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The role of vitamin D in pediatric
systemic lupus erythematosus -
a double pawn in the immune
and microbial balance
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Iuliana Magdalena Starcea1†, Gabriela Stoleriu2†, Ileana Ioniuc1†,
Alice Azoicai1†, Ciprian Danielescu3†, Anton Knieling3†,
Reka Borka-Balas4†, Delia Lidia Salaru3†, Ninel Revenco5†

and Silvia Fotea2†

1Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania,
2Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of
Galati, Galati, Romania, 3Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy,
Iasi, Romania, 4Pediatrics, “George Emil Palade” University of Medicine, Pharmacy, Science and
Technology, Targu Mures, Romania, 5Pediatrics, “Nicolae Testemitanu” State University of Medicine
and Pharmacy, Chisinau, Moldova
Having increased popularity during the Covid-19 pandemic, vitamin D3 is

currently impressing thanks to the numerous researches aimed at its

interactions with the body’s homeostasis. At the same time, there is a peak in

terms of recommendations for supplementation with it. Some of the studies

focus on the link between autoimmune diseases and nutritional deficiencies,

especially vitamin D3. Since the specialized literature aimed at children (patients

between 0-18 years old) is far from equal to the informational diversity of the

adult-centered branch, this review aims to bring up to date the relationship

between the microbial and nutritional balance and the activity of pediatric

systemic lupus erythematosus (pSLE). The desired practical purpose resides in

a better understanding and an adequate, individualized management of the

affected persons to reduce morbidity. The center of the summary is to

establish the impact of hypovitaminosis D in the development and evolution of

pediatric lupus erythematosus. We will address aspects related to the two entities

of the impact played by vitamin D3 in the pathophysiological cascade of lupus,

but also the risk of toxicity and its effects when the deficiency is over

supplemented (hypervitaminosis D). We will debate the relationship of

hypovitaminosis D with the modulation of immune function, the potentiation

of inflammatory processes, the increase of oxidative stress, the perfusion of

cognitive brain areas, the seasonal incidence of SLE and its severity. Finally, we

review current knowledge, post-pandemic, regarding the hypovitaminosis D –

pSLE relationship.
KEYWORDS

pediatric systemic lupus erythematosus, vitamin D, innate immunity, adaptive immunity,
diet, microbiota, individualized therapy
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1 Introduction

Pediatric systemic lupus erythematosus (pSLE) is an

autoimmune condition, which gathers under its umbrella multiple

pathognomonic clinical and paraclinical disturbances. It has a still

incompletely elucidated pathogenesis, based on environmental,

hormonal and genetic sensitization factors. Pediatric systemic

lupus erythematosus broadly follows the diagnostic and

management criteria found in adults. The difference between the

two lies in the aggressiveness of symptoms among children and

adolescents compared to adults. Also, atypical forms of pSLE can be

registered, burdened by a severe prognosis, when the onset is under

5 years of age (1, 2). At the immunological level, it is characterized

by the production of autoantibodies, the activation of the

complement system and immune deposits. Genetically, up to 7%

of pSLE patients are estimated to have monogenic disorders, while

in the remainder of the affected population genetic variability

overlaps with additional environmental factors (2).

Recent controversies regarding the management possibilities of

systemic lupus erythematosus (SLE) concern tolerogenic drugs.

Among these we mention the lupuzor. Its biochemical

component is represented by a small fragment of phosphorylated

ribonucleoprotein in the 140-serine position. In the immunological

dynamics of SLE, it seems that lupuzor favors the expansion of

regulatory T cells to the detriment of effector ones. As a result, the

lupuzor restores tolerance to nuclear autoantigens (3). A similar

effect is observed in the case of vitamin D3 deficiency correction.

Vitamin D3 deficiency has been linked to increased C-reactive

protein (CRP), hyperlipidemia, insulin resistance, blood flow

changes, and atherosclerosis. Correction of hypovitaminosis may

also reduce cardiovascular risk and SLE activity. However, caution

is required because of the risk of worsening lupus nephritis (3–5).

Vitamin D3 is part of the group of fat-soluble secosteroid vitamins,

having numerous implications in the body, among which we

mention its role in cell growth, phospho-calcium balance, neuro-

muscular activity and immunity. It is found in low quantities in

patients with SLE despite exposure to the sun throughout the year.

In this sense, it performs its function by reducing phagocytosis and

the activity of the major histocompatibility complex, in parallel with

favoring the maturation of natural killer cells intended to balance

the balance of immune tolerance (4, 6, 7).

Analyzing the specialized literature from the last decade, we

found a strong correlation and an increased interest in studying the

microbial balance, nutritional components and how they are

reflected in dictating the appearance or evolution of various

systemic pathologies. Considering our scientific orientation

towards pediatrics, induced by its current practice, we considered

it appropriate to carry out a narrative review using international

databases to identify relevant articles related to the impact of

intestinal dysbiosis and nutritional imbalances among children

with systemic lupus erythematosus. Searches focused on words

and key phrases commonly used to describe pSLE, nutritional

deficiencies, and their main lines of support and treatment (e.g.,

pediatric systemic lupus erythematosus, autoimmune disease,

disease of a thousand girls, nutritional disorders, poor diet,

dysbiosis, paraclinical disorders, adjuvant means). We have added
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to these terms useful in finding information about SLE pathogenesis

and shadow pathophysiological mechanisms (e.g., autoimmunity,

risk factors, innate immunity, adaptive immunity, systemic

inflammation, dendritic cells, intestinal permeability, bacterial

translocation, dysbiosis). The crossroads of the searches coincided

with the impact of hypovitaminosis D during the pandemic for

pSLE patients.

The main objectives of the work were the dissemination of

general knowledge regarding the factors that predispose to increase

the susceptibility to develop pSLE. To these is added the desire to

deepen the main links between the patho-physiological mechanisms

of the disease. The desired practical purpose resides in a better

understanding and an adequate, individualized management of the

affected persons. We focus on both the acute episode and the

disease-free interval in order to reduce morbidity, especially in

the pediatric population known as a vulnerable population.
2 Epidemiology

It is estimated that, of the total number of SLE cases

encountered globally, pSLE represents approximately 15-20%.

The average age of diagnosis is 12 years, the gender ratio remains

between 2.3-9:1 in favor of girls (1). Regarding the incidence and

prevalence of the pathology, they are between 0.36-2.5, respectively

1.89-34.1 per 100,000. The mortality rate reported in comparison

with the general population is increased among patients with SLE,

reaching up to three times in the case of those with pSLE (2). The

genetic predisposition towards the development of the condition is

argued by the existence of a concordance of 25% in monozygotic

twin pairs, compared to 2% in dizygotic ones (8).

Ethnic variability is well represented within this pathology, with

the reported frequency being high in Asians, African Americans,

Hispanics and native Americans. The literature notes a more typical

presentation, accompanied by a more pronounced impairment of

renal function and an increased therapeutic need, among minority

populations (e.g., black subjects from Africa/Caribbean), compared

to Caucasians (2, 9). The risk of progression of cutaneous lupus in

the form of systemic damage is also recorded, ranging between 0-

31% among children (as opposed to adults where the percentage

increases up to 42%). The risk factors that can anticipate this

outcome are the posit ivity of antinuclear antibodies,

hematological abnormalities and a high diagnostic score at the

time of the initial evaluation (10).

Despite the decreasing incidence of diseases that directly target

25-hydroxyvitamin D (25(OH)D) deficiency, such as rickets and

osteomalacia, its values remain below the normal threshold in

approximately 1 billion people. In percentage reports, it is

estimated that approximately 40% of the European population

has 25(OH)D deficiency/insufficiency (< 30 ng/ml). 13% of them

fall within the severe deficiency limits (< 12 ng/ml). The risk factors

that lead to the disruption of their metabolism are represented by

insufficient exposure to sunlight, inadequate food sources,

malabsorption caused by gastrointestinal diseases or, more

recently, obesity. The latter seems to influence the serum level of

25(OH)D by sequestering it in the adipose mass (7, 11, 12). The
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effects of 25(OH)D deficiency can be felt from early childhood and

can affect all stages of life. A brief list of pathologies in which

calcifediol plays an important role can be opened with the well-

known rickets, osteomalacia, osteoporosis and culminating with

intrauterine growth restrictions, musculoskeletal, cardiovascular,

neuro-degenerative, autoimmune, diabetes or gestational diabetes,

fertility, preeclampsia or even cell proliferation and malignancies

(13). Although it is not a universal panacea, supplementing 25(OH)

D deficiencies can be effective where they exist, studies in the

literature demonstrating the correlation between its low level and

proteinuria, with the detection of vitamin D3 binding protein in the

urine among patients with SLE (14).
3 General considerations regarding
bioclinical aspects suggestive of pSLE

In order to optimally frame and evaluate patients with SLE,

Table 1 summarizes the main lines of diagnosis and classification of

the pathology according to the degree of involvement. Massias JS.

et al. points out that the clinical-biological parameters and the

severity of the condition are inconstant in different age groups,

respectively the pre- (≤7) and peripubertal (8-13) and adolescent

(14-18) periods (17). However, the main difference is between lupus

in adults and the pediatric form. Here, the juvenile form exhibits

greater disease activity, thus causing aggression and an increased

pharmacological burden. Clinically, the main concerns are

increased morbidity and mortality (partially drug-induced), a

more florid skin manifestation at the time of diagnosis and more

severe organ damage. Among the affected systems, we preferentially

retain the cardio-vascular, neurological and renal systems (2).

The main diagnostic criteria in pSLE are therefore based on the

well-known Systemic Lupus International Collaborating Clinics

(SLICC) criteria, used among adults. Referral to the specialist is

recommended when we encounter the coexistence of two SLICC

criteria, doubled by the positivity of antinuclear antibody (ANA)

antibodies. Alternatively, it can be discussed when there is a SLICC

criterion, a clinical criterion and positive ANA antibodies (18). The

SLICC criteria include clinical (malar or discoid eruption,

photosensitivity, oral ulcers, non-scarring alopecia), biological

(anemia, lymphopenia, thrombocytopenia, leukocytosis, low

complement C3 and C4 fractions, antiphospholipid antibodies,

ANA, anti-double-stranded deoxyribonucleic acid antibodies

[anti-dsDNA] and anti- anti-Smith (SM) positive) and systemic

manifestations (arthritis, serositis, renal/neurological lesions) (19).

In addition to the cardio-pulmonary investigations, we must take

into account the evaluation of the neuro-psychic and renal function.

In this sense, we can use the objective clinical examination, lumbar

puncture with cerebrospinal fluid analysis, electroencephalogram,

ophthalmological consultation, nerve conduction study or magnetic

resonance imaging. The goal is to rule out an intracranial infection or

neurocognitive impairment, conditions that can be frequently

associated with seizures or psychosis (18, 20). Pathognomonic for

kidney damage is proteinuria. This must be differentiated from

orthostatic proteinuria. The objective of proteinuria, doubled by the

change in the glomerular filtration rate, requires the consideration of
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frequently accompanied by dyslipidemia (increase in total

cholesterol, triglycerides and low/very low-density lipoproteins).

Therefore, we emphasize the need for appropriate follow-up and

management of lipid disorders in pediatric age (22). Next, Figure 1

brings together the most important directions in the understanding,

diagnosis and management of pSLE, from the perspective of

vitamin D3.
4 Pathogenesis of pSLE from the
perspective of hypovitaminosis D

Located on the boundary between a fat-soluble vitamin and a

hormone, vitamin D, included in the class called “calciferols”, is

found in the body in various forms, depending on the stage of

metabolism. In order of absorption, we list ergocalciferol (vitamin
TABLE 1 Clinical-biological parameters and severity in SLE (adapted
from Levy DM. et al., Trindade VC. et al. and Fava A. et al.) (9, 15, 16).

Type Parameters

Clinical * general symptoms - fever, lymphadenopathy, weight loss
* malar rash - “butterfly”, erythematous, non-pruritic, which heals
without scarring
* rarely discoid rash
* photosensitivity
* alopecia
* Raynaud’s phenomenon
* livedo reticularis
* vasculitis/petechiae/purpura
* oral/nasal/digital ulcers
* non-erosive and non-deforming arthritis, arthralgias, avascular
necrosis, bone fragility
* serosity
* neurological damage – convulsions/psychosis, after elimination of
other causes, aseptic meningitis, neuropathies, mood disorders,
headaches, cognitive dysfunctions

Biology ✔ Kidney damage – proteinuria >0.5 g/day or cellular casts
– lupus nephritis - divided into 5 classes (assessment requires
biopsy)
✔ Hematological impairment – mild leukopenia: 3,000 – 4,000/mm3

– lymphopenia: <1500 cells/mm3
– anemia
– mild/profound thrombocytopenia <150,000 - 10,000
– antiphospholipid antibodies

✔ Immunological disorders – ANA – high sensitivity
– anti-dsDNA – high specificity
– anti-Ro (anti-SSA) and anti-La (anti-SSB) antibodies
– anti-SM, anti-RNP, ENA
– hypocomplementemia (C3,C4)
+ discordant ESR – CRP

Severity
score
(SDI)

→ It reflects the activity of the disease by measuring the systemic
damage (ocular, neurological, renal, pulmonary, cardiovascular,
gastrointestinal, musculoskeletal, cutaneous, metabolic, oncological
and peripheral vascularization), gonadal insufficiency, growth
restriction or delay in the appearance of the characters secondary sex
→ It can be influenced by steroids, immunosuppressive therapy or
biological agents
→ It is recommended to be evaluated annually
ANA, antinuclear antibodies; anti-dsDNA, anti-double-stranded DNA antibodies; anti-SM,
anti-Smith antibodies; anti-RNP, anti-ribonuclear proteins; ENA, extractable nuclear
antigens; anti SSA, Sjögren syndrome A antigen; anti SSB, Sjögren syndrome B antigen;
ESR, erythrocyte sedimentation rate; CRP, C reactive protein; SDI, Systemic Lupus
International Collaborating Clinics/American College of Rheumatology Damage Index score.
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D2 – supplements and fortified foods), cholecalciferol (vitamin D3

– the main food form) and, above the latter, 25(OH)D – main

metabolite produced in the liver (23). Food sources rich in vitamin

D3 are fatty fish (salmon, tuna, sardines, swordfish), cod liver oil,

egg yolks, mushrooms, beef liver and fortified foods (cereals, milk,

cheese) (7). Randomized studies place the optimal dose of

supplementation among children and adolescents as being

between 10-50 mg/day, this representing the interval in which

maximum benefits are obtained (promotion of bone health), with

minimal risks of harmful effects (24). Regarding the conversion

potential of additional vitamin D3 intake, it is estimated that 100 IU

has the ability to increase serum 25(OH)D by 1 ng/ml (2,5 nmol/

l) (25).

As we stated previously, the source of vitamin D3 can be found

in the body’s own production, at the skin level, under the influence

of ultraviolet light type B (UV-B) or in exogenous, dietary intake. In

the first situation, under the influence of UV-B rays, pro-vitamin

D3 located in the plasma membrane of epithelial cells is converted

to pre-vitamin D3 and then to vitamin D3. The latter passes into the

extracellular space, where it binds to the binding protein, being

transported to the liver for the purpose of its hydroxylation to 25

(OH)D, the final metabolism product of this pathway. It is

estimated that exposure in a bathing suit for about 15 minutes in

the sun, in the middle of summer, can lead to the production of

10,000 to 20,000 IU of vitamin D3 in the case of fair-skinned people

(7, 25). Regarding the exogenous intake, vitamin D3 undergoes a

double hydroxylation process. After intestinal absorption and

transport to the liver, the first stage of metabolism carried out

under the control of cytochrome P450 2 R1 (Cyp2R1), the resulting

form (25(OH)D) continues its course linked to the binding protein

to the kidneys, where it undergoes a new process of hydroxylation

regulated by Cyp27B1, reaching the form 1,25-dihydroxyvitamin D

(1,25(OH)2D). 1,25(OH)2D is the most active form of vitamin D3,

being found in all cells with specific receptors. The disadvantage of

dosing this form lies in the reduced half-life in the absence of an

alteration of renal function, an aspect that interferes with the

optimal assessment of the nutritional status. In this sense, the

dosage of the 25(OH)D form is encouraged, which has a longer
Frontiers in Immunology 04
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the body (7, 13, 26).

The toxicity of vitamin D3 has been intensively studied over the

years, both in animal models and through anecdotal studies.

Currently, the metabolite responsible for the development of

toxicity is not known exactly, with all of this emphasizing the

importance of maintaining 25(OH)D values below the upper limit

of the normal range (250 nmol/L), although clinical symptoms

appear at values above 750 nmol/L (27). Another cause of toxicity is

represented by the excessive production of 1,25(OH)2D

(granulomatous diseases, lymphomas) or its reduced degradation

in idiopathic infantile hypercalcemia. Whatever the cause, it is vital

to distinguish the signs of hypervitaminosis, namely confusion,

apathy, recurrent vomiting, abdominal pain, polyuria, polydipsia

and dehydration (28).

The involvement of vitamin D3 in intracellular signaling is well

known. This function can modulate the innate immune response,

an aspect encountered in various pathologies, among which we

mention autoimmune diseases precipitated by exogenous factors,

respiratory diseases (e.g., tuberculosis) or others. Thus, it seems that

monocytes bind the stain antigen to a toll-type receptor, in a

manner dependent on the concentration of 25(OH)D, ultimately

leading to the initiation of a cascade with a role in defense. The

genes involved in this pathogenic cascade are 1a hydroxylase

(Cyp27) and the vitamin D3 receptor (VDR), their activity being

linked to the level of 25(OH)D (29). In this sense, we consider it

important to discuss the correlation between the level of

magnesium and the results of the dosages of the three forms of

vitamin D. This interaction can be partially explained by the

hypothesis of magnesium dependence as an enzymatic cofactor in

synthesizing and metabolizing vitamin D3 (30). In the case of

autoimmunity, vitamin D3 exerts its function through the 1a-
hydroxylase activation enzyme and VDR receptors, located on the

surface of all cells of the immune system (dendritic cells,

macrophages, T and B cells). The result is the suppression of

inflammation by inhibiting the proliferation of activated B cells,

the decrease of memory B cells and immunoglobulin, doubled by

the promotion of regulatory T cells. This mechanism may represent
FIGURE 1

Main perspectives in the vitamin D - pSLE interrelationship.
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the correlation between vitamin D3 deficiency and SLE. Its action

on dendritic cells alters the metabolic profile through intracellular

signaling. A tolerogenic phenotype characterized by inhibiting the

maturation and activation of dendritic cells is therefore induced,

stimulating the secretion of interleukins (IL) -10 with an anti-

inflammatory role. At the same time, there is a stimulation of the

production of regulatory T cells and a suppression of interferon

(IFN) - alpha, IL-12, IL-23 and T helper lymphocytes (Th) 1, 17 and

21 (13, 26, 31–33). It is also worth mentioning the possible

polymorphism registered in the case of VDR receptors, which

may present a causal association with the increase in the

incidence of autoimmune diseases (34). The relationship between

the intestinal microbiome and multiple systemic pathologies such as

atopy (asthma), autoimmunity (SLE, celiac disease) or even post-

infectious irritable bowel syndrome is well known. In the case of

SLE, the presence of autoimmunity is marked at the intestinal level

mainly by a low Firmicutes - Bacteroidetes ratio, together with an

increase in Prevotella, Rhodococcus, Eggerthella and Klebsiella (35–

39). Vitamin D3 also exerts effects on the integrity of the intestinal

barrier, the bacterial translocation capacity and the microbial

balance, thus revealing another way through which it can mediate

interactions with the host’s immune system, imprinting the

pathogenesis of SLE (35).

Thus, bringing together the specified data with those regarding

aspects related to vitamin D3, we come to the conclusion that the

pathogenesis of SLE is multifactorial. Individual, non-modifiable

risk factors (genetic predisposition, birth weight, gender risk), as

well as environmental factors compete for its induction. Among the

latter we note exposure to ultraviolet radiation, solvents, pesticides,

silica dust, drugs, oral contraceptives, infections (e.g., Epstein-Barr),

certain vaccines, smoking, black tea, caffeine or stress. At the same

time, alcohol consumption seems to have an inverse causal

relationship with SLE, in part due to the potential to counteract

systemic inflammation by reducing immuno-reactivity and

suppressing the production of pro-inflammatory cytokines (tumor
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necrosis factor -TNF-, IL-6, IL- 8) (31, 40–42). The

physiopathological cascade of SLE brings together disturbances in

both innate and adaptive immunity. The main consequences of the

involvement of the two are the increase of the type I IFN response,

the disruption of immune tolerance with imbalances of the Th1/

Th2 ratio and the dysregulation of B cells, the increase in the

synthesis of autoantibodies, the decrease in the clearance rate of

apoptotic cells, hypocomplementemia, the formation of immune

complexes and their deposition, the inappropriate activation of

neutrophils accompanied by the increase of proteases and reactive

oxygen species. All of which lead to a chronic inflammatory state

with multisystemic damage (e.g., skin, kidneys, joints, nervous

system, cardio-vascular, respiratory) consecutive (8, 43, 44).

Finally, Figure 2 illustrates the manner in which the metabolic

dynamics of vitamin D3 influence the pathogenesis of SLE.
5 Immunology of exposure to
UV radiation

A hot point in the SLE debate is represented by the strong

involvement of the sun, through UV radiation. In addition to the

beneficial effects in vitamin D3 metabolism, the sun affects the

quality of life of patients due to the characteristic photosensitive

pattern. Thus, there is an increased need for photoprotection to

avoid scaffolding caused by exposure. The interaction between the

radiation and the host is directed through immune-stomatal cellular

circuits (45, 46). It should be noted that these radiations are divided

by wavelength (short/long). Unlike short radiations (UVB) that are

harmful in SLE, current data in the specialized literature attests to

the possible involvement of those with long wavelengths (UVA) in

the therapeutic protocol. Low doses of UVA1 appear to reduce

disease activity, along with fading of clinical symptoms and skin

manifestations. The mode of action is represented by the generation

of singlet oxygen, inhibition of B-cell activity, counteracting the
FIGURE 2

The involvement of vitamin D in the pathogenesis of SLE.
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suppression of cell-mediated immunity, modulation of apoptosis by

promoting the clearance of apoptotic bodies, and slowing down the

appearance of SLE-specific epigenetic changes (47–49). At the

opposite pole, harmful effects caused by UVB radiation include

potentiation of apoptosis, necrosis and chemokine production.

These changes were found to be dependent on the interaction

between apoptosis-stimulating factor (Fas) and its characteristic

ligand (Fas-L). The consequence is stimulation of the immune

system by activation of T cells, dendritic cells and increased IFN,

simultaneously with a decrease in regulatory T cells (50–52). At the

epithelial level, an increase in Ro52 expression is observed (53).

Therefore, sunscreen products must be an indispensable accessory

among SLE patients. Their purpose is to reduce the risk of escalating

symptoms upon contact with ubiquitous UV radiation (54).

Considering the general data specified previously, one of the

current concerns is represented by the possibility of affecting

patients with SLE due to exposure to low, repeated doses of UVB

or UVA2. They can be associated with chronic exposure to indoor

halogen, incandescent or fluorescent lamps. Skin lesions were also

identified in the case of using lamps from dental/surgery offices or

UV lamps for cosmetic purposes (manicure). We therefore

recommend bulbs with a glass cover/filter, standard manicure or,

in case of non-compliance, photoprotection with sun protection

factor and protective gloves (55, 56). Also, additional attention is

given to the elucidation of the seasonal distribution curve of SLE

cases. As we stated in the previous chapters, it is more frequently

diagnosed in the cold season, being often accompanied by a low

level of 25(OH)D. At the same time, the hypothesis of the overlap of

its party over the consequences of increased exposure to UV

radiation during the summer was launched. The data from the

literature attests at the moment only the lack of correlation between

the peak of the diagnosed cases and the average humidity, doubled

by an inverse correlation between them and the average

temperature (57).
6 Role of microbial and
nutritional balance

6.1 Diet and microbiota

SLE is a multifactorial disease, whose activity can be correlated

with prognostic/nutritional risk indices. The main factors involved

are an unhealthy diet high in carbohydrates and low in fat (58–60).

They precipitate excess weight and nutritional deficits (61). In this

way, dietary patterns designed to counteract the chronic

inflammation and immune impairment that are the basis of the

pathophysiology of SLE can be outlined. Key points are aimed at

regulating fat mass, intestinal bacterial balance and antioxidants.

The optimal approach includes a diet low in sodium, balanced in

iodine, potassium, magnesium, folic acid, low in protein (below 0.6

g/kg/day) and high in fiber, oils, polyunsaturated fatty acids,

vitamins (A, B, C, D, E), minerals, flavonoids (lycopene, apigenin)

and polyphenols (Mediterranean diet) (62–66). Curcumin (120 mg-
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3 g/day) can be added for its anti-inflammatory properties, with

proven benefits in ulcerative colitis, rheumatoid arthritis or

psoriasis (67).

The food components and the method of preparation regulate

the balance of the internal environment, intestinal transit and

absorption, thereby modulating the risk of atopy, autoimmunity

and Bacteroidetes-Firmicutes/Proteobacteria balance. Functionally,

vitamin A, B9, short-chain fatty acids and omega 3 fatty acids have

anti-inflammatory, antioxidant and cardioprotective effects, while

omega 6 and 9 fatty acids appear to improve intestinal cell junctions

(64, 65, 68–72). The implication of caloric restriction and

intermittent fasting is another research topic. Unlike fasting,

where beneficial effects have not been identified, caloric

restriction seems to positively influence SLE morbidity and

mortality (31, 64, 73–75).

Regarding the microbiota, it is important to know that it is in a

perpetual change since the neonatal period, influencing the

evolutionary course and the response to the treatment of various

pathologies through gut-vital organ axes (76–82). Another factor

inducing intestinal inflammation and dysbiosis is stress (83).

Summarizing, intestinal dysbiosis is characterized by the

inversion of the Firmicutes/Bacteroides ratio, the decrease of

Lactobacillaceae and the increase of Lachnospiracea and

Proteobacteria (Sphingomonas) due to the alteration of the barrier

of the upper digestive system. Diet, supplementation with retinoic

acid and probiotics, prebiotics or symbiotics have proven effective

in restoring homeostasis. The possible mechanisms of action are the

modulation of the expression of chemokine receptors in dendritic

cells and the decrease of Th17 lymphocytes, IL-17, Toll-like

receptors (TLR) -4, TLR-5, TLR-7 and TLR-9, together with the

favoring of regulatory T cells. However, the administration of

Lactobacil lus can also be harmful, depending on the

environmental and individual characteristics of the patient (63,

64, 84–88). The SLE activity estimated by the Systemic Lupus

Erythematosus Disease Activity Index (SLEDAI) activity score

seems to be correlated with the variable abundance of fecal and

salivary bacteria. At the same time, it differs depending on the levels

of the C3 and C4 factions of the complement (89). Studies in the

specialized literature confirm both the involvement of intestinal and

oral dysbiosis in dictating the risk of manifest autoimmunity, as well

as the role of diet components (e.g., tryptophan) in modulating the

intestinal microbiota in healthy people and SLE patients (90–93).
6.2 Nutritional dosages

In addition to clinical and paraclinical diagnosis, as in any

disturbance of the homeostasis of the internal environment, the

dosages of nutritional components and the highlighting of dietary

deficiencies or, on the contrary, of excess, have also proven useful in

the understanding and management of SLE cases. To briefly

exemplify the influence of nutritional deficiencies on the body’s

balance, we discuss the case presented by Mishra VA. et al. which

was manifested by intermittent low fever, fatigue, anorexia, muscle

weakness, anemia and severe thrombocytopenia, without localized
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symptoms characteristic of any system. The general investigations

were within the limits of normal, being objectified the deficiency of 25

(OH)D and vitamin B12, a rare but known cause of the

manifestations stated above which, once treated, was accompanied

by the remission of the symptoms, without further relapses (94).

Considering this brief example, we would like to specify that

even among patients with SLE, the most important nutrients when

it comes to dosage are vitamins. Due to the multiple roles, it plays in

the body, starting from the regulation of chronic inflammation

(cytokines and inflammatory markers), anti-inflammatory effects,

directing the maturation and regulation of immune cells, decreasing

the production of antibodies and oxidative stress, but also marking

the risk of cardiovascular events, B vitamins (B1, B2, B6, B9, B12)

and vitamins E, C and A play a major role in dictating the biological

changes of any SLE patient. Thus, the priority of supplementation is

emphasized when they are in deficit (64). Regarding the markers

that can be dosed in order to evaluate the nutritional status and the

cardiovascular risk, Salomão RG. et al. report homocysteine, tumor

necrosis factor alpha (a-TNF), high-sensitivity CRP and folic acid

levels, along with dyslipidemias, as having a relevant association

(95). The first parameter presented a confirmed association with

pSLE, but not with renal damage, disease activity, overweight or

short stature (96).

The electrolytes are also necessary to be evaluated, since sodium

and potassium compete to modulate the Th17/T regulatory balance,

inflammation, the level of anti-dsDNA antibodies and the

complement fractions (C3 and C4) and consequently the

individualization of the diet according to them may have benefits

on symptom control (64). Along with these, other essential trace

elements (iron, copper, zinc, selenium) have proven their necessity

in the differentiation, activation and functioning of immune cells.

Iron in particular can direct CD4 T cells to a pro-inflammatory

phenotype, although regulatory T lymphocytes have been shown to

be resistant to low iron intake (44).
7 Is hypovitaminosis D an alternative
therapeutic target in pSLE?

Vitamin D3 deficiency is among the most frequent and well-

known nutritional deficiencies identified in the cases of children

with SLE. Reinforcing what we previously stated, Stagi S. et al. bring

to light the multiple implications of vitamin D3 metabolism in the

activity of systemic lupus erythematosus and its associated

complications. The novelty presented by the working group is the

possible association of a genetic mutation that predisposes to

hypovitaminosis D in the non-SLE population of European

origin, a previously debated aspect. In accordance with their

invitation to continue the debate, we will review the main

evidence found in the literature regarding the influence of

hypovitaminosis D during pSLE, but also the impact of its

sublimation (97).

Rosiles VH. et al. reports with the help of a study carried out on

a group of 153 children and adolescents, low levels of 25(OH)D in
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the group of patients with pSLE compared to the control group (18

ng/ml versus 22.3 ng/ml) (98). Similar results were obtained by

Comak. et al. and Cheng. et al. The peculiarity of their studies,

although performed on a relatively small group of children, resided in

the objective of a significant negative correlation between serum 25

(OH)D concentrations and SLE activity scores. Added to this is the

inverse correlation between the administration of corticotherapy and

the serum level of 25(OH)D (99, 100). Other objectified correlations

were represented by the positive association between increased values

of IFN-g and IL-17 and pSLE (101). Next, AlSaleem A. et al.

underlines that, after a 3-month treatment with vitamin D3 and

calcium, an improvement in the activity score and specific

autoimmunity markers was observed. Consequently, they

postulated the positive correlation between the intense activity of

the disease in childhood and hypovitaminosis D (102). In addition to

the already stated multiple roles of vitamin D3 in maintaining the

body’s homeostasis, Sultana N. et al. underlines the importance of

investigating its serum levels, together with supplementation until the

necessary optimal values are obtained. This desire resides from the

objectification of the correlation between the hypoperfusion of the

cognitive areas of the brain found, the neuro-psychic manifestations

characteristic of lupus and hypovitaminosis D (103).

Thus, vitamin D3 deficiency cannot be neglected due to its

involvement in dictating the susceptibility and severity of SLE. In

order to understand which of the two disturbances

(hypovitaminosis D and SLE) is the first to appear, we consider it

appropriate to discuss the identification of a pattern of occurrence

of autoimmune diseases, including SLE, represented by a peak of the

incident in April and a minimum in October. This predominantly

seasonal distribution of newly diagnosed cases rather incriminates

25(OH)D deficiency as a risk factor in SLE, rather than as a

consequence of the condition (104). However, the data in the

literature are far from unanimous. Ding Y. et al. they recognize

the inconsistency of the relationship vitamin D3 - SLE depending

on race, geographical and seasonal factors, but they place vitamin

D3 among the negative reactants of the acute phase, arguing that

hypovitaminosis occurs as an effect of acute inflammation and

denying its involvement in increasing the risk of SLE (105). In

addition to this, hypovitaminosis D caused by polymorphisms of

genes involved in its transport, binding and metabolism (e.g.,

CYP24A1) has been shown to be correlated with increased

susceptibility to SLE among relatives of subjects already

diagnosed positively (106).

Lin TC. et al. concluded, by following a cohort of patients in the

active and inactive periods of the disease, that pSLE and 25(OH)D

levels are inversely correlated (107). Regarding the severity of SLE, it

is considered that the key pillar in its dictation is represented by

IFN-a, an inducer of the differentiation of monocytes towards

dendritic cells, whose balance is influenced in the sense of its

inhibition by vitamin D3. Magro R. et al. We support this

hypothesis by the positive results (regarding the activity of the

disease and the degree of fatigue of the patients) obtained when

supplementing with 25(OH)D in deficient/ineffective cases, results

that were attributed to the inhibition of the expression of the
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interferon signature gene (108–110). Similar effects were observed

by Lima GL. et al. when supplementing subjects with pSLE for 24

weeks with cholecalciferol (111).

In the same direction, Irfan SA. et col. attests, with the help of a

meta-analysis that included studies focused on adult populations,

the positive effect of vitamin D3 supplementation on the disease

activity score and the serum level of the C3 fraction of the

complement, but not on the C4 fraction and anti-dsDNA

antibodies (112). Also, the low level of 25(OH)D correlates with

osteoporosis, fatigue and potentiation of cardiovascular risk factors

(decrease in renin activity, increase in peripheral resistance to

insulin, reduced immunomodulatory effects, alteration endothelial

function and increased coronary artery calcification). An increased

association of hypovitaminosis D in adults and stroke, myocardial

infarction, diabetes, hypertensive heart disease, obesity and

dyslipidemia was demonstrated. All these bring a negative

addition to the morbidity induced by SLE. The involvement of

hypovitaminosis D in dictating an additional increased risk of

infections or malignancies remains open to study. The optimal

doses for supplementation must be adapted depending on the basic

level of 25-hydroxyvitamin D, BMI, the doses of steroids used

chronically, the tolerability of the patients and the presence of other

risk factors. A target 25(OH)D level of at least 30 ng/ml is desired

(113–117).

In accordance with the above, Table 2 facilitates an overview of

the prevalence of 25(OH)D deficiency in SLE patients, its

correlation with disease activity and biological markers, and the

effects of its supplementation.
8 Lupus and vitamin D3 in
the pandemic

Being a condition with multisystemic manifestations, the recent

Covid-19 pandemic has attracted an increase in the incidence and

severity of a multitude of pathologies. Among these, as is to be

expected from the perspective of the physiopathogenic basis aimed at

disturbances of the immune system, there are autoimmune diseases.

De Belo IA. et al. underlines the ability of SARS-CoV-2 infection to

trigger a pro-inflammatory state, accompanied by an increase in the

activity of inflammatory cytokines and the consequent triggering of

an aberrant immune response. Their hypothesis is based on the

presentation of the case of an 11-year-old girl, previously healthy,

who after the first wave of the pandemic developed arthralgias,

pericarditis, pleurisy and ANA and anti dsDNA positivity,

accompanied by a decrease in the level of the C3 fraction of the

complement (positive diagnostic criteria for SLE). In the evolution,

the clinical symptoms and the biological parameters remitted after

corticotherapy and administration of Hydroxychloroquine (118). A

similar case, this time in a 1-and-a-half-year-old girl, was reported by

Sobh A. et al. (119). Although the two cases impress with the extent of

the systemic manifestations, it should be specified that the initial

manifestation of the condition was centered on the skin-articular

component (arthralgias, oral ulcerations, erythemato-maculopapular
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rash on the face and body with areas of hyperpigmentation, vasculitic

rash and edema in both hands and feet). On the opposite side,

Domıńguez-Rojas J. et al. reports the case of an 11-year-old boy,

whose first diagnostic hypothesis was multiorgan failure syndrome in

the context of Covid-19 infection. Biological investigations refuted

the infection, and the analysis of the differential diagnosis possibilities

led to the incrimination of the macrophage activation syndrome that

appeared in the context of SLE as the cause of the multiorgan failure

Covid-19-like, in terms of the response to the specific therapy being

satisfactory (120). The relationship between the two entities therefore

seems to be bidirectional, during the Covid-19 pandemic, noting both

the exacerbation of already diagnosed pSLE cases and the appearance

of new cases, as well as the increased risk of these patients to develop

viral infections with an accentuated severity compared to that of the

general population. Also, although the vaccine seems to be safe in the

pediatric population with autoimmunities, the question arises as to

how immunosuppressive therapy can influence its effectiveness (121,

122). Another point of intersection of the two entities is represented

by the changes found in the gastrointestinal tract, which have been

shown to be similar between patients with Covid-19 and those with

SLE. It is therefore important to know and adequately treat intestinal

dysbiosis, given the low costs and risks of counteracting it, which are

accompanied by favorable effects in the evolutionary course of the

pathology, but also by the possible decrease in the risk of interhuman

transmission (123).

Vitamin D3 was also essential during the pandemic, its level

being influenced and influencing clinical manifestations and the

risk of developing Covid-19 (124–128). One of the causes

responsible for the exacerbation of 25(OH)D deficiency in

children and adolescents during the pandemic period may be the

imposition of isolation restrictions, felt more strongly among

children over 6 years old (129, 130). In this sense, Mercola J.

et al. pencils, with the help of the existing data in the literature, the

main means of action of 25(OH)D deficiency that dictate the risk,

severity and mortality in SARS-CoV-2 infection. Among these we

note the stimulation of antiviral mechanisms (e.g., antimicrobial

peptides), increases the concentrations of angiotensin-converting

enzyme 2 and reduces the risk of death caused by acute respiratory

distress syndrome, pro-inflammatory cytokines, the risk of

endothelial dysfunction, metalloproteinase-9 concentrations and

increasing the level of bradykinin (131). Thus, the severe

deficiency of 25(OH)D predisposes children to cardiovascular

damage and disturbances of the immune response, which

potentiates the severity of the multisystemic inflammatory

syndrome determined by Covid-19 (132). Although there are still

no regulations regarding the treatment with vitamin D3, we

conclude that its existence in adequate amounts can have a

prophylactic, immunoregulatory, but also neuroprotective role (it

regulates neurotrophins, promotes the migration and

differentiation of oligodendrocyte precursors and increases

neurotransmission following the improvement of neuronal

myelination) in the case of subjects with Covid-19 (133). Another

nutritional deficiency found among pediatric patients positive for

SARS-CoV-2 was that of zinc (134).
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TABLE 2 Studies on the impact of hypovitaminosis D in SLE and the effect of supplementation.

Study Design N Purpose Investigations/Method Result Comments

Hamza
RT.
et al. (6)

CC 120 The relationship
between low 25
(OH)D levels and
SLE activity

Serum 25(OH)D test by ELISA;
Calcium, phosphorus, parathyroid hormone
and ALP dosage;
Estimation of ANA and anti-
dsDNA antibodies;

73.30% of patients with SLE had
a low level of vitamin D3 (13%
deficiency, 60% insufficiency).
The level of 25(OH)D was not
correlated with age and duration
of the disease.

A correlation has been
identified between low
vitamin D3 levels in SLE
patients and increased
disease activity
or photosensitivity.

Robinson
AB.
et al. (14)

CC 58 Determining the
correlation
between 25(OH)D
level and disease
activity/
proteinuria

25(OH)D dosing;
urinary vitamin D3 binding protein/creatinine
ratio;
estimation of urinary protein/creatinine ratio;
albuminuria dosage;

The positive correlation between
the deficiency of vitamin D3 in
SLE and the present proteinuria
was highlighted.

Children with severe
vitamin D3 deficiency
had kidney disease, thus
not being able to
calculate the odds ratio
of kidney disease - severe
vitamin D3 deficiency.

Rosiles
VH.
et al. (98)

CC 153 Determination of
25(OH)D
concentration in
patients with SLE

Dosage of vitamin D3, parathyroid hormone,
calcium, phosphorus, ALP;

The concentrations of 25(OH)D
were lower (18.9 ng/ml) in the
SLE group compared to (23.6
ng/ml) among healthy patients.
10 patients with SLE had
vitamin D3 levels <12 ng/ml.

Patients receiving
vitamin D3 supplements
and those in the control
group who had relatives
with a history of SLE
were excluded from
the study.

AlSaleem
A.
et al.
(102)

Cs 28 25(OH)D status in
children with
pSLE and the
effects of doubled
calcium
supplementation

Samples collected included total 25-OH
vitamin D, bone profile, parathyroid hormone,
erythrocyte sedimentation rate (ESR), urine for
protein/creatinine ratio and calcium/creatinine
ratio, complement (C3, C4) levels, anti-
dsDNA, ANA levels, and bone markers
(osteocalcin, B-telopeptide).
Disease activity was assessed by the
SLEDAI score.

Levels of vitamin D3 was
correlated inversely
with ANA, anti-dsDNA titers,
and SLEDAI scores. After 3
months of treatment: 20 patients
showed improvement in their
25-OH vitamin D levels, 17
showed improvement
in ANA, anti-dsDNA titers and
complement levels as well as
SLEDAI scores and 9/18 with
high protein/creatinine
ratio showed significant
reduction in proteinuria.

There were no adverse
effects reported among
the patients
taking vitamin D3
during the period
of observation.

Lin TC.
et al.
(107)

CCh 70 Targeting the
correlation
between SLE
activity and 25
(OH)D level

Estimation of urinary sediment and
proteinuria;
Dosage of vitamin D3 level;
blood count, creatinine, complement
fractions, autoantibodies;

Vitamin D3 deficiency was
significantly higher in the active
period, compared to the inactive
period of the pathology.

The link between active
lupus nephritis and a
more severe
hypovitaminosis D
was reiterated.

Lima GL.
et al.
(111)

R 40 Evaluation of the
intake brought by
25(OH)D
supplementation
in patients
with pSLE

Administration of cholecalciferol 50,000 IU/
week or placebo, for 24 weeks.

Considerable improvement of
SLEDAI and ECLAM in the
group with vitamin D3
compared to placebo, at the end
of the period. In parallel, fatigue
was reduced and social
integration improved.

Tolerance and adherence
to therapy were good,
without serious
adverse events.

Arshad A.
et al.
(114)

CC 98 Assessment of
prevalence of 25
(OH)D deficiency
in Pakistani
patients with SLE
and correlation
with
disease severity

Disease activity was also monitored by
complement (C3, C4) levels and anti-dsDNA.

Vitamin D3 deficiency is an
extremely common event in SLE
patients (2/3 being deficient and
>1/2 being severely deficient).
There was a strong association
between 25(OH)D deficiency
and disease activity.

Other studies have
shown that the
prevalence of the
deficiency varies
depending on a number
of factors, such as
environmental,
geographic and
genetic factors.

Attar SM.
et al.
(115)

CCh 95 Studying the
relationship
between 25(OH)D
and disease
activity in patients
with SLE

General evaluation, disease duration and
activity, skin manifestations, history of lupus
nephritis, liver damage, malabsorption, long-
term use of steroids >60 days, steroid-sparing
agents, anticonvulsants, anti-dsDNA serum
levels, complement and vitamin D3.

No correlation was detected
between vitamin D3 and
SLEDAI score. There was a
negative correlation between
vitamin D3 and anti-dsDNA,
doubled by a positive correlation
with C4.

Azathioprine, low C3
and C4, and active
disease have been
associated with 25(OH)
D deficiency.

(Continued)
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Cumulating the exposed data, we observe a pronounced link

between SARS-CoV-2 infection, vitamin D3 deficiency, doubled by

zinc deficiency, and the development/exacerbation of pSLE. We also

reiterate the strong link between vitamin D3 deficiency and SLE

manifestations. Therefore, it is vital to outline some management and

adequate care programs for these pathologies reflected in the

pediatric sphere. These must be focused both on adequate

treatment, supplementing nutritional deficiencies and counteracting

associated comorbidities, as well as on the integration of patients in

psychotherapy and physical exercise programs, all with the ultimate

goal of increasing the quality of life (135, 136).
9 Conclusions

This review updates the data on the pathophysiological and

therapeutic implications of vitamin D3 in the dynamics of pediatric

systemic lupus erythematosus. The narrative exposition can be

summed up by the oft-used phrase “we are what we eat”. We

have therefore presented general aspects related to pSLE, risk

factors and immunological mechanisms through which the

metabolism of vitamin D3 intervenes in the balance of the

internal environment, unmasking or aggravating the symptoms of

lupus. Among the predisposing factors, we delineated the unhealthy

lifestyle and nutritional deficiencies. Both the effects of excesses and

deficiencies of these constituents have been debated. In addition, the

interaction between pharmacological substances - vitamin D3 and

the weight of the recent Covid-19 pandemic in stimulating the

advancement of research in the field by establishing a bidirectional

link between the two pathologies have not been neglected. Finally,

we consider it appropriate to initiate new studies focused on the

comparative analysis of the beneficial versus harmful effect of sun

exposure in the pediatric population with lupus and beyond. Due to

its duality, the sun is both an aggravating factor of SLE, as well as a

necessary factor in the formation of vitamin D3, an important

constituent in the immune, inflammatory and microbial balance.
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TABLE 2 Continued

Study Design N Purpose Investigations/Method Result Comments

Fiblia F.
et al.
(116)

R 60 Impact of
cholecalciferol
supplementation
on disease activity

The patients were divided into two groups,
study and placebo. Cholecalciferol 5000 IU/day
was administered for 12 weeks. The severity of
the disease was evaluated using the MEX-
SLEDAI score.

Increased 25(OH)D levels and
improved disease activity
were observed.

No significant
improvement in the
quality of life of SLE
patients was obtained

Zheng R.
et al.
(117)

M 490 Efficacy of 25(OH)
D
supplementation
in patients with
systemic
lupus
erythematosus

Five randomized controlled trials
were included.

Vitamin D supplementation is
effective in increasing serum 25
(OH)D levels, can improve
fatigue, and is well tolerated in
patients with SLE

Inconveniently, this does
not appear to have
significant effects in
decreasing anti-dsDNA
positivity and
disease activity
CC, case-control; CCh, case-cohort; Cs, cross-sectional; R, randomized; M, Meta-analysis; N, number; SLEDAI, Systemic lupus erythematosus disease activity index; ECLAM, European Lupus
Activity Measurement Consensus; ELISA, enzyme-linked immunosorbent assay; ALP, alkaline phosphatase; anti-dsDNA, anti-double-stranded deoxyribonucleic acid; ANA,
antinuclear antibody.
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