using the median

CRN score as the threshold.
2.6 Statistical analysis

Chi-squared tests were utilized to assess the clinical

characteristics between the training and validation cohorts in

terms of categorical variables, while independent t-tests were

employed for continuous variables. The statistical analyses were

performed following established academic practices, utilizing R

(version 4.2.0) and Python software (version 3.6.5). Statistically

significant was defined as having two-sided p-values less than 0.05.

To evaluate the differences in iPFS, PFS, and OS between the high-

CRN and low-CRN cohorts, we performed Kaplan-Meier survival

analysis along with log-rank tests.
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3 Results

3.1 Patient clinical characteristics

After the implementation of the criteria for inclusion and

exclusion, 174 cases were selected and stratified into two cohorts:

(1) a training cohort (n = 122) from Shandong Cancer Hospital and

Institution was used to construct the optimal prediction models,

and (2) a validation cohort (n = 52) from Cheeloo Hospital was

utilized to evaluate model performance and goodness-of-fit.

Of all the patients enrolled (n = 174), the median age was 59.0

years (range, 32−77 years) and 72.4% were male (126/174).

Approximately 40% (70/174) of the patients had a KPS score ≥

90, and 47.7% (83/174) were current or former smokers. Eighty-six

patients (49.4%) achieved a good intracranial response, including 20

iCR and 66 iPR, whereas 88 patients (50.6%) achieved a poor

intracranial response, including 42 iSD and 46 iPD. A total of 153

patients (87.9%) had adenocarcinoma; 38 (21.8%) had epidermal

growth factor receptor (EGFR) mutations, and 52 (23%) developed

liver metastases. Of the 174 patients, 52 (29.9%) received ICIs in

combination with targeting therapy. Twenty-six patients (14.9%)

received planned concurrent radiation therapy. Ninety-four

patients (54.0%) had solitary BMs, and 80 patients (46.7%) had a

maximum BM diameter < 1 cm. A comprehensive overview of the

characteristics observed in both the training and validation groups

is presented in Table 1. The clinical characteristics of the two

cohorts were not significantly different (all p > 0.05).

Clinically significant features associated with poor intracranial

response were liver metastases, EGFR mutations, and a KPS score ≤

80. Conversely, a good intracranial response was associated with

adenocarcinoma histopathology, concurrent brain radiotherapy,

higher neutrophil counts, older age, and clinical stage N3 disease

(Supplementary Figure S1). All the significantly selected clinical

features were used for the clinical signature development.
3.2 Radiomic feature selection

A total of 1745 features were derived from each ROI. After

conducting three steps to determine the optimal features for

predicting the intracranial immunotherapy response, we

ultimately identified 14 intratumoral and 17 peritumoral features

that exhibited a significant potential association with the

intracranial response. An overview of the LASSO feature selection

process was provided in Supplementary Figures S2A, B, S3A, B.

Based on the LASSO logistic regression model, the radiomic

features that had a nonzero coefficient were shown in

Supplementary Figures S2C, D, S3C, D, Supplementary Table 1.
3.3 Refinement and validation of signatures
by constructing a nomogram

Based on the significant features associated with intracranial

immunotherapy response in terms of intratumoral, peritumoral,

and clinical factors, we used SVM to construct three predictive
Frontiers in Immunology 05
TABLE 1 Characteristics of patients in the training and
validation cohorts.

Characteristics Training set
(n = 122)

Validation set
(n = 52)

P-
value

Age, years* 60.00(52.00,65.00) 57.50(52.00,64.00) 0.607

Gender 0.669

Male 90 (73.8%) 36 (69.2%)

Female 32 (26.2%) 16 (30.8%)

KPS 0.227

≥90 45 (36.9%) 25 (48.1%)

≤80 77 (63.1%) 27 (51.9%)

Smoking history 0.920

Yes 59 (48.4%) 24 (46.2%)

No 63 (51.6%) 28 (53.8%)

Pathology 0.693

Squamous 16 (13.1%) 5 (9.62%)

Adenocarcinoma 106 (86.9%) 47 (90.4%)

EGFR 0.954

Negative or unknown 96 (78.7%) 40 (76.9%)

Positive 26 (21.3%) 12 (23.1%)

Clinical T stage 0.897

0,1,2 71 (58.2%) 29 (55.8%)

3,4 51 (41.8%) 23 (44.2%)

Clinical N stage 0.640

0,1,2 64 (52.5%) 30 (57.7%)

3 58 (47.5%) 22 (42.3%)

Liver involvement 1.000

No 94 (77.0%) 40 (76.9%)

Yes 28 (23.0%) 12 (23.1%)

Number of BMs 0.892

Solitary 65 (53.3%) 29 (55.8%)

Multiple 57 (46.7%) 23 (44.2%)

Max diameter
of BMs

0.892

<1cm 57 (46.7%) 23 (44.2%)

≥1cm 65 (53.3%) 29 (55.8%)

LDH, U/L* 222.50
(188.75,307.75)

218.00
(176.50,263.75)

0.135

LYM,10^9/L* 1.39(1.04,1.73) 1.29(1.06,1.78) 0.986

NEUT,10^9/L* 4.31(2.94,5.53) 3.84(2.50,5.42) 0.273

NLR* 3.20(2.06,4.75) 3.01(1.97,4.08) 0.328

Combined
targeting therapy

0.728

(Continued)
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signatures: IRS, PRS, and CS. We observed that patients with distinct

intracranial responses exhibited statistically significant differences in

all three signatures within the training and validation sets, confirming

their discriminative capacity. A raincloud plot was used to visually

represent the varying sample distributions (Figures 2A, B). Moreover,

multivariate linear regression analysis conducted on the training set
Frontiers in Immunology 06
revealed that IRS, PRS, and CS were independent predictors of the

intracranial response (all p < 0.001). Consequently, we developed a

predictive CRN model in the training cohort by integrating these

three signatures (Figure 3A).

The CRN accurately predicted the intracranial response to

immunotherapy, with AUC values of 0.888 (95% CI: 0.834–0.944)

and 0.833 (95% CI: 0.720–0.946), in the training and validation sets,

respectively. The IRS, PRS, and CS AUC values were 0.809 (95% CI:

0.735–0.884), 0.799 (95% CI: 0.720–0.879), and 0.743 (95% CI:

0.655–0.831), respectively, in the training set, and 0.761 (95% CI:

0.630–0.892), 0.749 (95% CI: 0.616–0.883), and 0.770 (95% CI:

0.630–0.911), respectively, in the validation set. The corresponding

ROCs are shown in Figures 3B, C.

According to the DeLong test (Supplementary Table 2), CRN

showed the best predictive with SPE, ACC, and PPV among the four

models in the training set (SPE: 85.48%, ACC: 81.15%, PPV: 83.64%).

In the validation set, CRN showed moderate predictive performance

compared with the other models (SEN: 78.57%, SPE: 79.17%, ACC:

78.85%, PPV: 81.48%, NPV: 76.00%). Detailed statistical results of

different models assessing the efficacy of intracranial immunotherapy

are presented in Table 2. DCA showed that the CRN is a reliable and

valuable tool for predicting intracranial response to immunotherapy

(Figures 3D, E). Furthermore, both in the training and validation sets, a

calibration curve was constructed and a Hosmer-Lemeshow test

showed that the CRN aligned well with the actual observations (p >

0.05; Figures 3F, G).
TABLE 1 Continued

Characteristics Training set
(n = 122)

Validation set
(n = 52)

P-
value

No 87 (71.3%) 35 (67.3%)

Yes 35 (28.7%) 17 (32.7%)

Concurrent
brain radiotherapy

0.422

No 106 (86.9%) 42 (80.8%)

Yes 16 (13.1%) 10 (19.2%)

Intracranial response 0.691

Good (iCR+iPR) 62 (50.8%) 24 (46.2%)

Poor (iSD+iPD) 60 (49.2%) 28 (53.8%)
P-value of significant difference between training and validation cohorts. Abbreviations: KPS,
Karnofsky Performance Status; EGFR, Epidermal Growth Factor Receptor; T, tumor; N,
Node; BMs, brain metastasis; LDH, lactate dehydrogenase; NLR, Neutrophil to lymphocyte
ratio; iCR, intracranial complete response; iPR, intracranial partial response; iSD, intracranial
stable disease; iPD, intracranial progress disease. Data are numbers of patients, with
percentages in parentheses. *Values refer to median (interquartile range).
FIGURE 2

The raincloud plot visualizes the radiomics signature score, illustrating the spatial distribution and density of samples in both the training and
validation sets of radiomics signatures.
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3.4 Outcomes

The median follow-up was 12.6 months. The median iPFS

(miPFS) was 7.9 months (interquartile range [IQR]:3.7–14.0

months), the median PFS (mPFS) was 7.0 months (IQR: 3.2–13.5

months), and the median OS (mOS) was 12.6 months (IQR: 7.2–

20.4 months).
Frontiers in Immunology 07
The Kaplan–Meier analysis revealed that patients who had a

low score based on CRN (low CRN) compared with those who had

a high score (high CRN) had a higher miPFS (18.43 vs 8.63 months;

p < 0.001; Figure 4A) and mPFS (13.37 vs 5.50 months; p < 0.001;

Figure 4B). However, there was no significant difference in the mOS

observed between the low and high CRN groups (30.73 vs. 26.60

months; p = 0.53; Figure 4C).
B C

D E

F G

A

FIGURE 3

(A) CRN based on clinical and radiomics signatures, ** represents p < 0.01, *** represents p < 0.001. (B, C) Receiver operating characteristics curves
demonstrate the accuracy in predicting the intracranial response of IRS, PRS, CS, and CRN in the training and validation sets. (D, E) Decision curve
analysis demonstrates the clinical utility of different models for predicting the intracranial response in the training and validation sets. (F, G) Calibration
curves of CRN for intracranial response prediction. CRN, Clinical-Radiomic nomogram; IRS, Intratumoral Radiomic Signature; PRS, Peritumoral Radiomic
Signature; CS, Clinical Signature.
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4 Discussion

In this study, we developed and validated a radiomic model

called CRN, which utilizes T1CE images to evaluate the intracranial

reaction to immunotherapy in NSCLC patients with BMs.

Additionally, our model accurately detected individuals who are

at an elevated risk of experiencing intracranial progression.

Pretreatment radiomics could potentially forecast the intracranial

reaction of NSCLC patients with BMs to early immunotherapy,

offering the possibility of personalized treatment guidance for high-

risk individuals.

Recently, ICIs have made noteworthy clinical advances in

patients with NSCLC by overcoming immunosuppressive signals

in the tumor microenvironment. However, the response of BMs to

ICIs remains unclear. Data from the KEYNOTE-024, CheckMate

017, and 057 trials did not demonstrate any significant disparity in

survival rates between patients with BMs who received ICI

treatment and those who underwent chemotherapy (10, 20, 21).

In contrast, the KEYNOTE-189 and OAK trials showed that

patients with BMs treated with ICIs experienced extended OS

than those who underwent chemotherapy (9, 22). In the past, the

brain has been regarded as a privileged organ within the immune
Frontiers in Immunology 08
system because of the presence of the blood-brain barrier (BBB),

which shields it from infiltration by immune cells (23). However,

preclinical models have demonstrated that ICIs exert their effects by

activating T cells capable of crossing the BBB (24). The potential

mechanism underlying the intracranial response to ICIs may be

attributed to the distinct microenvironment in BMs compared with

that of primary tumors (25–27) , and the prevai l ing

immunosuppressive immune microenvironment in BMs (7, 28).

There is a requirement for the development of non-invasive

biomarkers to accurately predict the intracranial response and

prognosis to ICIs in patients with NSCLC. The level of PD-L1

expression is the only biomarker that has received approval for

immunotherapy; however, its utility remains unclear (13, 29–33).

TILs and TMB have also been explored as potential biomarkers for

immunotherapy, but do not have a significant association with the

intracranial response or prognosis (11–13). The inflammatory

microenvironment of BMs varies considerably, with the presence

of TILs ranging from complete absence to dense infiltration (34).

Furthermore, the composition of TIL subtypes within this

microenvironment varies, encompassing stimulated cytotoxic T

cells, immune-suppressing T cells, and fatigued T cells (35). A

previous study investigated TMB and T-cell richness in BMs (27).
TABLE 2 Performance of models for predicting intracranial response in patients treated with ICIs.

Training set AUC (95%CI) SEN (%) SPE (%) ACC (%) PPV (%) NPV (%)

IRS 0.809(0.735-0.884) 66.67 80.65 73.77 76.92 71.43

PRS 0.799(0.720-0.879) 81.67 70.97 76.23 73.13 80.00

CS 0.743(0.655-0.831) 66.67 74.19 70.49 71.43 69.70

CRN 0.888(0.834-0.944) 76.67 85.48 81.15 83.64 79.10

Validation set AUC (95%CI) SEN (%) SPE (%) ACC (%) PPV (%) NPV (%)

IRS 0.761(0.630-0.892) 46.43 100.00 71.15 100.00 61.54

PRS 0.749(0.616-0.883) 67.86 75.00 71.15 76.00 66.67

CS 0.770(0.630-0.911) 92.86 70.83 82.69 78.79 89.47

CRN 0.833(0.720-0.946) 78.57 79.17 78.85 81.48 76.00
AUC, area under the receiver operating curve; CI, confidence interval; SEN, sensitivity; SPE: specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; IRS,
intratumoral radiomic signature; PRS, peritumoral radiomic signature; CS, clinical signature; CRN, clinical-radiomics nomogram.
B CA

FIGURE 4

Kaplan-Meier survival curves of intracranial progression-free survival (A), progression-free survival (B), and overall survival (C) on the follow-up of all
enrolled patients.
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The results showed that the TMB was significantly increased in the

BM samples compared to the primary NSCLC specimens. In

contrast, the anticipated tumor neoantigen burden did not show

any notable variation, while the richness of T-cell clones was

significantly reduced in the BM samples compared to the primary

samples. In summary, the search for new and robust biomarkers for

predicting the intracranial response of BMs to ICIs remains

challenging because of the inherent difficulty in obtaining BM

biopsies and the significant heterogeneity and diversity of the

immune landscape within the tumor microenvironment between

BMs and the primary lesion.

Recently, several research studies have investigated the possible

practicality of radiomic features extracted from images of malignant

tumors and their correlation with immunotherapy response or

outcome (15, 16, 36–39). Bhatia et al. (15) extracted radiomic

features from MRI images and investigated the correlation

between these features and OS in patients with melanoma BMs

treated with ICIs. The findings indicate that radiomic features

derived from MRI images are significantly correlated with patient

OS, suggesting that radiomic features may serve as effective

biomarkers for assessing treatment response and predicting

patient prognosis. Li et al. (16) found that prognostic radiomic

features from MRI were closely correlated with tumor-infiltrating

macrophages and patient clinical outcomes in gliomas, which

revealed a relationship between radiomic biomarkers and the

tumor microenvironment. Sun et al. (40)discovered that imaging

biomarkers may serve as a valuable tool for estimating the count of

CD8 cells and for prognosticating the clinical responses of patients

undergoing immunotherapy. However, a radiomic prediction

model to evaluate the intracranial response to ICIs in patients

with NSCLC BMs is still under development. In this study, the

developed radiomic model could accurately predict the intracranial

response and enhance clinical decision-making for ICI treatment in

patients with NSCLC with BMs. Despite the observed correlation

between radiomic biomarkers and patient survival, it appears that

there are currently no systematic studies that thoroughly investigate

the direct relationships between specific radiomic features and their

biological implications further investigations are warranted to delve

into the intrinsic relationship between radiomics and the BM

microenvironment (41).

This study has some limitations. First, it was a retrospective study,

and despite including data from two centers, the overall size of the

sample was comparatively limited. To prevent fitting risks due to the

small data volume, all features we selected using LASSO with 5-fold

cross-validation via minimum criteria, which can reduce unnecessary

model complexity and assist in variable selection when the number of

samples is small size, thereby mitigating the risk of overfitting.

Incorporating a subset of patient data from external institutions as

an independent validation set also mitigated the risk of overfitting.

Second, the analysis was limited to baseline radiomic features before

treatment owing to the absence of enhanced MRI scans at a certain

time point during treatment. Thirdly, the nomogram could not

predict OS, because some patients had received other therapy post-

immunotherapy progression which may influence the result of

predicted OS. These limitations should be fully taken into account
Frontiers in Immunology 09
in future prospective research to build predictive models with

generalizability and reliability. To validate these models, it is

necessary to conduct extensive prospect ive research

across multicenters.
5 Conclusion

In conclusion, we constructed a radiomic nomogram using MRI

as a biomarker to predict the intracranial response to ICIs in

patients with NSCLC with BMs. The nomogram was also

predictive of iPFS and PFS. The nomogram offers personalized

treatment guidance for high-risk individuals before they

receive immunotherapy.
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