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Cancer is a very aggressive disease and one of mankind’s most important health

problems, causing numerous deaths each year. Its etiology is complex, including

genetic, gender-related, infectious diseases, dysbiosis, immunological imbalances,

lifestyle, including dietary factors, pollution etc. Cancer patients also become

immunosuppressed, frequently as side effects of chemotherapy and radiotherapy,

and prone to infections, which further promote the proliferation of tumor cells. In

recent decades, the role and importance of the microbiota in cancer has become a

hot spot in human biology research, bringing together oncology and human

microbiology. In addition to their roles in the etiology of different cancers,

microorganisms interact with tumor cells and may be involved in modulating their

response to treatment and in the toxicity of anti-tumor therapies. In this review, we

present an update on the roles of microbiota in cancer with a focus on interference

with anticancer treatments and anticancer potential.
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1 Introduction

The etiology of cancer is characterized by multiple factors,

encompassing: (1) genetic influences, involving hereditary elements

linked to inherited genetic predispositions, such as specific mutations,

locus weakening, deletions, activation of proto-oncogenes, and

inactivation of tumor suppressor genes; (2) external factors,

encompassing exposure to carcinogens or procarcinogens; (3)

internal factors, associated with the metabolism of procarcinogens

into carcinogens, modifications in the local microenvironment, stress

conditions leading to the production of reactive oxygen species, and

compromised or abnormal functioning of the immune system; and

(4) microbial factors, particularly in instances where the microbiota

undergoes alterations (dysbiosis) and becomes enriched with

microorganisms producing genotoxic compounds.

The gut microbiome has been recognized as an important

player in cancer development and progression (1).

Microbiota, comprising bacteria, fungi, microalgae, or protozoa,

along with viruses, have the potential to instigate or advance

neoplastic processes. This can occur through the direct synthesis of

carcinogenic compounds, exerting genotoxic effects, direct

inactivation of genes, initiation of local inflammatory processes

leading to alterations in the local microenvironment, or

impairment of the immune system’s functionality, resulting in

immunosuppression. Recent developments also indicate that the

microbiome holds an important role in modulating the efficacy and

toxicity of chemotherapeutic drugs (irinotecan, 5-fluorouracil,

oxaliplatin, cyclophosphamide, gemcitabine, methotrexate) and

immunotherapeutic compounds (anti-cytotoxic T-lymphocyte-

associated antigen 4, anti-programmed death-ligand 1/anti-

programmed cell death protein 1) (2, 3). Oncologic outcomes are

highly impacted by the microbiome composition and functions,

hence there is an imperative need to develop personalized

treatment approaches targeting the microbiota.

Within this line of thought, this review aims to present the

influence of the gut microbiota in antitumoral therapies, and the

ways of modulating the microbiome in cancer treatment.
1.1 Positive influence of microorganisms on
antitumor therapies

Commensal and symbiotic bacteria colonize numerous surfaces

in the host organism and are also found in sites originally

considered sterile, such as the placenta, blood, breast milk and

tumors. Therefore, the use of bacteria as therapeutic agents for

various tumors is an attractive area of study. The first findings on

the role of bacteria in cancer therapy date back to 1813, when the

French physician Arsène-Hippolyte Vautier observed the apparent

healing of tumors in people with gas gangrene produced by

Clostridium perfringens (4). In 1868, the German physician Karl

David Wilhelm Busch infected a cancer patient with erysipelas,

achieving rapid tumor shrinkage, but the patient died 9 days from

infection. In 1883, the German surgeon Friedrich Fehleisen

identified Streptococcus pyogenes as the causative agent of

erysipelas and confirmed that it could reduce the size of tumors.
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Similarly, in 1891, the American surgeon William Bradley Coley

confirmed that severe Streptococcus pyogenes infection can cure

people with cancer. Although he was an orthopedic surgeon, he

dedicated his life to researching tumor reduction with bacterial

extracts from inactivated streptococci and Serratia marcescens,

discovering the so-called ‘Coley’s toxin’, hypothesizing that tumor

destruction occurs through an immune reaction induced by the

bacterial preparations, thus he is considered the founder of cancer

immunotherapy (5). Because the effectiveness of William Bradley

Coley’s treatment depended on several factors, many of them

related to his ability to determine the immune response

conducive to tumor destruction, with the entry of radiotherapy

and chemotherapy into standard cancer therapies, ‘Coley’s toxin’

was left aside (4). Towards the end of the 19th century and the

beginning of the 20th century, a reduced frequency of cancer cases

was observed among people with tuberculosis, the link between the

two pathologies being elucidated only after the isolation, in 1921, of

the bacillus Calmette-Guérin, which represents an attenuated strain

of Mycobacterium bovis used as an antituberculosis vaccine. The

Calmette-Guérin vaccine is used for immunotherapy of advanced

bladder cancer (6). We now know that bacteria colonize tumors and

the mycobacterial antigens are triggering an immune response

active against both bacteria and infected tumor cells. There are

also bacteria that secrete toxins contributing to the lysis of

eukaryotic cells, and finally, genetically engineered bacteria that

can deliver, targeted to the tumor, different cytokines that cause

immune suppression of neoplastic cells. Some microorganisms are

directly or indirectly involved in the neoplastic process, while others

colonize solid tumors, the most well-known being Bifidobacterium

longum, Bifidobacterium adolescentis, Clostridium histolyticus,

Clostridium butyricum, Clostridium novyi, Clostridium beijerincki,

Escherichia coli, Listeria monocytogenes, Salmonella choleraesuis,

Salmonella enterica serovar typhimurium, Salmonella typhimurium

and Pseudomonas aeruginosa. In addition to bacteria, the use of

viruses in anti-tumor treatment appears to be showing some results.

By integrating the multidisciplinary knowledge and experience,

the field of pharmacomicrobiomics has been proposed aiming to

investigate the complex relationships between microbiota and drugs

and to identify ways to use commensal, probiotic, prebiotic,

postbiotic and symbiotic microorganisms or those in fecal matter

for the development of personalized therapies that offer better

chances of cure (Table 1).
1.2 Stimulation of the antitumoral immune
response by microbial products

Commensal and symbiotic microbiota play an important role in

the education and maturation of the immune system in human (11),

having thus an important role in oncogenesis, tumor progression,

and in response to treatment, through mechanisms that are

involving the immune system and its relationship with the tumor

microenvironment, forming the so-called tumor immune

microenvironment (12).

Although the number of bacterial species that can colonize solid

tumors is generous, only a few species, Salmonella typhimurium/
frontiersin.org
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Salmonella enterica serovar typhimurium, Escherichia coli,

Pseudomonas aeruginosa, Listeria monocytogenes, Clostridium

sporogenes and Clostridium novyi (13), play an effective role in

immune shaping of the tumor microenvironment (Figure 1).

The tumor microenvironment (tumor stroma) is a complex

entity comprising a highly diverse cellular component consisting of

genetically transformed stromal cells including endothelial cells,

adipocytes, cancer-associated fibroblasts, peripheral nervous

system-derived nerve fibers, blood or lymphatic cells, infiltrating

immune nonspecific and specific cells (macrophages, neutrophils,

antigen-presenting dendritic cells and myeloid-derived suppressor

cells, NK cells, T lymphocytes and B lymphocytes), neuroendocrine

cells, an extracellular matrix component, comprising collagen,

laminin, fibronectin, elastin and tenascin, and a whole range of

cytokines, such as CSF1 (Colony Stimulating Factor 1), chemokines,

such as CCL1-5 and 7 (C-C Motif Chemokine Ligand 1-5 and 7),

CXCL1-2 (C-X-C Motif Chemokine Ligand 1-2), CXCL4 (C-X-C

Motif Chemokine Ligand 4) and CX3CL1 (C-X3-C Motif

Chemokine Ligand 1), and by growth factors secreted by any of

the cells present in this environment (14, 15). The interactions

among the components of the tumor microenvironment lead to
Frontiers in Immunology 03
reprogramming of the immune response, either towards

stimulation or inhibition of tumor progression (14), this duality

of the immune system being one of the important factors in

spontaneous tumor regression (16). In addition to the tumor

microenvironment, immune reprogramming is influenced to

some extent by the microbiota colonizing the tumor and the

body, which could act as silent colonizers or as pathogens, and,

under certain conditions, they could reduce or eliminate the tumor

being regarded as potential anti-tumor agents (12). Microorganisms

that colonize tumors can compete with tumor cells for nutrients in

the tumor microenvironment, starving them and slowing their

expansion can activate inflammasome signaling pathways,

affecting the signals emitted by tumor cells and contributing to

the strengthening of the immune system (17), which can fight

tumors more effectively as well, and can damage tumor cells,

inducing apoptosis. The inflammasome is a major class of

signalosomes in innate immunity and comprises a broad range of

cytosolic proteins that produce inflammation and direct cells to

pyroptosis, the programmed cell death due to inflammation.

The pyroptotic inflammasome is frequently encountered in

tumorigenesis and is associated with many cancers (18).

Intravenous injection of modified and attenuated strain of

Salmonella typhimurium, defective in ppGpp synthesis (DppGpp)
(7), a facultatively anaerobic bacteria that can colonize normoxic

and hypoxic tissues, results in its intratumoral accumulation and

inflammasome activation (19), with abundant secretion of the

inflammatory cytokines IL1 beta, secreted after activation of

TLR4 (Toll like receptor 4) with lipopolysaccharide, IL18 and

TNF alpha, which suppress tumor growth. Salmonella

typhimurium DppGpp can activate the inflammasome in bone

marrow derived macrophages, which produce tumor cell injuries,

the damaged cells being then phagocyted by macrophages

(7). Shortly after inoculation, Salmonella enterica serovar

typhimurium colonizes tumors, inducing rapid increases in

proinflammatory cytokine and TNF alpha levels, the latter

producing endothelial cell injury. These lead to vascular ruptures

within the tumor, intratumoral hemorrhages and necrosis of tumor

tissue, which favor the accumulation of neutrophils in the necrotic

focus to separate it from healthy tissue. Outnumbering neutrophils,

bacteria escape from the necrotic focus into viable tumor cells,

multiplying, intensely colonizing the tumor and extending TNF-a
synthesis and necrosis (20). Thus, Salmonella enterica serovar

typhimurium contributes to significant shrinkage for 7-10 days

after inoculation. The effect is only temporary, as subsequently

the tumor resumes its proliferation tendency (7).

Inoculation with Escherichia coli K-12 strain (MG1655), which

exhibits tumoral accumulation tendency and contributes to

clearance of some tumor cell types, such as the murine colon

carcinoma line CT26, stimulates T lymphocyte activation. Of

these, CD8+ T lymphocytes exhibit cytotoxic activity on tumor

cells, and CD4+ and CD8+ lymphocytes suppress tumor recurrence

and achieve tumor cell clearance, in the memory phase (21). CD4+

and CD8+ regulatory T lymphocytes contribute to the reduction of

colon inflammation and may intervene in the prevention of colon

cancer (19). Along with Bacteroides thetaiotaomicron and

Bacteroides caccae, Bacteroides fragilis enhances dendritic cell
TABLE 1 Potential of using microorganisms in curative
cancer treatment.

Microorganism Role Discoverer References

Clostridium
perfringens

Apparent
healing
of tumors

Arsène-
Hippolyte
Vautier, 1813

Rius-Rocabert,
2019 (4)

Streptococcus
pyogenes

Decrease of
tumors and
curing
cancer patients

Friedrich
Fehleisen, 1883
William
Bradley
Coley, 1891

Van Mellaert,
2006 (5)

Mycobacterium bovis
(Calmette-
Guérin vaccine)

Stimulation of
antitumor
cellular
response in
advanced
bladder cancer

Léon Charles
Albert
Calmette, Jean-
Marie Camille
Guérin, 1921

Sylvester,
2002 (6)

Salmonella
typhimurium
DppGpp

Activation of
inflammasome
signaling
pathways

Phan, 2015 (7)

Escherichia coli K-12
strain (MG1655)

Proliferation of
T lymphocytes

Phan, 2015 (7)

Salmonella enterica
serovar typhimurium

Stimulation of
TNFA
production

Phan, 2015 (7)

Pseudomonas
aeruginosa

Inhibition of
metastasis
formation

Chang, 2015 (8)

Helicobacter pylori Stimulation of
NK cells to
produce IFN-g

Yun, 2005 (9)

Clostridium novyi Decrease of
tumor volume
by producing
lytic toxins

Roberts,
2014 (10)
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activity through TLR4 expression and IL12 synthesis, which further

activates T helper lymphocytes, which secrete IFN-g, with

antitumor effect (22, 23). In people with metastatic melanoma,

Faecalibacterium prausnitzii contributes to the stimulation of CD8+

T lymphocyte cytotoxic activity and the increase of CD4+ and ICOS

+ (Inducible T-cell costimulatory) T lymphocytes, in parallel with

the amelioration of colitis and the reduction of regulatory T

lymphocytes and myeloid-derived suppressor cells, which have a

positive role in tumorigenesis (24). Oral administration of mixtures

of Bacteroides fragilis and Bacteroides thetaiotaomicron or

Bacteroides fragilis and Burkholderia cepacia to mice with tumors

and whose gut microbiota had previously been ablated resulted in

reduced tumor volume (25). Bifidobacterium species also activate

cytotoxic T lymphocytes, Bifidobacterium longum, Bifidobacterium

breve and Bifidobacterium pseudolongum via MHC II (Major

histocompatibility complex II)/HLA-DM (HLA Class II

Histocompatibil ity Antigen, DM) molecules, HLA-DO

(HLA Class II Histocompatibility Antigen, DO), HLA-DP (HLA

Class II His tocompat ib i l i ty Ant igen , DP) , HLA-DQ

(HLA Class II Histocompatibility Antigen, DQ) and HLA-DR
Frontiers in Immunology 04
(HLA Class II Histocompatibility Antigen, DR) on dendritic cells

and Bifidobacterium bifidum via peptidoglycans.

Preparations of Pseudomonas aeruginosa can help inhibit

metastasis formation and improve immune system function in

people undergoing chemotherapy treatment without significant

toxic effects (8). Other studies have attempted to use Helicobacter

pylori to induce an anti-tumor immune response in the presence of

low levels of IL12 produced by macrophages and dendritic cells, but

their efficacy is questionable. Initially, Helicobacter pylori antigens

were shown to induce NK cells in the stomach and duodenum to

synthesize IFN gamma (9), but without therapeutic applicability as

this does not occur in gastric cancer patients (26). Inoculated

intratumorally as spores, the anaerobic bacterium Clostridium

novyi infects hypoxic areas of tumors (27), producing infection-

specific symptoms (fever and pain), and a strong immune response,

tumor cell death and reducing tumor volume.

Bacteria can be engineered to deliver human genes into infected

tissues, which they express locally and induce an anti-tumor

immune response. Some of the most widely used bacterial vectors

are derived from Salmonella typhimurium, which can be modified
frontiersin.or
FIGURE 1

Pro- and anti-tumor potential of microorganisms. The anti-tumor effect of bacteria occurs through stimulating inflammasome signaling pathways
and by stimulating T lymphocyte proliferation and TNF alpha production, and by bacteriocins, mainly directed against other bacterial competitors,
may exhibit oncolytic activity. Viruses stimulate carcinogenesis, with some having oncolytic activity (such as picornavirus ECHO-7). Bacteria and
viruses can be used as vectors for the delivery of antitumor molecules. Fungi and animal parasites mainly induce inflammation. In addition, fungi
contribute to the formation of bacterial biofilms, colonize tissues with bacteria and protect them against the immune system while synthesizing pro-
tumor metabolites such as acetaldehyde, and parasites induce inflammation due to oxidative stress and mechanical damage to tissues.
g
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to secrete LIGHT/TNFSF14, IL18, FASL and TRAIL cytokines, and

when injected intravenously into laboratory animals, contribute to

the tumor reduction in vivo. Thus, LIGHT/TNFSF14 (Tumor

necrosis factor ligand superfamily member 14) is involved in the

infiltration of B lymphocytes and CD4+ and CD8+ T lymphocytes

into the tumor microenvironment (28), IL18 promotes leukocyte

influx, especially of NK cells, into the tumor microenvironment,

and abundant secretion of INF gamma, TNF alpha, IL1 beta and

GM-CSF (granulocyte-macrophage colony-stimulating factor) (29),

FASL contributes to neutrophil recruitment (30), and TRAIL (TNF-

related apoptosis-inducing ligand), induces caspase 3 and 8-

dependent apoptosis (31), all of which promote tumor cell

recognition and destruction. Also, in preclinically tested animal

models, attenuated Salmonella typhimurium genetically modified to

produce CCL21 induces intratumoral increases in IFN-g, CXCL9
and CXCL10 levels and tumor reduction in a CD4+ and CD8+

expressing lymphocyte-dependent manner, providing safety in use

(32). The use of Listeria monocytogenes containing ADXS31-164

HER-2/neu induced increased TCD8+/Tregs ratio in the tumor

microenvironment, preventing primary tumor growth and delaying

metastasis (33). Clostridium species can be engineered to deliver

molecules to tumors that decrease their aggressiveness without

producing negative effects on the body. Of these, Clostridium

novyi-NT AC and Clostridium sporogenes NCIMB 10696 are

modified to produce anti-HIF1A antibodies, inhibiting the

angiogenic signaling pathway at an early stage (34), and

Clostridium sporogenes ATCC 3584 is modified to deliver IL12,

selectively amplifying IFN gamma secretion and affecting tumor

growth (35).
1.3 Oncolytic bacteria

In competition for nutrients, bacteria secrete various

compounds to inhibit the growth of the competitors, some of

which are also inhibiting the tumoral growth. Bacteriocins and

some bacterial metabolites, including phenazine metabolites, are

useful in this regard. Also, bacteria can be engineered to produce

different metabolites of interest.

Bacteriocins are positively charged, cationic proteins secreted by

most bacterial species. They are non-immunogenic and

biodegradable, bypass the electrically neutral membranes of

healthy cells and become selectively attached to the negatively

charged membranes of tumor cells (36). Among the bacteriocins

that can be used in the treatment of cancers are colicins, microcins,

pediocins, nisins and pyocins. Colicins are bacteriocins produced by

Escherichia coli and other bacterial species of the Enterobacteriaceae

family and affect the proliferation of a large number of tumor cell

lines, including colon, breast, bone and HeLa cells (37). Microcin

E492, produced by Klebsiella pneumoniae RYC492, which forms

pores in eukaryotic cell membranes, can induce apoptosis in some

human cells, including colorectal carcinoma cells, HeLa cells, Jurkat

cells (acute T-cell leukemia-derived cell line) and RJ2.2.5 cells (cell

line derived from a variant of Burkitt’s lymphoma), without

affecting KG-1 cells (lymphoblast-like cells derived from the bone

marrow of a patient with acute myelogenous leukemia) or human
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tonsil endothelial cells in primary culture (38). Nisin is a bacteriocin

produced by several Lactobacillus and Streptococcus species during

fermentation, is used as a preservative, is non-toxic and safe for use

in humans, and induces apoptosis of HepG2 cell lines

(hepatocellular carcinoma-derived cells) (39), MCF-7 (human

mammary adenocarcinoma-derived cells), HT-29 (human colon

cancer-derived cells) (40), on HUVEC (human umbilical vein

endothelial cells) and on head and neck squamous cell

carcinoma-derived cells (41). Pyocins are bacteriocins produced

by the vast majority of Pseudomonas aeruginosa individuals, one of

which destroys mouse fibroblast-derived L6OT cells (42), while

pyocin S2, secreted by Pseudomonas aeruginosa 42A, exhibits

cytolytic activity on the tumor cell lines HepG2 and Im9 (human

multiple myeloma-derived immunoglobulin-secreting cell line),

with no effect on the normal cell line HFFF (Human fetal

foreskin fibroblast) (43). Besides bacteriocins, other metabolites

such as phenazine metabolites, secreted by strains of Pseudomonas

aeruginosa and other bacterial species, such as Streptomyces sp., can

exhibit cytotoxic activity on tumor cell lines. Thus, phenazine 1,6-

di-carboxylic acid strongly affects the viability of HeLa, HT29 and

MCF-7 cell lines and, to a lesser extent, that of the DU145 line

(derived from human prostate cancer) (44).
1.4 Oncolytic viruses and viral vectors

Unlike oncolytic bacteria, which produce different metabolites,

oncolytic viruses indirectly activate systemic antitumor immunity

and cause lysis of tumor cells, which they selectively infect (45).

Among the viruses used or tested for use in cancer treatment are

viruses with a DNA genome, including HSV1 (herpes simplex virus

type 1), vaccinia virus and some adenoviruses, and viruses with an

RNA genome, including reoviruses, measles virus and VSV

(vesicular stomatitis virus) (46), to which genes for cytokines,

checkpoint inhibitors and antigenic or immunostimulatory

molecules have been inserted (47). Among the modified or

attenuated oncolytic adenoviruses, ONYX-015, with deletion of

the 55kD E1B gene (48), OBP-301 (Telomelysin), with insertion

of the promoter for hTERT (human telomerase reverse

transcriptase), are being tested for replication in tumor cells,

which overexpress hTERT (49), VCN-01, with tropism for RB-

deficient tumor cells (Retinoblastoma) (50), and CAdVEC, a binary

vector, derived from an oncolytic adenovirus and a helper-

dependent adenovirus and with integrated genes for IL12 and

PDL1 (CAdVECIL12_PDL1) and HER2 (human epidermal

growth factor receptor 2) (51). Among the herpesvirus-based

vectors tested are HF10, which can induce tumor necrosis in a

CD8+ T lymphocyte-dependent manner and the release of several

cytokines including IL2, IL12, TNF alfa, IFN alpha, IFN beta and

IFN gamma (52), and ONCR-177, derived from HSV1, containing

genes for IL12, CCL4, for PD1 and CTLA4 antagonists and the

sequence for the extracellular domain of FLT3LG and inducing T

lymphocyte and NK cell activation, and dendritic cell expansion

and recruitment (53). Other viruses tested in antitumor therapy are:

MV-NIS, cavatak (Coxsackievirus A21 or CVA21), Reolysin

(Pelareorep), GL-ONC1 (GLV-1h68), and JX-594 (Pexa-Vec),
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while T-VEC (thalimogene laherparepvec), derived from HSV1,

Rigvir (Riga virus), an unmodified picornavirus ECHO-7 (Enteric

Cytopathogenic Human Orphan type 7), and Oncorine (H101), a

modified adenovirus, are effectively used in the treatment of some

cancers (54).
2 Synergistic effect of microbiota and
anticancer therapy

The gut microbiota has long been known to play an important

role in maintaining health and triggering disease, with increasing

evidence recently also accumulating on its positive involvement in

modulating the effectiveness of chemotherapy and immunotherapy

(55). On the other hand, there are studies showing that ablation of

the gut microbiota by antibiotics reduces the efficacy of some cancer

treatments (56). The mechanisms by which the microbiota

promotes positive response to treatment are not fully known, but

various studies in the field suggest that they include epigenetic

regulation of gene expression, modulation of immune response,

enzymatic degradation and drug metabolism (55).

Administered in low doses, cyclophosphamide (CTX), an

alkylating agent with antiangiogenic and immunostimulatory

effects, causes translocation of Gram-positive intestinal bacteria,

such as Enterococcus hirae, to secondary lymphoid organs,

stimulating intratumorally increase in the TCD8+/TCD4+ ratio

(56) and differentiation of CD4+ T helper 17 (Th17) lymphocytes.

Th17 lymphocytes induce an inflammatory reaction in tumor

tissues that increases the tumoricidal effect of CTX (57). On the

other hand, during CTX treatment, Barnesiella intestinihominis

accumulates in the colon and promotes infiltration of Tgd
lymphocytes into tumor lesions, where they produce IFN gamma

(56). These effects do not occur in germ-free mice, which easily

acquire resistance to CTX (57).

CpG oligonucleotides are used in cancer immunotherapy. They

form a complex with the TLR9 receptor (Toll-like receptor 9) and

activate macrophages, monocytes, dendritic cells, NK cells and B

and T lymphocytes, fostering the synthesis of INF alpha (58). The

intestinal microorganisms, in particular Ruminococcus sp. and

Alistipes shahii, are positively correlated with TNF and granzyme

B secretion and play an important role in triggering an antitumor

immune response (23).

Oxaliplatin is a new-generation chemotherapeutic agent used in

the first-line treatment of many cancers, including skin and

advanced cancers of the appendix, colon and rectum. Its

mechanism of action is based on the delivery of platinum ions

into the nuclei of tumor cells, where they form adducts with genetic

material, block replication and cause cell death (59). Oxaliplatin has

lower toxicity and higher efficacy than previous similar drugs

(cisplatin, carboplatin) and, unlike them, induces immunogenic

cell death and promotes anti-tumor T-lymphocyte immunity.

Administered to laboratory animals with intact gut microbiota,

oxaliplatin destroys subcutaneous EL4 tumors and prolongs

survival, an activity greatly diminished in previously antibiotic-

treated animals. Finally, germ-free animals did not respond to

oxaliplatin treatment (60). Among the microorganisms that
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contribute to oxaliplatin efficacy are Bacteroides fragilis, which

stimulates infiltration of CD8+ cytotoxic T lymphocytes into the

tumor microenvironment (61), and microorganisms of the genera

Ruminococcus, Clostridium (Clostridium butyricum), Eubacterium

(Eubacterium hallii and Eubacterium rectale), Coprococcus,

Faecalibacterium, Butyrivibrio etc., which produce butyric acid

(62). This is a short-chain fatty acid that, in low concentration,

enhances the activity of tumor-infiltrating CD8+ cytotoxic T

lymphocytes and, in synergy with the probiotic Bifidobacterium

bifidum, causes increased production of granzyme B (63).

Fluoropyrimidines are fluorinated derivatives of uracil and are

used as antimetabolites in the treatment of several types of cancers

to induce DNA breaks, disruption of DNA replication and RNA

synthesis, and ultimately cell death (64, 65). These drugs, such as

intravenously administered 5-fluorouracil (5-FU) and orally

administered capecitabine, are predominantly converted in tumor

cells and liver to the cytotoxic 5-fluorouracil form of thymidine

phosphorylase. In the presence of 5-fluorouracil, Lactobacillus

acidophilus CL1285 and Lactobacillus casei LBC80R strains

induce apoptosis of LS513 human colorectal cancer cells (66), and

in HER2-negative metastatic breast cancer, the abundance of

microorganisms such as Slackia and Blautia obeum is associated

with progression-free survival (67).

CTLA4 inhibitors are a group of drugs designed to block

CTLA4 (cytotoxic T-lymphocyte-associated protein 4)/CD152

(cluster of differentiation 152) activity. This receptor is expressed

on the surface of regulatory T lymphocytes and, by binding to B7.1

(CD80) protein expressed by cytotoxic T lymphocytes, attenuates

their activity (22). Therapeutic blockade of CTLA4 is achieved with

immune inhibitors of CTLA4, such as the antibody ipilimumab,

which can restore anti-tumor activity to cytotoxic T lymphocytes.

Administration of ipilimumab induces intestinal dysbiosis, marked

by multiplication of bacteria of the Clostridiales genera and

reduction of those of the Bacteroidales and Burkholderiales

genera, while the colony density of Bacteroides fragilis appears to

be unaffected by it (22). Moreover, the high density of Bacteroides

fragilis stimulated by ipilimumab (23, 25)] is associated with

reduced tumor volume. Enterococcus faecium induces synergistic

antitumor effects of CTLA4 inhibitors via peptidoglycan fragments,

which activate CX3CR1+ monocytes, stimulate cytotoxic

lymphocytes to produce granzyme B, and reduce the number of

tumor-associated macrophages (23).

PD1 (Programmed cell death 1) and PDL1 (Programmed cell

death ligand 1) inhibitors, are immunosuppressors of T

lymphocytes, impair their function and promote tumor

proliferation and invasiveness (68), and their antagonists are used

in the treatment of cancers, including the anti-PD1-directed

monoclonal antibody products nivolumab, pembrolizumab and

durvalumab, and the anti-PDL1-directed atezolizumab and

avelumab (69), which specifically target and destroy tumor cells.

The presence of some bacterial species in the gut of people with

cancer may amplify the immune response of PD1- and PDL1-

directed products and prolong their survival. Thus, Bifidobacterium

bifidum , Bifidobacterium longum , Bifidobacterium breve,

Bifidobacterium pseudolongum, Akkermansia muciniphila ATCC

BAA-835 and Faecalibacterium prausnitzii enhance the activity of
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anti-PD1 antibodies (22, 23). Enterococcus faecium has synergistic

action with PD1 inhibitors and PDL1 inhibitors via peptidoglycan

fragments (23), and Faecalibacterium sp. appears to be associated

with anti-PDL1 response (70).

The presence of Escherichia coli, Listeria welshimeri,

Bifidobacterium breve, Lactococcus lactis and Lactobacillus sp. in

the gastrointestinal tract of people with lung or prostate carcinomas

has a synergistic effect with some antitumor drugs. Thus,

Escherichia coli is associated with enhanced activity of tretazicar

(CB1954), fludarabine phosphate, 5-fluorocytosine, 6-

mercaptopurine-2-deoxyriboside and gemcitabine, Listeria

welshimeri with that of fludarabine phosphate and tretazicar

(CB1954) (71), Bifidobacterium breve and Lactococcus lactis with

that of tretazicar (CB1954), and Lactobacillus sp., with that of 5-

fluorocytosine (72).
3 Use of probiotics, prebiotics,
synbiotics and postbiotics as adjuvants
in cancer treatment

Probiotics are cultures of living microbial cells that colonize and

benefit the human body. They naturally define the state of eubiosis

and can be affected by antibiotic use, different diets and infections

with different pathogens. Among the diets that favor their

development are those containing prebiotics, oligosaccharides or

other non-digestible, fermentable compounds that modify the

structure and/or activity of the gut microbiota, with beneficial

effects on health. Of these, only fructo-oligosaccharides and

galacto-oligosaccharides are generally considered safe, while a wider

range of prebiotics, including pectin oligosaccharides, xylo-

oligosaccharides, isomalto-oligosaccharides, gluco-oligosaccharides,

mannan-oligosaccharides, gentio-oligosaccharides, soybean

oligosaccharides, chito-oligosaccharides and polydextrose are still

being evaluated for safety, and the number of prebiotics that will

become safe may increase in the future (73).

Gut colonization with probiotics, including bacteria

Bifidobacterium infantis, Lactobacillus acidophilus, Enterococcus

faecalis and Bacillus cereus, inhibits the growth of pathogenic

microorganisms, including Desulfovibrio, Mucispirillum and

Odoribacter, helping to reduce the risk of colon cancer and

associated colitis, and the probiotic yeast Saccharomyces boulardii

inhibits Bacillota, Proteobacteria and Tenericutes, promotes the

growth of Bacteroidetes, with metabolic modification, and is

indicated in the treatment of obesity and type 2 diabetes (74).

Probiotics regulate intestinal transit, restore and maintain gut

microbiota after antibiotic treatment, reduce intestinal

inflammation, secrete butyric acid and propionic acid (short-chain

fatty acids) and may contribute to the reduction of tumor volume and

number/volume of metastases, acting synergistically with anti-tumor

drugs (75, 76). In murine melanoma, short-chain fatty acids

synthesized in the intestine and transported via the bloodstream

stimulate CCL20 (C-C Motif Chemokine Ligand 20) expression in

endothelial cells in lung metastases, recruitment of Th17

lymphocytes, and reduction in the number of lung metastases (77).
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In experiments on human intestinal Caco-2 cells whose tight

junctions were disrupted to reconstitute conditions in small

intestinal necrotizing colitis, the probiotics Lactobacillus rhamnosus

and Lactobacillus plantarum restored these junctions, with the cluster

of cells regaining intestinal barrier function (78). In murine breast

cancer, administration of milk fermented with Lactobacillus casei

CRL431 reduces the secretion of the pro-angiogenic cytokine IL6, and

similarly Lactobacillus reuteri isolated from human milk increases the

proportion of CD8+/CD4+ T lymphocytes, delaying tumor

development (79). Multiple observations on the beneficial effects of

probiotics indicate the use of probiotic bacterial strains, especially

from the genera Lactobacillus, Bifidobacterium, Lactococcus,

Streptococcus, Enterococcus, and, less so, from the genera Bacillus

and Saccharomyces, for colonization of the gut after antibiotic

treatment, which unbalances the gut microbiota.

Furthermore, a diet enriched in Lactobacillus acidophilus, such

as some cheeses, some kefir, kombucha, is correlated with reduced

risk of colorectal cancer incidence in mice. Lactobacillus rhamnosus

GG strain has proapoptotic and antiproliferative effect on murine

(HGC-27) and human (Caco-2, DLD-1 and HT-29) colon

carcinoma cells, reducing IL8 levels, Bacillus polyfermenticus

species, Bacillus subtilis, Bifidobacterium lactis, Bifidobacterium

adolescentis, Clostridium butyricum, Enterococcus faecium,

Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus

fermentum, Lactobacillus delbrueckii, Lactobacillus helveticus,

Lactobacillus paracasei, Lactobacillus pentosus, Lactobacillus

plantarum, Lactobacillus salivarius, Lactococcus lactis, Pediococcus

pentosaceus, Propionibacterium acidopropionici and Streptococcus

thermophilus reduce the potency of Caco-2, HT-29, SW1116,

HCT116, SW480, DLD-1 and LoVo colon carcinoma cells (75),

Lactobacillus acidophilus SNUL strains, Lactobacillus casei YIT9029

and Bifidobacterium longum HY8001 suppress proliferation of

human colorectal carcinoma SNUC2A and gastric carcinoma

SNU1 cells and Bacillus polyfermenticus inhibits colony formation

of human colon epithelial cells NMC460. These studies and those

revealing immunomodulatory effects of probiotics on cytotoxic T

lymphocytes and NK cells indicate their suitability for inclusion in

adjuvant therapy, alongside chemotherapy and immunotherapy, in

the treatment of some cancers (80).

Synbiotics are combinations between probiotic microorganisms

and specific prebiotic compounds, which have the advantage of

their simultaneous administration and promote the survival,

growth (81) and rapid colonization of probiotics in the gut in a

short time, restoring balance and inducing eubiosis state. Synbiotic

containing the probiotic Lactobacillus gasseri 505 and prebiotic

consisting of Maclura tricuspidata Carrière (synonym Cudrania

tricuspidata Bureau) leaf extract in fermented milk shows

protection against azoxymethane/dextran sodium sulfate-induced

colitis and associated colon carcinoma. It suppresses the incidence

of colonic tumors and reduces colonic mucosal lesion formation by

inhibiting the secretion of the pro-inflammatory cytokines TNF-a,
IFN-g, IL1-b and IL-6, the inflammation-associated enzymes iNOS

and COX2 and the anti-apoptotic factors Bcl2 and BclxL,

stimulating the expression of the anti-inflammatory cytokines IL4

and IL10 and the pro-apoptotic factors Tp53, p21 and Bax. At the

same time, the synbiotic combination inhibited the growth of
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bacteria of the genus Staphylococcus and maintained the growth of

bacteria of the genera Lactobacillus, Bifidobacterium and

Akkermansia, which produce short-chain fatty acids and have

antitumor effects, suggesting that synbiotic administration may be

a promising adjuvant therapy for colorectal carcinoma (82).

Postbiotics are molecules, cell fragments or whole cells derived

from microbial cells after they have been killed or inactivated, that

produce beneficial health effects. Thus, in viable or inactivated form,

Bifidobacterium bifidum MIMBb75 reduces the effects of irritable

bowel syndrome, Lactobacillus gasseri CP2305 in viable form has

the same effect and in inactivated form regulates bowel function,

and Akkermansia muciniphila ATCC BAA-835 in viable or

inactivated form improves the metabolism of overweight or obese

people (83) and can be used in the prevention of certain types of

tumors. On tumor cell lines, postbiotics produce some effects that

recommend them as adjuvants in the treatment of some neoplasia.

In cervical cancer, acellular Lactobacillus rhamnosus supernatant

induces apoptosis of HeLa cells; in colorectal cancer, short chain

fatty acid from Clostridium butyricum activates the Wnt/b-catenin
signaling pathway in HCT-116, Caco-2 and HCT-8 cells, cell-free

pentasaccharide from Lactobacillus acidophilus induces apoptosis of

Caco-2 cells, cell-free supernatant from Lactobacillus fermentum

induces apoptosis of HT-29, HCT-116, DLD-1 and WiDr cells,

heat-killed Lactobacillus kefiri is apoptotic for HT-29 cell line,

Lactobacillus paracasei IMPC2.1 and heat-killed Lactobacillus

rhamnosus GG induce apoptosis of DLD-1 cells, cell-free

supernatant from Lactobacillus pentosus Miny-148 activates cell-

mediated cytotoxicity against HT-29 cells, and heat-killed acellular

extract of Lactobacillus plantarum A7 activates cell-mediated

cytotoxicity against Caco-2 and HT-29 cells; in gastric cancer,

heat-killed Lactobacillus paracasei IMPC2.1 induces apoptosis of

HGC-27 cells; in breast cancer, cell-free supernatant of Escherichia

coli, cell-free pentasaccharide from Lactobacillus acidophilus and

heat-killed, cytoplasmic fractions of Enterococcus faecalis and

Staphylococcus hominis induce apoptosis of MCF-7 cells, short

chain fatty acid from Escherichia coli KUB-36 having anti-

inflammatory effect, acellular extracts from heat-killed

Lactobacillus acidophilus KP94283 and Lactobacillus plantarum

KP894100 produce cell-induced cytotoxicity on the MCF-7 line,

acellular extract of Lactobacillus acidipiscis ITA44 and Lactobacillus

pentosus ITA23 produce cell-induced cytotoxicity on the MDA-

MB-23 line, and heat-killed Saccharomyces cerevisiae induce

apoptosis of MCF-7, ZR-75-1 and MDA-MB-23 cells; in lung

carcinoma, cell-free supernatant of heat-killed Mycobacterium

indicus pranii induces apoptosis and cell cytotoxicity of A549 and

CaSki cells, and on the A375 skin cancer cell line, cell-free extract of

Lactobacillus plantarum L-14 induces apoptosis. In vivo studies

indicate apoptotic or immune-stimulating activity on colorectal,

breast and pancreatic cancers (84) (Figure 2).
4 The role of the microbiota in
cancer therapy

Cancer chemotherapy, referring to the use of traditional

cytotoxic chemotherapeutic agents, has been shown to be
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impacted by the gut microbiome in murine models, particularly

with therapies involving cyclophosphamide (CTX) and oxaliplatin

(85). Cyclophosphamide can alter the composition of the gut

microbiota, leading to the translocation of certain gram-positive

bacteria into secondary lymphoid organs triggering the production

of “pathogenic” T helper 17 (pTh17) cells while enhancing the

response of memory T helper 1 (Th1) cells, thereby bolstering the

host immune system (85).

The negative effects of microbiota on chemotherapy are of three

types: metabolization and reduced efficacy, increased toxicity with

adverse effects, and development of resistance to treatment. For

example, the bacterial enzyme uridine phosphorylase (homologue

of human uridine phosphorylase) is involved in modulating the

activity of capecitabine metabolites. Uridine phosphorylase has a

dual role in cancer and is secreted by tumor cells in marginally

invasive regions of tumors, especially in those in which TP53

(negative regulator of uridine phosphorylase) is inactivated, and

in macrophages in tumor stroma, by a mechanism that includes

TNFA and NF-kB, but also by some bacteria, such as Escherichia

coli and Parabacteroides distasonis (86). Gemcitabine, a cytidine

analogue used in the first-line treatment of solid tumors of the

bladder, pancreas, ovary and breast including pancreatic ductal

adenocarcinoma, suppresses cell cycle progression from G1 to S

phase and kills cells with active DNA synthesis during S phase (87).

In colon carcinoma models, gemcitabine (2’,2’-difluoro-2’-

deoxycytidine) is converted to 2’,2’-difluorodeoxycytidine, an

inactive metabolite, by an isoform of bacterial cytidine deaminase,

produced by Mycoplasma hyorhinis, other intratumoral Gamma-

proteobacteria and the oral pathogenic bacteria Aggregatibacter

actinomycetemcomitans and Porphyromonas gingivalis, which by

this mechanism reduce its efficacy by 10 to 60-fold and induce

tumor cell resistance to this drug (88).

Present in the oral cavity, where it causes periodontal disease,

Fusobacterium nucleatum induces overexpression of TLR4 and

BIRC3 (Baculoviral IAP Repeat Containing 3), activates the

TLR4-MYD88d and ULK1/ATG7 autophagy network signaling

pathways, and genomic loss of miR-18a* and miR-4802, favoring

the acquisition of resistance to 5-fluorouracil treatment in people

with colorectal cancer (89). Treatment with 5-fluorouracil produces

gut dysbiosis, characterized by overgrowth of Lachnospiracea_NK4

A136, Bacteroides, Odoribacter, Mucispirillum and Blautia and

reduction of Coriobacteria and Deltaproteobacteria taxa (90), with

induction of side effects, and oral dysbiosis, favoring depletion in

Streptococcus, Actinomyces and Veillonella and multiplication of

Prevotella oris and Fusobacterium nucleatum, which favor the

occurrence of oral mucositis, as a side effect of chemotherapy (91).

Gut microbiota and fecal microbiota transplantation may play

an important role in the limitation of oxaliplatin adverse effects,

including peripheral neurotoxicity (numbness of extremities,

hyperalgesia), which are not present in laboratory animals

pretreated with a mixture of antibiotics (92).

Doxorubicin is a drug of the anthracycline class, naturally

produced by the actinobacterium Streptomyces peucetius var.

casieus and used in the treatment of several types of tumors,

which it inhibits by inducing damage to genetic material.

However, taken in high doses, it has side effects on the heart.
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FIGURE 2

Activity of probiotics, synbiotics and postbiotics. (A). Integrative scheme of probiotic and synbiotic activity. They inhibit the growth of pathogenic
microorganisms which cause colitis and colon cancer, regulate intestinal transit, determine the secretion of anti-inflammatory and pro-apoptotic
molecules, reduce intestinal inflammation, produce short-chain fatty acids with anti-tumor effects and show a synergistic effect with anti-tumor
drugs, inhibit the secretion of pro-tumor molecules (TNF alpha, IFN gamma, IL1beta, IL6, IL8, INOS, COX2, BCL2, BCLXL), contribute to the
multiplication of beneficial microorganisms, which improve the metabolism of obese people and those with type 2 diabetes, and contribute to
restoring the barrier function of the intestine by restoring tight junctions. (B). Activity of postbiotic products. The effects of relieving symptoms of
irritable bowel syndrome, improving intestinal function and regulating the metabolism of obese and overweight people, are present at a systemic
level, the fourth, relating to the reduction of inflammation, is produced at a local level and the others are observed in vitro, on different cell lines.
Unless one postbiotic that induces activation of the Wnt/beta-catenin signaling pathway (this is a signaling pathway with a dual role and which can
inhibit tumor development), all other arrows indicate tumor suppressive activity, either through apoptosis, cytotoxicity or both effects. Each cell type
category is marked by a specific color: with purple, cervical cancer cell line HeLa; with pink-brown, colorectal cancer cell lines HCT-116, Caco-2,
HCT-8, HT-29, DLD-1 and WiDr; with magenta, gastric cancer cell line HGC-27; with red, breast cancer cell lines MCF-7, ZR-75-1 and MDA-MB-23;
with blue, long carcinoma cell lines A549 and CaSki; and with orange, skin cancer cell line A375.
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Under anaerobic conditions, the electron transport chain NADH

dehydrogenase enzyme produced by Streptomyces WAC04685

inactivates it by deglycosylation (93), and a molybdopterin-

dependent enzyme from Escherichia coli BW25113 and Klebsiella

pneumoniae degrades it, reducing its efficiency. Raoultella

planticola has an antagonistic effect on them, restoring the

therapeutic efficacy of doxorubicin (94).

Irinotecan/CPT-11 is a drug used together with 5-fluorouracil

in the treatment of colon cancer. Administered in glucuronic acid

conjugated form, irinotecan is deconjugated by the enzyme b-
glucuronidase secreted by Escherichia coli, favoring the

manifestation of drug toxicity, reduced antitumor efficacy and the

onset of severe diarrhea, one of its main side effects (95).

Administration of a low dose of amoxapine, an antidepressant

drug that inhibits b-glucuronidase without affecting the gut

microbiota, together with irinotecan prevents diarrhea and

contributes to the manifestation of the antitumor activity of the

latter (96).

Preclinical studies have demonstrated that depletion of the gut

microbiota can sustain the survival of transferred T cells in a

cervical cancer model treated with adoptive T cell therapy (ACT),

reliant on systemic CD8a + dendritic cells (DCs) and interleukin-12

(IL12) (97).

Specific members of the gut microbiome, namely Enterococcus

hirae and B. intestinihominis, can impact the clinical efficacy of CTX

in cancer treatment by reducing regulatory T cells and enhancing

the immune response of MHC class I-restricted cytotoxic T cells

(CTLs) against the tumor, thereby modifying the tumor

microenvironment (56).

Another study conducted on the FOLFOX chemotherapy

regimen (comprising 5-FU, leucovorin calcium, and oxaliplatin)

in a colorectal cancer model revealed that certain microbiome

compositions can trigger the activation of nuclear transcription

factor-kB (NF-kB) and enhance the production of interleukin-6

(IL-6) and tumor necrosis factor (TNF). This cascade promotes

inflammation and leads to mucosal damage (98). However,

the probiotic Lactobacillus rhamnosus has been shown to

mitigate chemotherapy-induced mucositis by modulating the

proinflammatory response and suppressing intrinsic apoptosis in

intestinal injury.

The intestinal microbiota can influence the adverse drug

reactions associated with irinotecan-based chemotherapy by

reactivating the metabolite of SN-38 glucuronide (99). In the study

by Guthrie et al., the abundance of Faecalibacterium prausnitzii and

specific Bacteroides species varied significantly among cohorts

stratified based on glucuronide metabolism. Inhibiting microbial b-
glucuronidases could potentially alleviate severe side effects induced

by irinotecan, such as severe diarrhea (99).

The advent of immune checkpoint inhibitors (ICIs) in cancer

treatment, encompassing monoclonal antibodies directed against

programmed death receptor (PD-1), programmed death receptor

ligand (PD-L1), and cytotoxic T lymphocyte-associated protein

4 (CTLA-4) receptor, has heralded a transformative era in

cancer therapy, drastically altering the prognosis of numerous

malignancies. These agents are extensively employed in the

management of advanced-stage cancer but the emergence of
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primary and secondary resistance to cancer treatment poses a

significant challenge and can profoundly impact patient outcomes

(100). Recently, emerging evidence has underscored the profound

influence of the gut microbiota on tumor response to

ICIs, as demonstrated in both clinical cohorts and preclinical

mouse models.

Several studies have identified Bacteroidetes as a biomarker

indicating non-responsiveness to immune checkpoint inhibitors in

patients with metastatic melanoma (MM) (101, 102).(Its presence

may reduce response rates and dampen systemic and antitumor

immunity, potentially lowering the risk of local inflammation such

as ICI-induced colitis. However, specific strains of Bacteroidetes,

such as Bacteroides thetaiotamicron and B. caccae, have been linked

to an effective therapeutic response (103).

Radiation therapy can also trigger apoptosis of intestinal cells

and disrupt the composition of the gut microbiome, resulting in

intestinal inflammation, which can manifest as symptoms like

diarrhea and fatigue (104). Side effects such as fatigue, nausea,

vomiting, and diarrhea associated with radiation therapy may be

alleviated by probiotics like Lachnospiraceae and Enterococcaceae,

indicating a potential for reducing radiation-induced damage

through modulation of the gut microbiome (105). Notably,

findings from a randomized clinical trial revealed that combining

probiotics with radiation therapy in patients with nasopharyngeal

carcinoma undergoing concurrent radiochemotherapy could

significantly enhance host immunity and alleviate oral mucositis

(OM) associated with radiochemotherapy by altering the gut

microbiota (106).
5 Current challenges - the
intratumor microbiota

Current research is focused on locally resident microbiota and

intratumor microbiota. Locally resident microbiota, particularly

those inhabiting the gastrointestinal tract and other parts of the

digestive system, have been identified as closely linked to the

carcinogenesis of their respective organs. Previous studies have

demonstrated associations between susceptibility to various

cancers, such as oral squamous cell carcinoma (OSCC),

esophageal cancer, gastric cancer, gastric diffuse large B cell

lymphoma (DLBCL), colorectal cancer (CRC), gastric mucosa-

associated lymphoid tissue lymphoma (MALT), hepatocellular

carcinoma (HCC), pancreatic cancer, gallbladder cancer, lung

cancer, breast cancer, and prostate cancer, and locally resident

microbiota (107).

However, the relationship between locally resident microbiota

and the efficacy of therapy remains under investigation. Notably, for

patients with colorectal cancer (CRC), the gut microbiome also

constitutes the locally resident microbiota at the tumor site. The

significance of the intratumor microbiome in gastrointestinal

cancer also plays a pivotal role in determining the effectiveness of

cancer treatment. In a study focusing on murine colon cancer,

Geller discovered that intratumor Gammaproteobacteria can

impact gemcitabine metabolism, leading to resistance against the

drug (88).
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Eliminating bacteria residing within pancreatic cancer was

associated with the immune response to PDAC. Modifying the

tumor microenvironment to hinder the infiltration of myeloid-

derived suppressor cells (MDSCs) promoted the differentiation of

M1 macrophages which, in turn, facilitated the differentiation of

Th1 cells and augmented the population of activated CD4+ and

CD8+ T cells (108). The elimination of bacteria could potentially

alter the response of PDAC patients to ICIs by increasing the

expression of PD-1. Regarding the precise mechanism of immune

reprogramming, the microbiome associated with PDAC can

activate specific Toll-like receptors in monocytic cells, leading to

the induction of a tolerogenic immune program that suppresses

both innate and adaptive immunity (108).

A recent study compared bronchial brushing samples from 24

lung cancer patients and 18 healthy controls to investigate the airway

microbiome. Samples from patients included unilateral lobar tumor

sites and paired samples from both the cancerous and noncancerous

sites. The findings revealed differences in the microbiota profiles

between cancerous sites of lung cancer patients and healthy controls,

with lower microbial diversity observed in cancerous sites and healthy

controls compared to noncancerous sites. The tumor tissue exhibited

higher abundance of Streptococcus and Neisseria, whereas

Staphylococcus and Dialister were more prevalent in normal tissue.

Additionally, there was a gradual shift in microbiota abundance from

normal tissue to noncancerous site tissue to cancerous tissue in lung

cancer patients. These findings suggest that the lung microbiota can

significantly influence the tumor microenvironment, impacting

cancer progression and patient prognosis beyond just the cancerous

site (109).

The microbiota within tumors could serve as a source of non-

self antigens, capable of being recognized by T cells and influencing

responses to therapy. For instance, a recent analysis of metastases

from 17 melanoma patients revealed a variety of peptides binding to

MHC class I and MHC class II, originating from 41 bacterial species

(110). Moreover, T cells specific to the microbiota might contribute

to certain immune checkpoint blockade (ICB)-induced immune-

related adverse events. An investigation demonstrated that ICB-

induced dermatitis might arise from T cells targeting epithelial cells

presenting antigens from skin commensals. In mice, the

introduction of Staphylococcus epidermidis to the skin during

anti-CTLA4 treatment prompted epithelial inflammation driven

by S. epidermidis-specific T cells producing IL-17 (110).

Intratumoral microbes have the ability to evade immune

responses, impacting tumor development by fostering an

immunosuppressive environment and deactivating immune cells.

For example, F. nucleatum influences the tumor immune landscape

by specifically attracting tumor-infiltrating myeloid cells such as

CD11b+ myeloid cells, MDSCs, tumor-associated macrophages,

classical myeloid DCs, and CD103+ regulatory DCs, thereby

enhancing tumorigenesis (111). Moreover, F. nucleatum has the

ability to attach to and trigger the T Cell immunoreceptor with

immunoglobulin and immunoreceptor tyrosine-based inhibitory

motif domains (TIGIT), as well as the carcinoembryonic antigen

cell adhesion molecule 1 (CEACAM1) receptors present on human

NK cells and other lymphocytes thereby suppressing the function of

anti-tumor immune cells in colorectal cancer (CRC) (112).
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In a study conducted on mice, it was found that Pasteurella

showed a positive correlation with cytotoxic CD8+ tumor-infiltrating

lymphocytes (TILs) and a negative correlation with M2-like

macrophages. Conversely, Coriobacteriaceae exhibited a positive

association with M2-like macrophages and a negative association

with CD8+ cells. These various immune reactions play a significant

role in the onset and progression of lung tumors (113).

While the intratumor microbiome can diminish the potency of

chemotherapeutic agents, suppress the expression of major

histocompatibility complex (MHC) class I, and elevate MDSC

numbers, it can also prompt alternative immune checkpoints and

impede lymphocyte clonal expansion (114). Conversely, it has the

capacity to directly engage the innate immune system, generate anti-

inflammatory cytokines, and heighten the expression of targetable

checkpoint molecules, potentially bolstering cancer immunity (114).

This dual impact on the immune microenvironment highlights the

complexity of the tumor microbiome and warrants further

investigation across diverse cancer types.

In essence, the influence of locally resident microbiota or

intratumor microbiota on cancer therapy remains inadequately

explored (115). Although the roles of certain locally resident or

intratumor bacteria have been confirmed in select cases, the

majority of studies have focused on gut-related scenarios.

Evidence regarding the interaction between cancer therapy

efficacy and locally resident microbiota in other areas of the

digestive tract is lacking. Nevertheless, there are indications

linking locally resident microbiota with local inflammation and

cancer progression, suggesting that modifying the microbiome

could enhance patient prognosis.
6 Conclusions

Microorganisms are an important component of the human

organism, forming a dense ‘organ’ with a specific signature of each

individual and with a role in nutrition, in regulating epithelial

development and in training innate immunity. The body includes

numerous non-sterile sites, each developing a characteristic

microbiota. Under conditions of eubiosis, it develops relationships

of commensalism and symbiosis with the organism, contributing to

an important extent to health and protecting it from some diseases,

but under conditions of dysbiosis, microorganisms are involved in

several pathologies, including cancer. Many recent papers highlight

the roles of human microbiota in different aspects of carcinogenesis,

from cancer susceptibility and progression to anticancer therapy

response, but the elucidation of the mechanistic implications is still

in its infancy. Microbiota can modulate anticancer therapy efficacy

and toxicity, and also influence resistance to anti-cancer drugs due

to its ability to metabolize drugs and xenobiotics and to modulate

host inflammation and immune responses. Microbiome-based

therapeutic interventions may be able to correct dysbiosis,

maximize the response to anticancer treatments and prevent

carriage of antimicrobial-resistant pathogens. A better knowledge

of gut microbiota roles in cancer will enable us to develop novel

microbiome derived biomarkers, anticancer treatment strategies

and subsequently improve the cancer patients’ outcome.
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