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Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United
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Background: Human immunodeficiency virus (HIV) affects nearly 40 million

people globally, with roughly 80% of all people living with HIV receiving

antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral

tissues but does not effectively penetrate the blood-brain barrier. Thus, viral

reservoirs persist in the central nervous system and continue to produce low

levels of inflammatory factors and early viral proteins, including the transactivator

of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation

and synaptodendritic damage, which is associated with the development of

cognitive, motor, and/or mood problems, collectively known as HIV-associated

neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well

documented, but therapeutic utility of cannabis remains limited due to its

psychotropic effects, including alterations within brain regions encoding reward

processing and motivation, such as the nucleus accumbens. Alternatively,

inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic

potential through interactions with the endocannabinoid system.

Methods: The present study utilized a reward-related operant behavioral task to

quantify motivated behavior in female Tat transgenic mice treated with vehicle or

MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic

injury and neuroinflammatory profiles, including dendritic microtubule-

associated protein (MAP2ab) intensity, microglia density, microglia

morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization,

and various lipid mediators.

Results: No significant behavioral differences were observed; however, MJN110

protected against Tat-induced dendritic injury by significantly upregulating MAP2ab

intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No

or only minor effects were noted for Iba-1+ microglia density and/or microglia

morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex
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and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110

significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-

related inflammatory lipid mediators in the striatum were downregulated by

chronic MJN110 treatment.

Conclusions: These findings demonstrate anti-inflammatory and neuroprotective

properties of MJN110 without cannabimimetic behavioral effects and suggest a

promising alternative to cannabis for managing neuroinflammation.
KEYWORDS

HIV-1, inflammation, transactivator of transcription (Tat), endocannabinoids, HETE,
monoacylglycerol lipase (MAGL)
1 Introduction

Human immunodeficiency virus (HIV) remains a major

global public health issue, with 39.0 million (33.1-45.7 million)

people living with HIV (PLWH) worldwide at the end of 2022, out

of which 76% (65-89%) received combination antiretroviral

therapy (cART) (1). The overall prevalence rate of HIV-1

infection is higher among adult women than men, with 15%

more women living with HIV-1 relative to men in 2019 (2).

Importantly, HIV-1 affects women differently than men, with

greater immune activation observed in women despite lower

overall viral load (3). Given the historical underrepresentation

of females across human and animal models of HIV infection, the

present study centers specifically on females to better characterize

the effects of HIV and novel intervention strategies in this

statistically underrepresented population.

While cART successfully reduces viral load in peripheral tissues

and significantly improves life expectancy of PLWH (4–6), these

treatments are largely incapable of effectively crossing the blood-

brain barrier (BBB) to suppress replication of viral proteins, such as

transactivator of transcription (Tat), which enters the central nervous

system (CNS) within two weeks of infection both directly and through

peripherally infected monocytes and macrophages (7–10). Secretion

and synthesis of viral protein reservoirs persist in the CNS, where they

alter the cellular environment, contributing to chronic neuropathy and

HIV-associated neurocognitive disorders (HAND), even in patients

actively undergoing treatment (7). Underlying HAND are several

dysfunctional immunomodulatory mechanisms within the CNS,

including persistent inflammation and immune activation (11–14),

which ultimately lead to dendritic injury and damage to neurons (15–

17). Notably, cART itself also contributes to both neuroinflammation

and altered neuronal connectivity with prolonged exposure (18, 19). In

preclinical animal studies, the HIV Tat transgenic mouse model is a

well-established model for neuroHIV since their neuropathology and

behavioral deficits tend to mirror those observed in cART-treated

PLWHwith HAND (20–22). These include structural abnormalities in

neurons/dendrites, such as reduced spine density and changes in
02
synaptic proteins (21–23), disrupted frontostriatal circuitry (24), and

glial abnormalities including microglial activation and micro/

astrogliosis (20, 21, 25). Further, these mice and related neuroHIV

rodent models also develop changes in learning/memory, motor

activity, and motivated behaviors (24, 26–30) relevant for cART-

treated PLWH. As dopaminergic neurocircuitry is highly susceptible

to disruption by HIV proteins, including HIV Tat (29, 31–34),

motivational alterations remain problematic neurobehavioral

manifestations in cART-treated PLWH, including apathy (35, 36)

which parallels lack of motivation.

The endogenous cannabinoid (endocannabinoid) system is a

critical line of defense against neurodegenerative and inflammatory

conditions (37). It is well established that endocannabinoids, such as 2-

arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)

upregulate in certain disorders (e.g., Parkinson’s disease, Alzheimer’s

disease, multiple sclerosis) and reduce or abolish unwanted effects of

these disorders or slow their progression (38, 39). Recent work has

demonstrated therapeutic potential of inhibiting monoacylglycerol

lipase (MAGL), the primary enzyme that hydrolyzes 2-AG. 2-AG, is

an endogenous ligand at neuronal cannabinoid type-1 receptors

(CB1R) and, importantly, also an agonist at cannabinoid type-2

receptors (CB2R) in immune cells throughout the brain and body

(40). Activation of CB2R has shown protective properties against

neuroinflammation and neurodegenerative disorders (41). MAGL-

focused strategies are of great interest because targeting enzymatic

breakdown is more beneficial relative to phytocannabinoids, as 2-AG

tone is affected locally on-demand where its breakdown is dysregulated,

thus reducing off-target effects relative to exogenous agonists (42).

Because the downstream products of 2-AG hydrolysis, including

arachidonic acid (AA), are themselves broken down into

proinflammatory eicosanoid lipid mediators such as prostaglandins,

hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids

(EETs), inhibiting 2-AG breakdown also stands to reduce

proinflammatory processes (43, 44).

Previous studies have demonstrated the neuroprotective

properties of MAGL inhibition across numerous models of brain

damage and inflammation (45–48), including suppressed astrocytic
frontiersin.org
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and microglial activation in models of Alzheimer’s disease (49, 50)

and reduced HIV-1 envelope glycoprotein (gp120)-associated

synapse loss and IL-1b (51). Further, as 2-AG plays a significant

role in modulating mesolimbic dopamine release and associated

behaviors (52), inhibiting 2-AG degradation by targeting MAGL

has been shown to enhance dopamine signaling, reward-related

behavior, and motivation with the MAGL inhibitor JZL184 (53, 54).

While JZL184 targets 2-AG more potently and selectively (55)

compared to earlier-generation MAGL inhibitors such as URB602

(56), studies have shown desensitization of CB1R, which can

contribute to physical dependency (57), as well as cross-reactivity

with other serine hydrolases including a/b hydrolase domain

(ABHD) (55). Newer-generation MAGL inhibitors such as

MJN110 confer greater 2-AG selectivity with adequate potency to

effectively inhibit MAGL in vivo at doses as low as 1 mg/kg (58).

MJN110, in particular has shown antinociceptive, anti-

inflammatory, and neurorestorative effects previously (59, 60).

While MJN110 has also previously been shown to increase

reward-directed behavior, this observation was specific to doses of

5 and 10 mg/kg (61). Given these findings, we were interested in

characterizing whether Tat or lower-dose MJN110 may affect

motivated behavior in the present model.

Thus, the present study used the HIV-1 Tat transgenic mouse

model to investigate the chronic effects of MAGL inhibitor MJN110 (1

mg/kg) on reward-related motivated behavior. Immunohistochemical

and lipid mediator analyses were conducted to assess potential anti-

inflammatory and neuroprotective effects of chronic MJN110

exposure against Tat-induced toxicity on the CNS system, with

focusing on the ventral striatum (nucleus accumbens) and

infralimbic cortex. It is hypothesized that MJN110 will reduce Tat-

driven dysregulation in motivated behavior and exert protective effects

against Tat-driven neuroinflammation and neuronal injury.
2 Materials and methods

2.1 Subjects

Brain-specific, astrocyte-driven HIV-1 Tat1-86 expression was

induced in a Tet-on system using doxycycline in transgenic female

mice (N = 34) as previously described (62). Briefly, mice were

developed on a hybrid C57BL/6J background wherein Tat(+)

subjects expressed both glial fibrillary acidic protein (GFAP)-

reverse tetracycline-controlled transactivator (rtTa) and

tetracycline-responsive element (TRE)-tat genes, while control

Tat(−) subjects expressed only the GFAP-rtTA gene (20).

Genotyping was performed 7-10 days post-weaning to confirm Tat

transgene expression. Subjects at ~ 4 months of age (age range: 3-6

months) were provided ad libitum access to water and doxycycline-

containing chow (6 mg/g; Envigo, NJ, USA; #TD.09282) for three

months preceding and throughout behavioral assays to establish and

maintain a chronic exposure model (63). Note that estrous cycle was

not monitored due to the concern that stress associated with daily

vaginal lavage could confound our dependent measures (64). Subjects
Frontiers in Immunology 03
were maintained on a 12-hour reversed light/dark cycle, and

behavioral data were collected during the dark phase only.

Experimenters were blind to genotype throughout data collection.

All procedures were conducted in strict accordance with the ethical

guidelines outlined in the NIH Guide for the Care and Use of

Laboratory Animals (NIH Publication No. 85-23) and approved by

the Institutional Animal Care and Use Committee (IACUC,

Protocol#: 23-056.0) at the University of North Carolina at

Chapel Hill.
2.2 Drug treatment

Drug assignment (MJN110/vehicle) was randomized and

counterbalanced across genotype groups [Tat(−) and Tat(+) mice] to

yield four total genotype/drug groups with 8-9 subjects each [Tat(−)

Vehicle, n = 9; Tat(−) MJN110, n = 8; Tat(+) Vehicle, n = 8; Tat(+)

MJN110, n = 9]. MJN110 (1 mg/kg) was dissolved in a vehicle solution

containing a 1:1:18 ratio of Kolliphor (Sigma-Aldrich, #C5135), ethanol

(Decon Laboratories, #64174), and 0.9% sodium chloride (Braun

Medical, #J8K944) as described previously (58). Mice assigned to the

vehicle group received the vehicle solution without the MJN110 drug.

MJN110 dosage was chosen based on prior studies which

demonstrated 1 mg/kg oral MJN110 administration was sufficient to

partially block MAGL in the brain, precluding tolerance development

which occurs with full blockade via CB1R desensitization (58).

Additionally, subcutaneous 1 mg/kg MJN110 injections 2 hours prior

to an intraperitoneal acid injection showed a prominent

antinociceptive profile that tended to be greater in female rats

compared to males (65). Subcutaneous injections (10 µL/g) were

performed daily for two weeks preceding and throughout behavioral

assessments (3-22 days, depending on animal’s performance). This

method of delivery was chosen to most closely mimic oral

administration and preclude complications associated with

intraperitoneal injections (e.g., lower full-blockade dose, faster

absorption, and greater potential for intestinal irritation) (66).

Injections were administered at the same time each day,

approximately two hours before data collection to ensure maximal

effect during the testing window (58). Subject weight was recorded daily

for dosing accuracy and to ensure body mass remained stable across

the treatment time course.
2.3 Reward-related operant behavioral task

2.3.1 Experimental design
Subjects were trained to nose poke for 25% sucrose solution

(w/v), similar in concentration to that used in previous studies

(67, 68). The procedural design described herein was adapted from

Nam and colleagues (69) (Figure 1). Subjects first underwent

habituation and magazine training to acclimate to test procedures

and stimuli. After successfully making the association between nose

poke behaviors and sucrose availability and learning to respond

consistently, subjects advanced to a motivation test, which assessed
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how many nose poke behaviors they would perform to earn a single

sucrose reward.

2.3.2 Apparatus
Behavior was recorded in operant chambers (MED Associates,

#ENV-307W) containing a nose poke response port and adjacent

reward dispenser (MED Associates, #ENV-302W-S). To reduce

potential visual and auditory distractions, operant chambers were

contained within sound-attenuating cubicles providing 80 dB white

noise (MED Associates, #ENV-022MD). MED-PC computer

interface software was used to automate sessions and record

behavior. To ensure testing environment consistency across

training and test phases, subjects were randomly assigned an

operant chamber in which they were tested throughout all sessions.

2.3.3 Habituation
Subjects were habituated to experimenter handling for two

weeks preceding behavioral training. Three days before operant

chamber habituation, water in home cages was replaced with 10%

sucrose (w/v) on days 1 and 2, then 20% sucrose (w/v) on day 3.

Sucrose concentration was increased across the habituation period

to allow subjects time to adapt and develop consummatory

behaviors towards the solution. To increase reward salience for

magazine training, sucrose solution was replaced with water on

the day of test environment habituation (day 4), wherein subjects
Frontiers in Immunology 04
were exposed to operant chambers and white noise for 30

minutes, with nose poke response ports and reward dispensing

components inactive.

2.3.4 Magazine training
The following day, subjects underwent a one-hour training

session wherein all operant chamber components were active.

During this phase of training, 25% sucrose solution (w/v) was

made available for 20 seconds at a time on a variable-interval (VI)

schedule (30-45 seconds, VI35). Sucrose solution was also made

available for each nose poke response initiated by subjects. If the

number of recorded nose pokes and earned reinforcers equaled at

least one by the end of the session, the subject was advanced to

fixed-ratio (FR) 1 shaping sessions. If no responses were made to

earn reinforcers, magazine training sessions were repeated for up

to two additional consecutive days as necessary. Session

advancement was determined on an individual basis.

2.3.5 Fixed-ratio 1 shaping sessions
Subjects then underwent daily one-hour training sessions

utilizing an FR 1 schedule of reinforcement to strengthen the

association between nose poke behaviors and reinforcer

availability. In these sessions, a reinforcer was made available

for each nose poke response. Once subjects demonstrated

consistent reward-related behavior by earning at least 20
A

A’

FIGURE 1

Schematic representation of the experimental timeline (A) and the behavioral assay (A’). (A) After mice received DOX-containing chow for 3 months,
mice were subcutaneously injected with vehicle/MJN110 for 2 weeks. DOX food and drug injections continued throughout the experimental study.
Body mass was recorded daily when drug injections started. After 2 weeks of drug injections, subjects were habituated for 3 days in their home cage
to the 25% sucrose solution (w/v). The behavioral assay started the next day and lasted between 3-22 days depending on animal’s performance (A’).
Figure created with BioRender.com. DOX, doxycycline; FR1, fixed-ratio 1; PFR, progressive fixed-ratio; VI35, variable-interval schedule (30-
45 seconds).
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reinforcers per session across two consecutive sessions, they were

advanced individually to the progressive fixed-ratio (PFR)

motivation test. If no responses were made across three

consecutive sessions, subjects were individually returned to

magazine training for one day before resuming FR 1 shaping.

2.3.6 Progressive fixed-ratio breakpoint test
On the final day of the behavioral assay, subjects underwent a

single session that utilized a PFR schedule of reinforcement,

wherein reinforcers were administered with n + 1 responses

where n represents the number of responses required to earn a

reinforcer in the previous trial (i.e., 1 nose poke yields reinforcer

availability on trial 1, 2 nose pokes yield reinforcer availability on

trial 2, etc.). The breakpoint, or the point at which subjects stopped

responding for a reinforcer, was measured as a proxy for

motivation. A measure of average response effort was also derived

by dividing the total number of nose pokes by the duration of time

subjects engaged with the task. The session terminated after three

hours or 20 minutes without an earned reinforcer, whichever

occurred first.
2.4 Immunohistochemistry

2.4.1 Tissue collection
Two hours after injections on the day after completion of the PFR

breakpoint test, subjects were deeply anesthetized with isoflurane and

sacrificed by rapid decapitation. Brains were removed and sagittally

bisected for one hemisphere to be used in immunohistochemical

analyses and the other to be used for lipidomic analyses with liquid

chromatography-tandem mass spectrometry. The left hemisphere

was postfixed in 4% paraformaldehyde (PFA) for 24 hours at room

temperature, then an additional 24 hours at 4°C. Brains were agitated

on a rocker for all steps to maximize tissue penetration. Following

postfixation, brains were submerged in phosphate buffered saline

(PBS) for three 20-minute washes, then transferred to 30% sucrose

solution for 24 hours at 4°C. Prior to sectioning, brains were

embedded with Tissue-Tek OCT compound, frozen with dry ice,

and stored at -80°C. Sagittal sections 30 µm in thickness were cut with

a Leica CM300 cryostat (Leica, Deerfield, IL). Sections for each

subject were contained in sealed 12-well plates and stored in PBS

at 4°C for immunolabeling. Three-four sections per subject were

taken for each analysis.

2.4.2 Tissue processing for histological analysis:
neuronal dendrites (MAP2ab), microglia (Iba-1),
astrocytes (GFAP), colocalization of IL-1b with
astrocytes (GFAP/IL-1b)

All immunohistochemistry (IHC) wash and incubation

procedures were performed at room temperature unless otherwise

specified, and free-floating tissue was rocked at 27 rpm for all steps

in 12-well plates fitted with 74 µm mesh inserts (Corning Life

Sciences, Netwell Inserts, # 29442-132). All washes, as described,

consist of three 5-minute rinses in phosphate buffer saline (PBS).

For MAP2ab and Iba-1 IHC, free-floating sections were first

incubated in 0.5% H2O2 for 30 min, in 1% H2O2 for 60 min, and
Frontiers in Immunology 05
again in 0.5%H2O2 for 30 min, then washed, and followed by exposure

to blocking buffer for 1 hour (PBS with 3% normal goat serum and

0.5% Triton X-100). Tissue was then incubated in primary antibodies,

including microtubule-associated protein 2, ab (MAP2ab, mouse,

Millipore, #MAB378; 1:500) for the detection of neuronal dendrites

and ionized calcium-binding adapter molecule 1 (Iba-1, rabbit, Wako,

#019-19741; 1:500) for the detection of microglia, mixed into blocking

solution for 24 hours at 4°C. The primary antibodies were detected

using secondary antibodies as follows: goat-anti-rabbit Alexa 594

(ThermoFisher, #A11012, red,1:500) and goat-anti-mouse Alexa 488

(ThermoFisher, #A21121, green, 1:500). The secondary antibodies were

diluted in goat blocking buffer and applied to the sections for one hour.

Cell nuclei were visualized with Hoechst 33342 (1:200, Molecular

Probes, H3570, exposed for 3 minutes). Tissue sections were triple-

rinsed in distilled water, mounted on Superfrost Plus glass microscopic

slides (Fisher Scientific, #12-550-15), and coverslipped with antifade

mounting medium (VectaShield, #H-1400).

For GFAP and IL-1b IHC, sections were washed and incubated

in a permeability solution for 30 minutes [0.1% bovine serum

albumin (BSA), 0.1% Triton X-100]. Samples were washed again

and incubated in a blocking solution for 30 minutes (5% normal

goat serum, 5% BSA, 0.1% Triton X-100). Tissue was then

incubated in chicken anti-GFAP (1:1000; Thermo Fisher,

#PA110004) and rabbit anti-IL-1b (1:250; Abcam, #AB9722)

mixed into blocking solution for 24 hours at 4°C. Tissue was

washed, covered, and incubated for one hour in goat anti-chicken

Alexa Fluor 594 (1:500; Thermo Fisher, #A-11042) and goat anti-

rabbit Alexa Fluor 488 (1:500; Thermo Fisher, #A-11034) diluted in

blocking solution, washed, incubated for 3 minutes in Hoechst

fluorescent stain (1:200 Hoechst:distilled water), then triple-rinsed

in distilled water. Samples were then mounted on Superfrost Plus

glass microscope slides and coverslipped with antifade mountant

(Invitrogen ProLong Gold, #P36930).
2.4.3 Confocal microscopy: mean fluorescence
intensity, cell quantification, cell morphology,
and colocalization analysis

Immunolabeled tissue was imaged at 20x or 63x using a Zeiss

LSM800 T-PMT laser scanning confocal microscope and ZEN 2018

Blue Edition software (Carl Zeiss, Inc., Thornwood, NY). The

collection, processing and analyses of all images were conducted

by experimenters blind to genotype and drug conditions. Images

were acquired by using identical parameters for all groups (i.e.,

identical objective, zoom, laser intensity, gain, offset, and scan

speed) optimized for control tissues. For both brain regions (i.e.,

nucleus accumbens and infralimbic cortex), images were sampled

from 3-4 sagittal sections, spaced 300 mm apart, per animal.

For MAP2ab+ immunoreactive neuronal dendrites, one image

per brain region was taken per section, and the entire image (20x

objective, 0.3 mm2) was used as region of interest and processed

using ImageJ (70) to quantify the intensity of staining per pixel in

each image. Mean fluorescent intensity (MFI) was determined with

ImageJ without digital manipulation. Data represent individual

subject data (MAP2ab MFI) averaged across all images taken per

brain region.
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For microglia activity, one image per brain region was taken per

section and Iba-1+ microglial cell bodies containing Hoechst-stained

nuclei were counted by two experimenters blinded to treatment

groups (20x objective, 0.3 mm2). Interrater reliability was assessed

using Cronbach’s alpha (nucleus accumbens a = .798; infralimbic

cortex a = .814), and data from both raters were averaged to

represent microglia counts. Data represent individual subject data

(Iba-1+ microglia counts) averaged across all images taken per brain

region. Furthermore, microglia morphology was assessed for the

nucleus accumbens via Sholl analysis following published

procedures (63, 71, 72). In brief, z-stack images were collected at

63x magnification of immunodetected Iba-1+ microglia stained with

Hoechst (n = 4 mice per group/3-4 sections each). Orthogonal

projection images were generated from the slide z-stack images,

resulting in one z-plane, using ZEN 2018 Blue Edition software,

and exported to Fiji build of ImageJ. Per animal a total of 5-6

microglia were individually isolated for analysis by random selection

(72). The soma size was measured in Fiji using the freehand selection

tool. The images were cleaned, and the background noise was

removed using the despeckle tool. The processed images were

overlayed with the original image, and the tracing tool was used to

select the microglia of interest, and the background was cleared. The

images were converted to binary images, and the line segment tool

was used to draw a line from the center of each soma to the tip of its

longest process, providing the maximum branch length (mm). The

Sholl analysis plugin software was used to assess additional measures,

with the first shell set at 10 mm and subsequent shells set at 2 mm
sizes, to determine intersections at each Sholl radius. This provided

the critical radius (radius value with the highest number of

intersections), the process maximum (the highest number of

intersections regardless of radius value), the number of primary

processes (intersections at the first Sholl radius), and the process

total (total number of intersections). Individual microglia were

treated as individual data points.

For GFAP+ astrocytes and colocalization with IL-1b, three z-

stack images per brain region were taken per section (20x objective,

0.3 mm2), and ImageJ software was used for astrocyte quantification

and analyses of colocalization with IL-1b. GFAP+ astrocyte cell

bodies containing Hoechst-stained nuclei were manually quantified

by two experimenters blinded to treatment groups. Interrater

reliability was assessed using Cronbach’s alpha (a = 0.993)

(nucleus accumbens a = .994; infralimbic cortex a = .992), and

data from both raters were averaged to represent astrocyte counts.

Data represent individual subject data (GFAP+ astrocyte counts)

averaged across all images taken per brain region. For GFAP+

colocalization with IL-1b, the JACoP plugin was used for

colocalization measures (73). Herein, absolute intensity thresholds

were defined manually for both channels to control for any

background fluorescence. Voxels that exceeded thresholds across

both channels were considered colocalized, and the corresponding

Pearson’s correlation coefficient (PCC) was recorded. Generated

cytofluorograms were also reviewed to ensure accurate

colocalization thresholds. Data represent individual subject data

(GFAP/IL-1b colocalization) averaged across all images taken per

brain region. Note, that we lost the brain sections of one vehicle-

treated Tat(−) mouse due to a processing error during IHC labeling,
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and thus, only 8 individual subject data points are shown for GFAP+

astrocyte counts and GFAP/IL-1b colocalization.
2.5 Liquid chromatography-tandem
mass spectrometry

2.5.1 Metabolo-lipidomic sample preparation
Whole tissue striatal and hippocampal samples dissected from

the hemisphere that were not used for IHC were prepared as

previously described (74). All standards and internal standards

used for LC-MS/MS analysis (referred to collectively as lipidomic

analyses elsewhere) of arachidonic acid, docosahexaenoic acid, and

linoleic acid-derived lipid mediators were purchased from Cayman

Chemical (Ann Arbor, Michigan, USA). All high-performance

liquid chromatography (HPLC) solvents and extraction solvents

were HPLC grade or better.

Tissue samples were massed into pre-chilled (-20°C) Qiagen

homogenizer tubes containing a 5mm stainless steel homogenizing

bead (Qiagen, Germantown, MD, USA). An aliquot of 500 µL pre-

chilled methanol was added to each tube before homogenizing at 50

Hz for 2 minutes. Samples were then centrifuged at 14,000 rpm and

4°C for ten minutes. The supernatant was extracted into a 1.5 mL

centrifuge tube and spiked with 10 µL of the internal standard

solution (10 pg/µL each of 5(S)-HETE-d8, 8-iso-PGF2a-d4, 9(S)-

HODE-d4, LTB4-d4, LTD4-d5, LTE4-d5, PGE2-d4, PGF2a-d9 and

RvD2-d5 in ethanol), followed by vortexing. The sample was then

dried in a vacuum centrifuge at 55°C until dry. The sample was then

immediately reconstituted in 1.0 mL of 90:10 water:methanol before

purification by solid phase extraction (SPE).

Lipid mediators were isolated using Strata-X 33 µm 30 mg/1 mL

SPE columns (Phenomenex, Torrance, CA) on a Biotage positive

pressure SPE manifold (Biotage, Charlotte, NC). SPE columns were

pre-washed with 2 mL of methanol (MeOH) followed by 2 mL of

H2O. After applying the entire 1 mL of reconstituted sample, the

columns were washed with 1 mL of 10% MeOH. The lipid

mediators were then eluted sequentially with 1 mL of methyl

formate followed by 1 mL of MeOH directly into a reduced

surface activity/maximum recovery glass autosampler vial

(MicroSolv Technology Corp. Leland, NC), drying after each

solvent elution with a steady stream of nitrogen directly on the

SPE manifold. The sample was then immediately reconstituted with

20 µL of ethanol and analyzed immediately or stored at –70°C until

analysis for no more than 1 week.

2.5.2 Liquid chromatography-mass spectrometry
Quantitation of lipid mediators was performed using 2-

dimensional reverse phase HPLC tandem mass spectrometry (LC-

MS/MS). The HPLC system consisted of an Agilent 1260

autosampler (Agilent Technologies, Santa Clara, CA), an Agilent

1260 binary loading pump (pump 1), an Agilent 1260 binary

analytical pump (pump 2), and a 6-port switching valve. Pump 1

buffers consisted of 0.1% formic acid in water (solvent A) and 9:1 v:

v acetonitrile:water with 0.1% formic acid (solvent B). Pump 2

buffers consisted of 0.01% formic acid in water (solvent C) and 1:1 v:

v acetonitrile:isopropanol (solvent D).
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Five µL of extracted sample was injected onto an Agilent SB-C18

2.1 X 5 mm 1.8 µm trapping column using pump 1 at 2 mL/minute

for 0.5 minutes with a solvent composition of 97% solvent A: 3%

solvent B. At 0.51 minutes, the switching valve changed the flow to

the trapping column from pump 1 to pump 2. The flow was reversed

and the trapped lipid mediators were eluted onto an Agilent Eclipse

Plus C-18 2.1 X 150 mm 1.8 µm analytical column using the

following gradient at a flow rate of 0.3 mL/minute: hold at 75%

solvent A:25% solvent D from 0-0.5 minutes, then a linear gradient

from 25-75% D over 20 minutes followed by an increase from 75-

100% D from 20-21 minutes, then holding at 100% D for 2 minutes.

During the analytical gradient, pump 1 washed the injection loop

with 100% B for 22.5 minutes at 0.2 mL/minute. Both the trapping

column and the analytical column were re-equilibrated at starting

conditions for 5 minutes before the next injection.

Mass spectrometric analysis was performed on an Agilent 6490

triple quadrupole mass spectrometer in negative ionization mode.

The drying gas was 250°C at a 15 mL/minute flow rate. The sheath

gas was 350°C at 12 mL/minute. The nebulizer pressure was 35 psi.

The capillary voltage was 3500 V. Data for lipid mediators was

acquired in dynamic MRM mode using experimentally optimized

collision energies obtained by flow injection analysis of authentic

standards. Calibration standards for each lipid mediator were

analyzed over a range of concentrations from 0.25 – 250 pg on

column. Calibration curves for each lipid mediator were

constructed using Agilent Masshunter Quantitative Analysis

software. Tissue samples were quantitated using the calibration

curves to obtain the on-column concentration, followed by

multiplication of the results by the appropriate dilution factor to

obtain the concentration in pg/mL.
2.6 Statistical analyses

All statistical analyses were performed using SPSS (IBM SPSS

Statistics, Version 28, Chicago, IL, USA) and represented visually

using GraphPad Prism (GraphPad Software, Inc., Version 9, San

Diego, CA, USA) and OriginPro (OriginLab Corporation, Version

2022b, Northampton, MA, USA). Biorender was also utilized to

create the experimental schematic depicted in Figure 1. Data are

reported as mean ± standard error. Two-way analyses of variance

(ANOVAs) with follow-up Tukey’s post hoc tests when appropriate

were conducted with genotype [2 levels: Tat(−), Tat(+)] and drug (2

levels: vehicle, MJN110) as between-subjects factors for all but three

measures (exceptions detailed as follows). For assessments of body

mass, three-way mixed ANOVAs were conducted with time (14

levels: 14 days) as a within-subjects factor and genotype and drug as

between-subjects factors. This was then followed up by two-way

ANOVAs with genotype and drug as between-subjects factors for

each day and Tukey’s post hoc tests when appropriate. For

assessments of PFR breakpoint and number of days to acquisition,

Shapiro Wilk tests demonstrated residuals failed to meet normality

assumptions; as such, Mann-Whitney U nonparametric tests were

run to assess the effects of genotype and drug. Pearson correlation

coefficients were calculated for three behavioral measures and all

striatal-related CNS measures, except for Iba-1+ microglial
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morphology due to the chosen smaller sample size, and potential

relationships between variables were explored. Data were subdivided

by genotype and drug groups to obtain the correlation matrices.

Pearson’s correlation coefficients were calculated for each pair of

continuous variables for each group. This allowed the assessment of

the strength and direction of the linear relationship between variables

within each group separately. An alpha of p ≤ 0.05 was considered

significant for all analyses.
3 Results

3.1 Body mass was not affected by chronic
MJN110 treatment

Body mass (g) was taken daily from the start of drug injections

until the end of the study. Body mass data are reported for the first

two weeks of drug injections prior to the start of behavioral

assessment. No significant effects were noted, with only a trend

toward a significant genotype effect [F(1, 30) = 3.7, p = 0.063;

Figure 2]. Separate two-way ANOVAs for each day revealed Tat

expression significantly decreasing body mass for day 5 [F(1, 30) =

4.3, p = 0.047], day 9 [F(1, 30) = 4.7, p = 0.038], day 13 [F(1, 30) = 4.5,

p = 0.042], and day 14 [F(1, 30) = 4.2, p = 0.050]. Follow-up Tukey’s

post hoc tests demonstrated no significant group differences.
FIGURE 2

Body mass data for the two weeks of MJN110/vehicle injections
prior to the start of behavioral assessment. Tat expression showed a
trend for decreased body mass (g) over the two-week period, with
lower body mass for Tat(+) mice compared to Tat(−) mice on days
5, 9, 13, and 14. Follow-up Tukey’s post hoc test demonstrated no
significant group differences. No effects were noted for MJN110
treatment. All data are expressed as mean ± the standard error of
the mean (SEM). Statistical significance was assessed by ANOVAs
followed by Tukey’s post hoc tests when appropriate; *p < 0.05
main effect of genotype.
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3.2 No behavioral alterations were
observed following Tat induction or
MJN110 treatment

No baseline performance differences were observed between Tat(−)

and Tat(+) subjects across drug groups during FR 1 shaping trials, either

in the number of sessions required to learn the task (Figure 3A) or the

number of reinforcers earned during sessions wherein criteria for

advancement to the PFR breakpoint test were met (Figure 3A’).

Additionally, no significant differences were observed between Tat(−)

and Tat(+) subjects across drug groups during the PFR breakpoint test in

measures of breakpoint (Figure 3B), total session time (Figure 3B’),

number of nose pokes (Figure 3C), or nose pokes per minute

(Figure 3C’). These results indicate that Tat and 1 mg/kg MJN110

demonstrate no significant effects on either reward-related task learning

or motivation to exert additional effort to receive a salient reinforcer.
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3.3 MJN110 reversed Tat-induced dendritic
injury, but only minor effects were noted
on microglia

3.3.1 Neuronal dendritic density
MJN110 significantly increased neuronal dendritic density in

the nucleus accumbens [F(1, 29) = 4.4, p = 0.044; Figure 4A], which

was significantly altered by genotype [F(1, 29) = 4.5, p = 0.042]. A

follow-up Tukey’s post hoc test revealed vehicle-treated Tat(+) mice

showing lower neuronal dendritic density compared to vehicle-

treated Tat(−) mice (p = 0.050) and MJN110-treated Tat(+) mice

(p = 0.027). Within the infralimbic cortex, significant effects of both

Tat and MJN110 were observed [F(1, 29) = 5.2, p = 0.030 and F(1,

29) = 4.0, p = 0.054, respectively; Figure 4A’]. A follow-up Tukey’s

post hoc test revealed vehicle-treated Tat(+) mice showing lower

neuronal dendritic density compared to MJN110-treated Tat(−)
A

B

C

A’

B’

C’

FIGURE 3

Behavioral data for fixed-ratio (FR) 1 shaping sessions and progressive fixed-ratio (PFR) breakpoint test. For FR 1 shaping (A, A’), no significant
differences were observed between genotype or drug groups for the number of sessions required to advance to the PFR breakpoint test (A) or the
number of reinforcers earned in sessions wherein criteria for advancement were met (A’). In the PFR breakpoint test (B-C’), no significant differences
were observed for breakpoint (B), session length (B’), total number of nose poke behaviors (C), or nose pokes per minute (C’). All data are expressed
as mean ± the standard error of the mean (SEM). Statistical significance was assessed by ANOVAs or Mann-Whitney U nonparametric tests. Individual
subject data are represented by open circles.
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mice (p = 0.030). No other group comparisons were significant, with

only trending towards significance for vehicle-treated Tat(+) mice

compared to MJN110-treated Tat(+) mice (p = 0.057).

3.3.2 Microglia density and morphology
For both brain regions, the nucleus accumbens and the

infralimbic cortex, Tat and MJN110 had no significant effects on

microglia density (Figure 4B, B’, C, C’, C’’). Sholl analyses were

conducted in the nucleus accumbens to assess microglia morphology

(n = 4 mice per group with 3-4 sections/5-6 microglia, Figures 4D, D’

and Table 1). Tat expression significantly increased the soma area

(Table 1), which is associated with amoeboid morphology (71) and

has been reported previously for Tat(+) male mice (63). Tukey’s post

hoc test revealed no significant differences between groups.

Additionally, MJN110 increased the number of primary processes

(intersections at the first Sholl radius), whereas no other measure was

affected by the drug, and Tukey’s post hoc test revealed no significant

differences between groups. Overall, microglia morphology appears

to be altered by Tat and MJN110 treatment only to a minimal extent.
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3.4 MJN110 reversed some Tat-induced
alterations to astrocyte density and IL-
1b recruitment

3.4.1 Astrocyte density
Tat significantly increased astrocyte density in the nucleus

accumbens [F(1, 29) = 5.1, p = 0.032; Figure 5A]. Subjects treated

withMJN110 trended towards a significant decrease in this region [F(1,

29) = 3.0, p = 0.096]. A follow-up Tukey’s post hoc test revealed vehicle-

treated Tat(+) mice showing higher astrocyte density compared to

MJN110-treated Tat(−) mice (p = 0.045). In the infralimbic cortex

(Figure 5A’), Tat significantly increased the number of GFAP-positive

astrocytes [F(1, 29) = 6.5, p = 0.017], whereas MJN110 significantly

decreased this measure [F(1, 29) = 8.7, p = 0.006]. Importantly, a

significant interaction was observed between genotype and drug [F(1,

29) = 6.8, p = 0.015], in which vehicle-treated Tat(+) subjects showed

higher astrocyte density compared to all other groups [vehicle-treated

Tat(−) mice, p = 0.006; MJN110-treated Tat(−) mice, p = 0.003;

MJN110-treated Tat(+) mice, p = 0.002].
A
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FIGURE 4

Neuronal dendritic intensity and microglia density/morphology in the nucleus accumbens and infralimbic cortex. (A) In the nucleus accumbens,
MJN110 increased neuronal dendritic intensity based on Tat expression, with decreased MAP2ab intensity in vehicle-treated Tat(+) mice compared
to MJN110-treated Tat(+) mice and vehicle-exposed Tat(−) mice. (A’) In the infralimbic cortex, the same main effect for drug and drug x genotype
interaction was noted, with decreased MAP2ab intensity in vehicle-treated Tat(+) mice compared to MJN110-treated Tat(−) mice. (B, B’) Microglia
density was not affected by genotype or drug in the nucleus accumbens or infralimbic cortex. (C) Brain section from the nucleus accumbens of a
vehicle-treated Tat(+) mouse taken at 20x (0.3 mm2, Scale bar = 50 µm) and at a higher magnification of MAP2ab intensity and/or microglia Iba-1
(C’ and C’’, Scale bars = 10 mm). (D) Example of an orthogonal projection Iba-1-stained image from the nucleus accumbens used for Sholl analysis
(63x, Scale bar = 10 mm, image processed with ImageJ). (D’) Example of a single microglial cell with concentric Sholl radii (black circles)
superimposed on the image (Scale bar = 10 mm). All data are expressed as mean ± the standard error of the mean (SEM). Statistical significance was
assessed by ANOVAs followed by Tukey’s post hoc tests when appropriate; #p < 0.05 main effect of drug, §p < 0.05 genotype x drug interaction,
ap < 0.05 vs. vehicle-treated Tat(+) mice. Individual subject data (averaged across 3-4 images per region) represented by open circles.
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3.4.2 Astrocytic IL-1b colocalization

Within the nucleus accumbens, significant effects of both, Tat

and MJN110 were observed [F(1, 29) = 6.7, p = 0.015 and F(1, 29) =
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12.0, p = 0.002, respectively], as well as a trend towards a significant

interaction [F(1, 29) = 3.3, p = 0.078; Figure 5B). Notably, a follow-

up Tukey’s post hoc test revealed that vehicle-treated Tat(+) subjects

showed higher colocalization of IL-1b with GFAP compared to all
TABLE 1 Effect of Tat and MJN110 on microglia morphology in the nucleus accumbens of Tat transgenic mice.

Measure
Genotype

Repeated
vehicle

Repeated
MJN110

Genotype
effect

Drug effect
Genotype
x drug

mean ± SEM mean ± SEM F1,80 p F1,80 p F1,80 p

Soma area (µm2)
Tat(–) 30.85 ± 1.16 30.87 ± 1.02

3.92 0.05 0.86 0.35 0.90 0.34
Tat(+) 33.82 ± 0.99 31.92 ± 0.85

Maximum branch
length (µm)

Tat(–) 29.24 ± 1.26 30.06 ± 1.33
0.18 0.66 0.17 0.68 0.04 0.84

Tat(+) 30.08 ± 1.32 30.36 ± 1.39

Critical radius (µm)
Tat(–) 12.76 ± 0.56 12.60 ± 0.63

1.94 0.16 0.003 0.95 0.02 0.86
Tat(+) 13.64 ± 0.81 13.71 ± 0.78

Number of primary process
Tat(–) 4.95 ± 0.34 5.90 ± 0.53

0.13 0.71 4.64 0.03 0.004 0.95
Tat(+) 5.09 ± 0.53 6.10 ± 0.35

Process maximum
Tat(–) 6.71 ± 0.44 7.65 ± 0.47

0.04 0.82 2.88 0.09 0.08 0.77
Tat(+) 6.95 ± 0.44 7.62 ± 0.34

Process total
Tat(–) 38.19 ± 3.84 38.95 ± 2.22

0.51 0.47 0.48 0.48 0.20 0.65
Tat(+) 39.00 ± 3.23 42.57 ± 2.77
front
Sholl analysis of microglia morphology in the nucleus accumbens of repeated (2-week) vehicle- or MJN110-treated Tat(–) and Tat(+) female mice. Data are expressed as the mean ± SEM. The
parameters measured by Sholl analysis are indicated in parentheses in the first column. Two-way ANOVAs for each measurement were conducted with genotype and drug as between-subject
factors. F values and p values are presented from ANOVA results. Bolded values denote significant differences at p < 0.05; mean ± SEM, n = 4 mice per group with 3-4 sections/5-6 microglia.
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FIGURE 5

Astrocyte density and astrocytic IL-1b colocalization in the nucleus accumbens and infralimbic cortex. (A) Tat increased astrocyte density in the
nucleus accumbens, with increased GFPA+ counts for vehicle-treated Tat(+) mice compared to MJN110-treated Tat(−) mice. (A’) In the infralimbic
cortex, MJN110 downregulated Tat-driven increases in astrocyte density based on Tat expression, with increased GFPA+ counts for vehicle-exposed
Tat(+) mice compared to all other groups. (B) Colocalization of IL-1b with GFAP+ cells in the nucleus accumbens was significantly affected by Tat
and MJN110, with vehicle-exposed Tat(+) mice showing higher colocalization of IL-1b with GFAP+ cells compared to all other groups. (B’) In the
infralimbic cortex, colocalization of IL-1b with GFAP+ cells was downregulated by MJN110. (C) Brain section of GFAP+ astrocytes with colocalization
of IL-1b from the nucleus accumbens of a vehicle-treated Tat(+) mouse taken at 20x (0.3 mm2, Scale bar = 50 µm) and at a higher magnification (C’
and C’’, Scale bars = 10 mm). All data are expressed as mean ± the standard error of the mean (SEM). Statistical significance was assessed by ANOVAs
followed by Tukey’s post hoc tests when appropriate; *p < 0.05 main effect of genotype, #p < 0.01 main effect of drug, §p < 0.05 genotype x drug
interaction, ap < 0.05 vs. vehicle-treated Tat(+) mice. Individual subject data (averaged across 3-4 images per region) are represented by open
circles. Note that the brain sections of one vehicle-treated Tat(−) mouse were lost due to a processing error during IHC labeling and thus, only 8
individual subject data points are shown for the vehicle-treated Tat(−) mouse group. PCC, Pearson’s colocalization coefficient.
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other groups [vehicle-treated Tat(−) mice, p = 0.022; MJN110-

treated Tat(−) mice, p = 0.001; MJN110-treated Tat(+) mice, p =

0.004]. While in the infralimbic cortex (Figure 5B’), no main effect

of Tat was observed for colocalization of IL-1b with GFAP, MJN110

significantly decreased colocalization across genotypes [F(1, 29) =

4.5, p = 0.042]. A follow-up Tukey’s post hoc test demonstrated no

significant group differences. Figures 5C-C'' shows a representative

image from the nucleus accumbens of colocalization of IL-1ß with

GFAP+ astrocytes.
3.5 Contrasting effects of Tat and MJN110
on proinflammatory lipid
mediator expression

Due to the more prominent astrocytic IL-1b colocalization

observed in the nucleus accumbens relative to the infralimbic

cortex and our focus of interest on associated inflammatory lipid

mediators, lipidomic analyses with LC-MS/MS centered primarily

on further characterizing these profiles within the striatum. These

analyses revealed a significant main effect of MJN110 treatment in

reducing striatal 12-HETE [F(1, 30) = 5.0, p = 0.033; Figure 6A], 15-

HETE [F(1, 30) = 5.3, p = 0.029; Figure 6B], 5-HETE/14(15)-

epoxyeicosatrienoic acid [EET; F(1, 30) = 4.9, p = 0.035; Figure 6C],

and 11-HETE [F(1, 30) = 4.7, p = 0.038; Figure 6D). Follow-up

Tukey’s post hoc tests revealed decreased 15-HETE striatal levels for

MJN110-treated Tat(+) mice compared to vehicle Tat(−) mice (p =

0.023). Additional alterations were observed in the hippocampus

(see Supplementary Figure S1). These analyses revealed a significant

genotype x drug interaction for 12-HETE [F(1, 30) = 4.6, p = 0.040],

with follow-up Tukey’s post hoc revealing no significant group

differences. Further, significant main effects of MJN110 treatment

in reducing hippocampal 15-HETE [F(1, 30) = 4.5, p = 0.042] and 5-

HETE/14(15)-epoxyeicosatrienoic acid [EET; F(1, 30) = 6.7, p =

0.015] were noted. Further, Tat expression increased 11-HETE [F(1,

30) = 4.4, p = 0.046] that was altered by drug [genotype x drug

interaction, F(1, 30) = 4.1, p = 0.051]. Follow-up Tukey’s post hoc

tests revealed increased 11-HETE hippocampal levels for vehicle-

treated Tat(+) mice compared to vehicle Tat(−) mice (p = 0.032).
3.6 Subgroup-specific relationships
between measures

Associations between CNS and behavioral measures differed

among subgroups and were only found in vehicle-treated Tat(−)

mice and MJN110-treated Tat(+) subjects (Figure 7). In vehicle-

treated Tat(−) subjects, low striatal 5-HETE/14(15)-EET was

strongly associated with higher breakpoints and a larger number

of reinforcers earned during FR1 shaping sessions (Figure 7A). In

contrast, for MJN110-treated Tat(+) subjects, increased astrocyte

density and higher astrocytic IL-1b colocalization in the nucleus

accumbens was strongly associated with a larger number of

reinforcers earned during FR1 shaping sessions and a greater

number of shaping sessions required to advance to the PFR test,

respectively (Figure 7D).
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Behavioral predictors of PFR breakpoint also varied between

groups. For all groups, except MJN110-treated Tat(+) mice, a larger

number of reinforcers earned during FR1 shaping sessions was

strongly associated with higher PFR breakpoints (Figures 7A-C).

Further, in vehicle-treated Tat(+) subjects, a lower number of

required FR1 shaping sessions was strongly associated with higher

PFR breakpoints (Figure 7C).

Associations between CNS measures demonstrated that the four

striatal HETE mediators showed high positive correlations within each

other for all groups, except for the vehicle-treated Tat(−) mice

(Figures 7B-D). In vehicle-treated Tat(−) mice, only higher striatal
A B

C D

FIGURE 6

Quantification of striatal lipid mediators. Heatmap of all lipid
mediators assessed (top). Summary data from significant findings
(A–D). MJN110 treatment significantly decreased striatal 12-HETE
(A), 15-HETE (B), 5-HETE/14(15)-EET (C), and 11-HETE (D). All data
are expressed as mean ± the standard error of the mean (SEM).
Statistical significance was assessed by ANOVAs followed by Tukey’s
post hoc tests when appropriate; #p < 0.05 main effect of drug,
bp = 0.023 vs. vehicle-treated Tat(−) mice. Individual subject data
are represented by open circles.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1374301
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


League et al. 10.3389/fimmu.2024.1374301
15-HETE levels were associated with higher 11-HETE and 12-HETE

levels (Figure 7A). Interestingly, in vehicle-treated Tat(+) subjects,

higher striatal 15-HETE and 11-HETE levels were strongly

associated with increased astrocyte density in the nucleus accumbens,

whereas higher striatal HETEs were also associated with less IL-1b
colocalization with GFAP (Figure 7C).
4 Discussion

While no behavioral effects were observed, the present study

demonstrated that in the infralimbic cortex and nucleus accumbens,

MJN110 successfully reduced Tat-induced dendritic injury and Tat-

induced astrocyte-related neuroinflammation, as shown by decreasing

Tat-induced upregulated astrocyte density or astrocytic IL-1b
colocalization. Notably, Tat induced region-specific inflammatory

effects such that astrocyte recruitment was increased in the

infralimbic cortex, whereas instead, astrocytic IL-1b was increased in

the nucleus accumbens. No effects were noted for Iba-1+ microglia

density in either brain region, and only minor effects were noted for

microglia morphology assessed in the nucleus accumbens. Further,

selected HETE-related inflammatory lipid mediators in the striatum

were downregulated by chronic MJN110 treatment.
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The absence of behavioral differences, while contrary to

hypothesized outcomes, may indeed be of some significance insofar

as these results demonstrate MJN110 lacks cannabimimetic effects.

Tetrahydrocannabinol (THC), a major CB1R agonist component of

cannabis, has been shown to increase dopamine signaling in the

nucleus accumbens as well as the ventral tegmental area (75–77),

with both regions being critical components of the mesocorticolimbic

system involved in reward-related behaviors and salience processing.

These THC-mediated dopamine alterations underlie commonly

observed increases in food intake, often referred to as the

“munchies” (78). While other studies of chronic THC use have

contrastingly found decreases in dopamine synthesis and activity

(79), it is important to note these results are largely driven by

cannabis-dependent individuals with high-severity use (80, 81). The

limited existing data available for MJN110 effects on motivated

behavior demonstrate that acute treatment increases reward-directed

response; however, this effect was only observed at doses five- and

tenfold higher than the 1 mg/kg dose used in the present study (61).

The lack of behavioral alterations across groups may also be

explained by compensatory mechanisms such as homeostatic

scaling (82). Specifically, excitatory synapse loss and increased

inhibitory tone have previously been observed, both of which

function to protect neurons from increased N-methyl-D-
A B
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FIGURE 7

Correlation matrices of quantified variables across groups. Association patterns between behavior, nucleus accumbens MAP2ab+ dendritic intensity,
microglia density, astrocyte density, astrocytic IL-1b colocalization, and striatal inflammatory lipid mediator expression differ between subgroups.
Among other distinctions, predictors of PFR breakpoint varied between genotype and treatment groups. Additionally, vehicle-treated Tat(+) subjects
(C) show stronger associations between astrocyte density and proinflammatory lipid mediator expression relative to the other groups, vehicle-
treated Tat(−) mice (A), MJN110-treated Tat(−) subjects (B), and MJN110-treated Tat(+) mice (D). Pearson’s correlation coefficients (r) are indicated
for significant values at p ≤ 0.05. NAc, nucleus accumbens.
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aspartate (NMDA) receptor activity in the presence of Tat-

induced excitotoxicity (26, 83). Previous work has also found

immune tolerance driven by Tat when assessing microglia

activity [65]. As these compensatory changes in excitability and

immune response are evident in the context of chronic rather

than acute Tat exposure (63, 84), it could be speculated that more

robust behavioral alterations may have been observed earlier after

Tat induction than the time period presently investigated.

Immune tolerance may also contribute to the lack of Tat-

induced effects on lipid metabolite expression observed

presently; while Tat initially induces inflammation, potentially

contributing to dendritic injury seen in vehicle-exposed Tat(+)

mice, the immune system becomes desensitized to its effects after

about three months of exposure (63). Reduction in lipid

metabolite expression following MJN110 treatment may suggest

the potential to modulate immune responses in the chronic phase

of HIV-1-associated neuroinflammation wherein observable

inflammatory insult is diminished, but immune priming

remains present (85). While no differences were observed

between Tat(+) and Tat(−) subjects, the lipid metabolites

assessed may not be as sensitive to Tat exposure in chronic

condit ions. MJN110 may exert effects through other

mechanisms (e.g., modulation of immune cell activity or

regulation of downstream signaling pathways associated

with neuroinflammation).

Another plausible alternative explanation for behavioral

similarity across groups is the growing body of research

demonstrating biological sex-specific effects of HIV-1 and

constituent viral proteins, including Tat, on both peripheral and

CNS outcomes (86). Homeostatic scaling through upregulation of

inhibitory activity by g-aminobutyric acid (GABA)ergic neurons in

the hippocampus (26, 83) and the prefrontal cortex have been

established in the context of Tat expression, with the latter

particularly in females (87). In accordance with these

neurophysiological data, studies focused on neurocognitive

outcomes of infection have shown worsened behavioral profiles

among infected females in domains of spatial memory, learning,

and motor skills (88, 89). Data have also shown female-specific

hypersensitivity to pain (90), slower recovery from nerve injury, and

heightened inflammatory responses to local injury (91). As sex-

specific findings regarding executive function have historically been

inconsistent (92, 93) and relatively little has been established for

motivational deficits, the addition of male subjects in the present

work would have provided valuable insight into potential sex

differences in these domains. In addition to between-sex

variation, there may be within-sex variation due to estrous cycle.

Previous studies employing similar models have demonstrated that

HIV-1 affects motivation, including reduced response vigor and

increased reward threshold (28, 94); however, female subjects were

not included in those studies. Prior work has also shown decreased

motivation for food rewards (92, 95), even under food-restricted

conditions when in estrus, during which time attention is diverted

preferentially to sexual motivation (95). It has been posited that this

decrease in consumption during estrus occurs due to reductions in

positive-feedback signals elicited by natural reinforcers (96),

potentially a result of increased striatal dopamine turnover and
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decreased dopamine concentrations during this phase of the estrous

cycle (97). Tracking estrous cycles during assessment or phase-

locking assessments to one estrous stage would better elucidate the

effects of hormones on motivated behavior and potentially

reduce variability.

Though this study did not directly observe the effects of

MJN110 against HAND in terms of behavioral outcomes, it

provides insights into its potential for neuroprotection and as a

modulator of neuroinflammatory responses in the frontostriatal

circuitry. The MJN110 observed increase of Tat-induced

downregulation of MAP2ab+ dendritic intensity and reduction of

neuroinflammatory markers demonstrates promise for curbing the

underlying inflammatory priming linked with HIV-1, potentially

diminishing the emergence or persistence of additional behavioral

sequelae associated with HAND. To better clarify the involvement

of other cytokines in these effects, further quantification of TNF-a
would be advantageous. Because TNF-a inhibits astrocytic

glutamate uptake and increases reactive oxygen species (ROS)

(98, 99), characterizing HIV-1-associated effects on this measure

would enable elucidation of additional mechanisms by which these

cells become dysfunctional in infection and may be restored with

MJN110. Notably, biomarkers of oxidative stress are elevated in

PLWH treated with highly active antiretroviral drugs (100). This

increased oxidative stress contributes to neurotoxicity, HAND, and

premature aging (100, 101). The observed upregulation of

MAP2ab+ dendritic signal by MJN110 in Tat(+) mice and

MJN110-induced reduction in ROS-derived 11-HETE in the

present study suggests a mechanism apart from other enzymatic

pathways by which this treatment may be neuroprotective, and

collecting data for TNF-a would provide insight into whether the

reduction in oxidative stress biomarkers is related to possible

additional MJN110-driven immunoreactivity-suppressing effects.

Assessing lipid mediator expression in the infralimbic cortex

would also provide valuable data to determine whether the effects

of Tat and MJN110 may be distinct from those observed in the

striatum. As hippocampal lipid mediator expression analyses

revealed Tat-induced upregulation of 11-HETE (Supplementary

Figure S1D), additional region-specific effects may also be

observed elsewhere. Given the differences in neuroinflammatory

phenotypes between the infralimbic cortex and striatum in

astrocyte density and colocalization with IL-1b, it remains

possible that diverse cellular mechanisms are recruited to drive

distinct inflammatory responses across regions.

In contrast to previous studies of MAGL inhibition, which have

shown reductions in prostaglandin expression (102), no such

alteration was observed in our analyses (see Figure 6 and

Supplementary Figure S1 heatmap panel sections for COX

pathway). However, the underlying difference may involve which

specific MAGL inhibitor is administered, what dosage is used, or a

combination of the two factors. MJN110 is a newer-generation drug

relative to those used in prior work, with benefits over previous-

generation drugs as described earlier, including fewer off-target

effects. Despite the similarity in that prostaglandins and HETEs are

both inflammatory metabolites of arachidonic acid (AA), their

derived mechanisms differ in their metabolizing enzyme.

Prostaglandins are derived from cyclooxygenase (COX), whereas
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HETEs are largely derived from lipoxygenases (LOX) and

cytochrome P450 (CYP) enzymes (103). That MJN110 decreased

HETEs without affecting prostaglandins suggests a more COX-

independent pathway for MJN110’s profile of anti-inflammatory

effects. This finding is important because while COX-targeting

therapeutics such as non-steroidal anti-inflammatory drugs

(NSAIDs) are effective against inflammation and pain, they can

also increase the risk of adverse cardiovascular events (104–106).

MJN110 confers anti-inflammatory effects while more specifically

targeting pathways beneficial to cardiac, respiratory, and

cerebrovascular health, including LOX and CYP (107, 108), with

the exception of 5-HETE, which is derived from AA through the

LOX system but metabolized through the COX system (109). Given

predispositions of PLWH to cardiovascular disease and related

complications (110, 111), this therapeutic strategy may improve

quality of life across more domains relative to earlier-developed

MAGL inhibitors, which interact with COX pathways. Of note,

HIV-1 gp120 is more strongly linked to increases in signaling

within the COX pathway, particularly through induction of COX-

2 expression (112), so using subjects who express more constituent

proteins of the HIV-1 viral genome may provide a more complete

understanding of virus-associated inflammatory profiles as well as

therapeutic potential of MJN110 across signaling pathways.

Within astrocytic mechanisms, assessing other factors, such as

neurotrophin synthesis and hypertrophy, could further elucidate

additional contrasting effects of Tat and MJN110 on astrogliosis.

Astrocyte density was assessed presently as increased astrocyte

counts are widely understood to indicate increased proliferation

associated with astrogliosis (113); however, a limitation remains in

the inability to distinguish between normal and activated astrocytes.

There also remains the question of other cellular mechanisms

potentially driving independent inflammatory responses. While

number of microglia and microglia morphology was not altered

by Tat and MJN110, microglia are recognized as a productive viral

reservoir that contributes to IL-1b upregulation through

stimulation of nucleotide-binding domain leucine-rich repeat-

containing proteins (NLRs) (114). The present study could not

further probe microglial activation-induced IL-1b upregulation due

to technical difficulties with triple-immunolabeling, but these

contributions to inflammatory tone remain important to consider.

While the expression and distribution of MAGL were not

assessed in the current study, recently published work specifically

examined MAGL expression in our transgenic mouse model, and

demonstrated Tat induction does not alter MAGL expression (87).

Based on these findings, it can reasonably be inferred that MAGL

expression was not a confounding factor in the data observed

presently. Additionally, a previous paper authored by our lab

provides relevant insights into MJN110’s effects in the brain (62).

This study, which utilized the same subject preparation methods,

including dosage, frequency of MJN110 administration, and

duration of Tat induction as the present study, investigated the

effect of MJN110 on endocannabinoid levels in various brain

regions and showed that treatment with MJN110 increased levels

of 2-AG in multiple brain regions. These findings suggest that this
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MAGL inhibitor effectively modulated endocannabinoid signaling

in the brain without baseline MAGL alteration driven by Tat.

Nevertheless, to directly conclude that MJN110 effects are due to

increases in 2-AG levels, mice should be administered a 2-AG

synthesis blocker, such as DO34, similar to what has been published

previously (60).

Several limitations of this study should be considered when

applying current findings to the therapeutic potential of targeting

MAGL in the context of HIV. First, despite the Tat transgenic

mouse model being a well-established neuroHIV model, only one of

the many viral proteins is expressed. It is known that viral proteins can

interact and target various signaling pathways (115); thus they can

modify CNS and behavior in different ways compared to a single viral

protein. Second, the use of doxycycline for inducing Tat expression is

not ideal, as doxycycline has neuroprotective effects on its own (116).

Nevertheless, both Tat(–) and Tat(+) mouse groups received

doxycycline chow throughout the study to control for this confound

and minimize bias. Third, only females were used in the current study

without monitoring estrous cycle. Future studies should monitor

estrous cycle as hormones can alter motivated behavior associated

with a food reward (94), as well as include male mice for comparison,

especially due to the known sex-specific differences in immune

response to the virus (117). Lastly, ART medication was not

considered in the study, as the HIV Tat transgenic mouse model

mimics individuals on ART because no virus replication/entry/

integration is present, similar to what is seen in PLWH on ART with

undetectable viral load. Nevertheless, it is known that cannabinoids and

ART drugs are metabolized through the CYP450 system, thus leading

to potential drug-drug interaction (118). Interestingly, no significant

interactions have been reported between cannabinoids and HIV

protease inhibitors in previous studies (119, 120), but additional

pharmacokinetic studies remain necessary to increase our

understanding of cannabinoid-ART interactions.
5 Conclusion

A wide body of evidence indicates while HIV-1 treatment has

improved life expectancy and quality over the years, supplemental

strategies and studies are needed to address persistent issues with

patient health, shortcomings of cART, and historically problematic

research design. Ultimately, understanding the specific virus-

associated vulnerabilities across different subpopulations – and

especially the therapeutic potential of novel adaptogenic

compounds like MJN110, as demonstrated here – will enhance

the foundation of knowledge upon which similar future studies are

built and improve management strategies for HIV-1 and other

inflammatory diseases.
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