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Introduction: While radiotherapy has long been recognized for its ability to

directly ablate cancer cells through necrosis or apoptosis, radiotherapy-induced

abscopal effect suggests that its impact extends beyond local tumor destruction

thanks to immune response. Cellular proliferation and necrosis have been

extensively studied using mathematical models that simulate tumor growth,

such as Gompertz law, and the radiation effects, such as the linear-quadratic

model. However, the effectiveness of radiotherapy-induced immune responses

may vary among patients due to individual differences in radiation sensitivity and

other factors.

Methods: We present a novel macroscopic approach designed to quantitatively

analyze the intricate dynamics governing the interactions among the immune

system, radiotherapy, and tumor progression. Building upon previous research

demonstrating the synergistic effects of radiotherapy and immunotherapy in

cancer treatment, we provide a comprehensive mathematical framework for

understanding the underlying mechanisms driving these interactions.

Results: Our method leverages macroscopic observations and mathematical

modeling to capture the overarching dynamics of this interplay, offering valuable

insights for optimizing cancer treatment strategies. One shows that Gompertz

law can describe therapy effects with two effective parameters. This result

permits quantitative data analyses, which give useful indications for the disease

progression and clinical decisions.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1373738/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1373738/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1373738/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1373738/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1373738/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1373738&domain=pdf&date_stamp=2024-05-08
mailto:paolo.castorina@ct.infn.it
https://doi.org/10.3389/fimmu.2024.1373738
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1373738
https://www.frontiersin.org/journals/immunology


Castorina et al. 10.3389/fimmu.2024.1373738

Frontiers in Immunology
Discussion: Through validation against diverse data sets from the literature, we

demonstrate the reliability and versatility of our approach in predicting the time

evolution of the disease and assessing the potential efficacy of radiotherapy-

immunotherapy combinations. This further supports the promising potential of

the abscopal effect, suggesting that in select cases, depending on tumor size, it

may confer full efficacy to radiotherapy.
KEYWORDS

mathematical modeling, Gompertz law, radiotherapy, immune response, abscopal
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1 Introduction

Immunological experiments during the last two decades have

answered many important questions related to the causal

relationship between chronic inflammation and carcinogenesis.

The presence of inflammatory cells in the cancer milieu raises the

question of the tumor progression despite a likely immune system

reaction to tumor antigens. This aspect is particularly important

since untreated tumors grow according to non-linear, macroscopic,

laws as the Gompertz law (GL) Gompertz (1); Norton (2); Vaghi

et al. (3) or the logistic one (LL) Verhulst (4); Vaghi et al. (3).

Therefore those growth patterns emerge, at a larger level of

magnification, from many microscopic biological factors, which

turn out to be summarized by simple mathematical descriptions.

Since prolonged inflammation is a hallmark of cancer Hiam-

Galvez et al. (5), initiating tumor genesis or supporting tumor

growth, and the global immune response is significantly altered

during tumor progression, immunotherapy is becoming a valid

option in cancer treatment. However, the immune response can be

detrimental rather than helpful [see, for example, Lin et al. (6)]:

individual auto-antibodies play an antagonist role in cancer, but the

agonist auto-antibody in some cancer patients turned out to be

deleterious and harmful.

Some preclinical and clinical evidence confirm the synergistic

action of radiotherapy (RT) and immunotherapy against the tumor

cells Zhao and Shao (7). Although The intrinsic sensitivity to

radiation is patient-specific Puglisi et al. (8); Puglisi et al. (9) and

may depend on different factors, RT is able to ablate cancer cells not

only by directly induced necrosis or apoptosis but also by triggering

an immune response that actively recruits immune cells within the

tumor microenvironment. For example, RT promotes the release of

tumor-associated antigens, which, once processed by antigen-

presenting cells (APCs), prime CD8+ and CD4+ T cells in the

draining lymph nodes. These lymphocytes attack both primary

tumor and metastatic sites, posing the biological basis of the in situ

vaccination driving the so-called abscopal effect Ngwa et al. (10);

Mole (11); Demaria et al. (12): RT induces a systemic behavior that

can activate the immune response against metastasis, i.e., in

locations that are far from the RT-treated primary tumor.
02
The involvement of the immune system has been demonstrated

in different experimental models such as melanoma Twyman-Saint

Victor et al. (13), colorectal Dovedi et al. (14) and breast cancers

Demaria et al. (15), but the clinical presentation where considered

anecdotal or at least rare.

Its rarity in clinical practice is likely due to the simultaneous

engagement of immune escape mechanisms, such as the

recruitment of regulatory CD4+ (Treg) and myeloid-derived

suppressor cells counterbalancing the anti-tumor CD8+ T cell-

mediated effects, and the tumor release of hypoxia-inducible

factors with pro-survival activity Ji et al. (16).

More generally, susceptibility to the abscopal effect has been

associated with several biological factors, such as tumor size or

oxygen levels in tumor tissues. Indeed, the presence of hypoxic

regions results in both increased resistance to the lethal effect of

radiation mediated by reactive oxygen species (ROS) production

and an immune suppressive tumor landscape ruled by Treg-

recruiting chemokines and impaired APC function McNamee

et al. (17); Castorina et al. (18)

Mathematical modeling approaches have become increasingly

abundant in describing immunotherapy and its synergy with RT

Dewan et al. (19) Agur and Vuk-PavlovićCheck that all equations

and special characters are displayed correctly. (20) Walker and

Enderling (21); Ng and Dai (22); Serre et al. (23) Gong et al. (24)

Marconi et al. (25); Vanpouille-Box et al. (26); Chakwizira et al.

(27); Kosinsky et al. (28); Liu et al. (29); Valentinuzzi et al. (30);

Friedrich et al. (31); Malinzi et al. (32); Bekker et al. (33). Indeed, the

complexity of cancer provides challenges and opportunities for new

developments, and mathematical formulations contribute by

helping to elucidate mechanisms and by quantitative predictions

that can be validated experimentally Agur and Vuk-Pavlović (20);

Altrock et al. (34); Brady and Enderling (35) .

A large part of mathematical models on tumor growth and

therapies are based on sets of coupled differential equations. The

number of equations increases together with the details of the

biological description and this implies a large number of parameters

and initial conditions to be specified. The detailed analyses are often

so complex to require surrogate models for a reliable determination

of the parameters Browning and Simpson (36).
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On the other hand, more economical models introduce a

macroscopic evolution of tumor growth and therapy with fewer

parameters and a coarse-grain dynamical evolution Norton (2);

Wheldon (37); Vaghi et al. (3); Guiot et al. (38); Castorina et al. (39);

Castorina et al. (40).

This is the key point to obtain an effective quantitative control

of the tumor progression. Indeed, microscopic models, which have

the advantage of a deep understanding of the biological dynamics,

of the physiologically-based pharmacokinetic [see for example

Maaß et al. (41)] and of the possible translation to different

populations/diseases, require many parameters and, although

some of them can be determined by previous analyses, the

parametric error propagation will produce a large band of

fluctuation in the prediction of the quantitative evolution of the

disease. Therefore we prefer to apply macroscopic growth laws of

the sigmoid family with two parameters. Our choice of the GL is due

to the result that untreated tumor growth has been better described

by it (see Vaghi et al. (3) for a recent study). Moreover, in a

transplantable rat tumor, it was shown that control and regrowth

curves after radiotherapy could be fitted by the same Gompertzian

law, provided adjustments for the initial lag and the estimated

number of clonogens immediately after irradiation were performed

[Jung et al. (42)]. Gompertzian growth has been assumed to

describe human tumor repopulation during fractional

radiotherapy also in Hansen et al. (43) and by O’Donoghue (44).

The main motivation of the proposed approach is, in our

opinion, its complementary role in the clinical evaluation of

disease progression, often based on macroscopic variables, and

the better parameter identification, thus increasing model

verifiability Braakman et al. (45).

Finally, this method offers a clear description of the complex

interplay between radiotherapy, immunotherapy, and tumor

progression, providing insights for advancing cancer treatment

strategies that harness the abscopal effect.

The paper is structured as follows: the mathematical model, based

on the GL and on the definition of the effective GL parameters, is

recalled in the next section (Appendices A, B and C contain the

corresponding calculations). Different macroscopic growth laws (as

the LL) can be applied, without changing the underlying method. The

emerging phenomenological approach, based on the suitable

redefinition of the two GL parameters to describe the data, is

reported in Section 3. The final sections are devoted to discussion

and to the possible clinical use of the phenomenological model.

2 Methods

The proposed method is based on the mathematical model

reported in detail in Appendices A, B and C in the Supplementary

Materials. In what follows, the assumptions and some exact results

are reported. Then, the phenomenological model is discussed.
2.1 Mathematical modeling

A general classification of macroscopic growth laws is reported

in Castorina et al. (39) Castorina and Blanchard (46). For a
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population N(t) they are solutions of a general differential

equation that can be written as

1
N tð Þ

dN tð Þ
dt

= f N tð Þ �;½ (1)

where f(N) is the specific growth rate and its N dependence

describes the feedback effects during the time evolution. If in

Equation 1 f(N) becomes constant, the growth follows an

exponential pattern.

The untreated tumor progression is described by the GL Norton

(2); Vaghi et al. (3), solution of the previous equation (see Data

Sheet 1) with

f N tð Þ½ � = a − k   ln 
NðtÞ
N0

= k   ln 
N∞

N tð Þ (2)

where a,k,N0 are constants that respectively indicate the

exponential growth, the limiting factor, the initial cell number

and N∞ is the carrying capacity (N∞ = N(0)exp(a/k)).

For untreated tumors, the GL emerges from microscopic,

biological mechanisms where natural/adaptive immunity is taken

into account Berendt and North (47); Gonzalez et al. (48); Castorina

and Carco’ (49) The further effects of immune therapy, I(t), can be

described by a modification of the previous Equation 2 as follows

(see for example Wheldon (37))

1
N tð Þ

dN tð Þ
dt

= k ln 
N ∞

N tð Þ � g I tð Þ (3)

where g is a constant.Notice that the sign of g indicates the

agonist or antagonist effect of the immune response: a negative g
increases the specific growth rate. The variable I(t) generically refers

to the passive immunity resulting from the injection of anti-cancer-

specific monoclonal antibodies i.e., the drug effects. However, it is,

in general, unknown and requires a specific model. An example is

the model of immunotherapeutic drug T11 target structure in the

progression of malignant gliomas Khajanchi and Ghosh (50)

Khajanchi and Banerjee (51).

The general solution of the previous equation and the IT effects on

the tumor progression are discussed in Mathematical Formalism. For

illustrative purposes, two specific cases are analyzed: I(t) = I(0) =

constant and I(t) = I(0)exp(−rt). The role of the therapy can be

assimilated to a redefinition of an effective carrying capacity (in the

first of the two cases) and, in general, in the introduction of effective,

time and therapy dependent, parameters aeff , keff or Neff
∞ , keff ,

whose quantitative relation with I(t) is given in Mathematical

Formalism. The introduction of an effective carrying capacity is well-

known in population dynamics Royama (52). For example, the

invention and diffusion of technologies lift the growth limit. Its

possible time dependence is usually included by (at least) another

differential equation, coupled with the growth equation. This will

increase the number of parameters and initial conditions and,

therefore, in our computational method the two effective parameters

will be determined by data fits, giving a phenomenological indication

about the disease progression.

There are different outcomes following an immune response to

cancer Lin et al. (6): i) a surveillance role that inhibits the initiation and
frontiersin.org
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progression of the cancer; ii) the possibility that under certain

conditions the immune response may nourish rather than curtail

tumor growth. In other terms, monoclonal antibodies can exert

antagonistic as well as sympathetic effects on tumor growth Lin

et al. (6).

This possibility translates into a direct comparison among the

parameters that describe the immunotherapy effects in Equation 3

and its solutions and the available data. For example, the

determination of the crucial sign of the constant g.
Let us now consider the combination of immune therapy (IT)

and radiotherapy (RT). As a first step, we study the case of

independent effects, i.e. no synergy between IT and RT.

The effect of radiotherapy is described by the linear quadratic

model (LQM). Denoting by N(t−),N(t+) respectively the cell number

before and after the single dose d at time t, the RT effect is given by

N(t+) = N(t−)e−D = N(t−)e−ad−bd
2

(4)

where a and b are constants (numerically b ≃ a/10) and d is the
dose, Van Leeuwen et al. (53). The result in Equation 4 assumes an

instantaneous effect of the RT, which could be, in general, not

strictly applicable. Also, In this case, the therapy and immune

response effects can be translated in the definition of effective

parameters of the GL (see Mathematical Formulation).

The number of tumor cells after nf treatments at time tn,tn+1,tn

+2,…tnf turns out to be (see Mathematical Formalism)

N(t+nf ) = N t0ð Þeln
N∞

N t0ð Þ 1−e
−k tnf

−t0ð Þh i
− �W(tnf ,t0)−Dnf (5)

with the functions Dnf and �W(tnf , t0) as described in

Mathematical Formalism.

According to Equation 5, if

ln
N∞

N t0ð Þ 1 − e
−k tnf −t0

� �" #
− �W(tnf , t0) − Dnf < 0 (6)

the tumor cell number decreases and the time evolution of the

diseases moves toward complete recovery.

Therefore, although RT and IT are considered independent, if

the effects of RT are such that

ln
N∞

N t0ð Þ 1 − e
−k tnf −t0

� �" #
≃ Dnf (7)

then, a small impact of the immunotherapy, �W, can produce a

tumor volume regression. Moreover, the critical conditions in

Equations (6, 7) depend on the fractioning of the radiotherapy,

since different schedules give different values of Dnf and
�W(tnf , t0).

Therefore, the previous conditions correspond to optimal control of

the therapy effects, Khajanchi and Banerjee (54); Khajanchi (55);

Khajanchi and Banerjee (56).

2.2 The synergy between immune and
radio therapies

In the macroscopic framework, the description of the synergy

between RT and IT requires a new term in the specific rate, which
Frontiers in Immunology 04
takes into account the immune response activated by RT, i.e.

1
N

dN
dt

= kln
N∞

N

� �
− g I tð Þ − dY(t)F(d, t) (8)

where d is a constant, F(d,t) is a function of the dose d and of the
time series of the treatments on the tumor, quantifying the cell-

killing effect of the adaptive immune response Y (t), triggered by the

RT. Y (t) is different from I(t) as it represents the outcome of the

active immunization due to antigenic peptides coming from

the disintegration of tissues hit by radiotherapy, and following the

inflammation. To be more specific, Y (t) represents the immune

response to tumor-associated antigens, promoted by the

inflammation context due to the damage perpetrated by RT. Also,

it must be specified that this immune response has a chance to exert

an effect only before evasion mechanisms are established by the

tumor (factors that are not counted in the present model).

If d = 0, F(d,t) = 0 there is no synergy. The specific form of the

function F(d,t) requires a microscopic model, however one expects

that the coupling Y (t)F(d,t), i.e. the immune activation due to RT,

has a typical time decay, t, after the single dose radiotherapy

described by the LQM. For the primary tumor, the parameter d is

small, i.e., d << 1 and the synergy is small. The abscopal effect is

described by considering a finite value of d for metastases that are

far away from the primary tumor location. The result for the time

evolution of the abscopal effect is given in Mathematical Formalism.
3 Results

According to the mathematical approach in the previous section

a phenomenological, simplified, method of analysis of the

experimental data emerges. Indeed, a large part of the therapy

and immune response effects can be assimilated to a redefinition of

the GL parameters, with time and treatment dependence, which

turns out to be detailed enough to compare with data. This

phenomenological, simpler, procedure facilitates the validation of

the model [Braakman et al. (45)] with respect to more complex

analytical approaches, as discussed later.

Moreover, the function I(t),W(t),Y (t) in the previous

differential equations are largely unknown, therefore the data fits

of the effective GL parameters (see the general formulas in

Mathematical Formalism) give model-independent information

about the role of IT and RT.
3.1 Analysis of experimental data -
immune therapy

In ref. Lin et al. (6) the different immune responses to cancer

have been described. The authors highlight the agonist

and antagonist effects of, respectively, AB93 and AB641

autoantibodies for the growth factor receptor TrkB in patients

with breast cancer. After injection of MDA-MB-231 cells in

immunodeficient mice they show the response to treatment, for

different dosages of autoantibodies, measuring tumor growth. In

particular, the data on the effects of AB641 and AB93 on tumor
frontiersin.org
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progression can be analyzed in the proposed macroscopic approach

by Equation 3, by redefining GL parameters. Initially, one has to fit

the untreated tumor progression data by GL to determine the

corresponding parameters. Then, one repeats the analysis with

immunotherapy. The results are shown in Figure 1, which clearly

reveal the agonist or antagonist role of the different antibodies.

The experimental result in the case of therapy can be fitted by

redefining the GL parameters with respect to the untreated ones

(see Equation S2, Equation S23 and Mathematical Formalism in

Supplementary Material). The values are reported in Table 1. The

agonist effects increase both parameters, producing faster growth,

corresponding to a negative g in Equation 3, whereas the

antagonistic effect induces tumor depletion. Notice that the

change in the GL parameters, i.e. of the therapy, implies a

modification of the exponential rate and the carrying capacity

with respect to the untreated tumor.

Non-linear curve fitting was made using Grace (version 5.1.25)

Dataset Grace (57), data fitted by GL effective parameters are

promising. The correlation coefficients and the root mean squared

relative errors are respectively given by (0.982,0.062),(0.977,0.052),

(0.995,0.051),(0.992,0.058),(0.996,0.04) for AB641/30 (red curve in

Figure 1), AB641/10 (blue), AB93/10 (green), AB93/30 (black

triangle) and untreated case.
Frontiers in Immunology 05
3.2 Analysis of experimental data - RT and
abscopal effect

The abscopal effect has been experimentally studied in Nesseler

et al. (58) by inoculation of undifferentiated fibrosarcoma cells

(FSA1) into immunocompetent mice to simulate primary and

metastatic conditions, successively divided in four treatment

groups: no treatment, anti-PD-1 monoclonal antibody alone, RT

alone, and combination of anti-PD-1 with RT.

Initially, only the effect of RT on the primary has been detected,

showing a critical dose administration for tumor regression

[Figure 2A of ref. Nesseler et al. (58)]. The limited role of anti-

PD-1 on the untreated primary tumor has been observed [Figure 2B

of ref. Nesseler et al. (58)] and it has been checked that the RT on

the primary has no direct effect on the implanted secondary. Finally,

the synergy between IT and RT has been verified by the regression

of the metastasis.

Let us first consider the data on the primary tumor, treated by

RT only, with three treatments of 8 Gy on days 9,10 and 11 after the

injection of the cancer cells. The qualitative analysis [Figure 2A of

ref. Nesseler et al. (58)] clearly indicates that the LQM with

instantaneous cell killing effect is not able to reproduce the

observed effect, due to a delay between the treatments (on days

9,10 and 11) and the regression behavior (i.e., a negative specific

rate), starting on day 15, Lim et al. (59); McMahon (60). Therefore,

more complex dynamics are in place, which, however, can still be

described by a GL pattern. As discussed, the effective parameters

can be time-dependent (see Equation S23-S30 in Mathematical

Formalism) due to the therapy and the results are reported in

Figures 2, 3 respectively for the lower and upper data sets of

Figure 2A of ref. Nesseler et al. (58). The corresponding fitted

effective parameter values are given in Tables 2, 3. The (∗) indicates
that the fitted parameter aeff has a linear time dependence aeff → aeff
(t − t0). This time dependence and the sign change of keff, compared
FIGURE 1

Comparison of the effective GL with data from the literature for
untreated tumor and immunotherapy results. In the graph the
symbols represent real data recorded and the dashed curves
represent the Gompertzian fit, the colors are paired for both results.
Fitted parameters are reported in Table 1.
TABLE 1 GL effective parameters of the comparison in Figure 1 (see
Equation S23 in Supplementary Material.

Monoclonal antibody aeff keff

AB641 (10 mg) 0.0285 ± 0.0037 0.0096 ± 0.0012

AB641 (30 mg) 0.034 ± 0.0054 4.7 ∗ 10−5 ± 1.1 ∗ 10−6

Untreated 0.049 ± 0.0008 0.011 ± 0.00016

AB93 (10 mg) 0.0714 ± 0.0069 0.02 ± 0.0016

AB93 (30 mg) 0.075 ± 0.0085 0.024 ± 0.002
Statistical error based on c2 per degree of freedom.
Parameters in day−1.
FIGURE 2

Effective GL fit of literature data with effective parameters of the
lower data set of Figure 2A of ref.Nesseler et al. (58). Black point and
the dashed line represent respectively real data and Gompertzian
fitting. Blue squares and curve are data and GL fit after the first 8Gy
RT treatment. The red rhombus and curve are data and GL after
three treatments of 8Gy each. Parameters reported in Table 2.
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to the untreated case, signal that the therapy produces a complete

depletion of the tumor size, analogously to the extinction in

population dynamics.

The strong signal of the change of sign in the effective

parameters can also be summarized by plotting the specific rate

(1/NdN/dt), in Figures 4, 5, where its negative value indicates the

complete tumor regression trend.

It should be stressed that the approach with GL effective

parameters, suggested by the more rigorous previous

mathematical model (see Mathematical Formalism), is a

phenomenological one with the aim of a simplified clinical, but

quantitative, understanding of the tumor progression at a more

personalized level (see next discussion section).

The final analysis concerns the abscopal effect, according to

Equation 8 with g = 0. Let us assume: a) an exponential decay of the

immune response with a time delay t between the RT on the primary

and the immunological effect on the secondary; b) the activated immune

system continues its effect on the secondary with an exponential rate

corresponding to the specific rate obtained at the end of the RT.

In other words, if tin is the starting day of RT on the primary, for

t < tin the metastatic site evolves according to the GL progression

with the untreated parameters. At tin the RT starts and the immune

system targets the secondary (see Equation 8 and its solution

reported in Mathematical Formalism). At the end of the RT, the

immunity response continues to reduce the metastasis with an

exponential behavior if the specific rate turns out to be negative.

In Figure 6 the result is depicted, i.e., the abscopal effect,

according to the previous approach, for different values of the

parameter I(0), determining the response of the immune system on

the secondary induced by RT (see Mathematical Formalism).
4 Discussion

The phenomenological approach, based on the previous

mathematical formulation, consists in fitting the specific rate data
Frontiers in Immunology 06
by GL with effective parameters. Let us recall that the specific rate is

much more reliable than the volume tumor variation, in

determining its progression and the phase of growth or decrease.

We are aware that the coarse-grain proposed approach misses

the detailed dynamics and can be considered an oversimplified

description since the underlying pathways, Ng and Dai (22); Serre

et al. (23); Marconi et al. (25); Liu et al. (29); Valentinuzzi et al. (30);

Friedrich et al. (31); Bekker et al. (33) are summarized by the

macroscopic Equation 8. However, one has to recall that,

independently of the microscopic conditions, a large part of

untreated tumors follow the GL (see Vaghi et al. (3) for a recent

review) and that with a small number of parameters, one gets

quantitative clinical indications for personalized treatments. If, for

example, a patient gets a small specific rate by RT on the primary

tumor, then a small contribution of IT might be able to result in a

complete recovery.

The abscopal effect has been described by a macroscopic

coupling between RT and immune system response, where the

initial progression of the metastasis follows the GL with untreated

primary tumor parameters. This is a reasonable assumption

although the in-situ conditions can produce different results.

According to the specific conditions recalled in the introduction,

choosing the best dose fractionation and timing with respect to

immunotherapy is difficult. Notoriously, the use of protracted RT

schedules (standard fractionation or slight hypofractionation) is

discouraged since radiosensitive lymphocytes are cleared out from

tumor tissues at each fraction delivery, thus preventing their anti-

tumor function, Filatenkov et al. (61). Conversely, large doses per

fraction are effectively immunogenic, Muraro et al. (62). In particular,

doses below 12 Gy are the most suitable for enhancing the anti-tumor

immune response as over such a threshold there is the degradation of

immunogenic cytosolic DNA by an exonuclease, Trex, whose

expression, as evaluated in preclinical experiments, is cell line-

dependent and increases with increasing radiation dose Dewan

et al. (19); Vanpouille-Box et al. (26). On the other side, even very

low doses per fraction (< 1 Gy) seem to activate macrophages against

cancer cells and stimulate T-cell immunity Klug et al. (63). Doses over
TABLE 2 GL effective parameters of the comparison in Figure 2 (see
Equation S23 in Supplementary Material).

Tumor size aeff keff

untreated 0.054 ± 0.0031 0.0164 ± 0.0015

after first dose 0.036 ± 0.0058 0.11 ± 0.017

end of therapy (∗) −5.06 ∗ 10−4 ± 2 ∗ 10−6 −0.464 ± 0.003
Parameters in day−1. Statistical error based on c2 per degree of freedom.
TABLE 3 GL effective parameters of the comparison in Figure 3 (see
Equation S23 in Supplementary Material.

Tumor diameter (mm) aeff keff

untreated 0.135 ± 0.011 0.131 ± 0.11

after first dose 2.82 ∗ 10−3 ± 2 ∗ 10−4 −0.184 ± 0.015

end of therapy (∗) −1.99 ∗ 10−5 ± 6 ∗ 10−7 −0.783 ± 0.002
Parameters in day−1. Statistical error based on c2 per degree of freedom.
FIGURE 3

GL fit of literature data with effective parameters of the upper data
set of Figure 2A of ref.Nesseler et al. (58), where the untreated data
are in black, blue for one shot of 8Gy of irradiation and red for three
8Gy shots. Parameter reported in Table 3.
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12 Gy are involved in the damage of tumor vasculature by activation

of acid sphingomyelinase and production of ceramides, which

culminate in vessel obliteration with subsequent tumor regression

for insufficient nutrient and oxygen supply Song et al. (64). Therefore,

the entire dose range used in clinical practice may be useful to control

tumors and all RT fractionations combined with immunotherapy

deserve clinical investigations.

Recently, old RT techniques simultaneously combining very

different doses within the tumor, namely spatially fractionated

radiation therapy (SFRT), are gaining new interest because of the

assumption that tumor tissues spanning a wide dose range may

benefit from multiple immune activation mechanisms, which

eventually could be further boosted by ICI administration Ferini

et al. (65); Tubin et al. (66). Given the ability of new instrumental

exams to “map” tumor areas with different metabolisms, there is the

possibility of modulating the dose distribution according to the

oxygenation patterns inside the tumor to maximize both direct and

indirect (immune-mediated) lethal effects of radiation Ferini et al.
Frontiers in Immunology 07
(67); Ferini et al. (68). With the latter approach, complete responses

have been documented earlier than with classic homogeneously-

delivered stereotactic RT doses and before ICI administration, likely

implying rapid immune intervention enhanced and maintained by

the addition of IT Ferini et al. (69).

All of the above considerations require the modeling of tumor

response to RT and IT to help predict the best combination strategy,

also given the inadequacy of current radiobiological mathematical

models to comprehensively explain the results deriving from this

association Ferini et al. (69).

In the proposed mathematical and computational approach, the

fractionization effects are taken into account by the functions Dnf

and �W(tnf , t0) and a spatially non-homogeneous behavior can be

easily implemented. However, a complete discussion requires a

forthcoming devoted analysis.
5 Conclusions

A comprehensive scope of the combined impact of radiotherapy

and immunotherapy is vital for clinical decision-making. Yet,

numerous mathematical models in existing literature prove overly

complex, characterized by an abundance of differential equations,

parameters, and initial conditions, rendering their practical

implementation quite challenging.

In this study, we use a macroscopic mathematical approach that

does not rely on the underlying microscopic dynamics. Instead, we

propose a simplified model of the tumor progression using a

Gompertz law, which involves just two parameters. Moreover,

utilizing numerical solvers of the equations provided in the

appendices is a straightforward process.

Examining how control influences system dynamics under

radiation and/or drug therapy sheds light on the disease’s

temporal progression. This approach holds promise in assisting

clinicians to make informed decisions by providing a clearer

understanding of treatment outcomes, namely, assessing whether

the therapy administered results in full recovery.
FIGURE 4

Specific rate of the lower data set of Figure 2A of ref. Nesseler et al.
(58). The curves represent the specific growth rate day by day, the
response to therapy is highlighted by a negative trend.
FIGURE 5

Specific rate of the upper data set of Figure 2A of ref. Nesseler et al.
(58). The curves represent the specific growth rate day by day, the
response to therapy is highlighted by a negative trend.
FIGURE 6

Progression on the metastatic volume, triggered by RT on the
primary, for different values of the coupling between the immune
system and RT (see Mathematical Formalism).
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Besides its clinical relevance, our approach shows potential for

additional experimental validation of the synergistic impact of the

abscopal phenomenon on treatment outcomes.

We recognize the importance of conducting rigorous

experimental investigations to solidify the theoretical basis of our

approach. By performing targeted studies and gathering more

empirical data, we aim to validate the approach in different

conditions and the significance of the abscopal effect in

influencing therapy outcomes. This experimental validation will

provide a deeper understanding of the interplay between the

administered treatment, tumor response, and the abscopal effect.

Moreover, our future research endeavors will focus on

elucidating the mechanisms underlying the abscopal effect and

quantifying its impact on treatment efficacy. By combining

computational modeling with comprehensive experimental

studies, we strive to enhance our understanding of this

phenomenon and optimize therapeutic strategies accordingly.

Ultimately, we aim to improve patient-oriented outcomes by

harnessing the full potential of the abscopal effect in cancer therapy.
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