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Evaluation of the causal effects
of immune cells on ischemic
stroke: a Mendelian
randomization study
Kunyu Wang, Beilin Zhang, Min Li, Hanying Duan,
Zhuoya Jiang, Su Gao, Jing Chen and Shaokuan Fang*

Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University,
Changchun, China
Background: Ischemic stroke (IS) is a cerebrovascular disease caused by various

factors, and its etiology remains inadequately understood. The role of immune

system dysfunction in IS has been increasingly recognized. Our objective was to

evaluate whether circulating immune cells causally impact IS risk.

Methods: We conducted two-sample Mendelian randomization analyses to

evaluate the causal effects of 731 immune cell traits on IS, utilizing publicly

available genome-wide association studies (GWAS) summary statistics for 731

immune cell traits as exposure data, and two GWAS statistics for IS as outcome

data. A set of sensitivity analyses, including Cochran’s Q test, I2 statistics, MR-

Egger intercept test, MR-PRESSO global test, and leave-one-out sensitivity

analyses, were performed to assess the robustness of the results. Additionally,

meta-analyses were conducted to combine the results from the two different IS

datasets. Finally, we extracted instrumental variables of immune cell traits with

causal effects on IS in both IS datasets for SNP annotation.

Results: A total of 41 and 35 immune cell traits were identified to have significant

causal effects on IS based on two different IS datasets, respectively. Among them,

the immune cell trait CD62L- plasmacytoid Dendritic Cell AC and CD4+ CD8dim T

cell%leukocyte respectively served as risk factor and protective element in both

IS datasets. The robustness of the causal effects was confirmed through the

sensitivity analyses. The results of the meta-analyses further support the causal

effects of CD62L- plasmacytoid Dendritic Cell AC (pooled OR=1.030, 95%CI:

1.011–1.049, P=0.002) and CD4+ CD8dim T cell%leukocyte (pooled OR=0.959,

95%CI: 0.935–0.984, P=0.001). Based on these two immune cell traits, 33 genes

that may be related to the causal effects were mapped.

Conclusions: Our study demonstrated the potential causal effects of circulating

immune cells on IS, providing valuable insights for future studies aimed at

preventing IS.
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1 Introduction

Stroke ranks as the second most common cause of death and the

third leading cause of death and disability combined worldwide,

causing a huge burden to the economy and society (1). Ischemic

stroke (IS) is the predominant type of stroke, resulting from a

blockage in the blood supply to the brain and clinically manifested

by transient or permanent brain dysfunction. In 2020, the global

incidence of stroke was 11.71 million people, with IS accounting for

approximately 65% of all cases (2). Current treatments for IS rely on

rapidly clearing the blockage through thrombolysis or mechanical

approaches, and the treatment effectiveness closely tied to the

intervention time window (3). The pathogenesis of IS is complex,

often resulting from the combined effect of multiple factors.

Hypertension, hyperlipidemia, atrial fibrillation, cigarette

smoking, excessive alcohol consumption, and diabetes mellitus

are well-established risk factors for IS (4–6). However, these

traditional risk factors can only partially explain the risk of IS.

Therefore, accurately identifying novel IS-related risk factors has

become crucial for its prevention and treatment.

The role of inflammation and immune system dysfunction in IS

has been increasingly recognized (7). Immune cells, crucial

components of the immune system, circulate in the bloodstream

or reside within tissues. A transcriptomic study revealed the

involvement of immune cells in IS, demonstrating significant

differences in peripheral blood immune cells of IS patients

compared to the normal control group (8). Studies have indicated

that both acute and chronic inflammation in IS is primarily linked

to immune cells such as B cells, T cells, monocytes, neutrophils (7,

9). A complex interdependent relationship exists among different

types of immune cells in IS. They not only collaborate to clear

necrotic brain tissue but may also trigger an inflammatory response,

leading to damage of healthy neurons (7, 9). However, a significant

portion of the existing evidence is derived from observational

studies, which might be constrained by confounding factors and

reverse causality. This means that while specific changes in immune

cells may be observed in associated with IS, it cannot be determined

whether the changes in immune cells are a direct cause of IS or a

result of it.

Mendelian randomization (MR) is a widely used analytical

method aimed at investigating potential causal impacts of

exposures on outcomes using data obtained from genome-wide

association studies (GWAS) (10). MR effectively reduces the

influence of confounding factors and avoids the issue of reverse

causation commonly encountered in observational studies, as allelic

variants are randomly allocated and fixed at conception (11).

To the best of our knowledge, the causal association between a

broad range of immune cell traits and IS has not been established

using MR. To address this gap, based on the available GWAS data

on peripheral blood immune cells and IS, two-sample MR analyses

were performed to explore the causal links of 731 types of immune

cell trait on IS risk.
Frontiers in Immunology 02
2 Materials and methods

2.1 Study design

We conducted two-sample MR analyses to evaluate the causal

effects of 731 immune cell traits on the risk of IS. Each immune cell

trait served as an exposure variable, and IS served as the outcome

variable. Eligible single nucleotide polymorphisms (SNPs) that

represented immune cell traits were employed as instrumental

variables (IVs). In the MR analysis, adherence to three

fundamental assumptions is essential: (1) relevance assumption:

IVs are strongly associated with immune cells; (2) independence

assumption: IVs are independent of potential confounders; and (3)

exclusion restriction assumption: IVs affect IS only via immune cells

(12). Sensitivity analyses were performed to ensure the robustness

of the results. The design of MR analysis is illustrated in Figure 1.

All studies included in our analysis received approval from the

relevant institutional review boards.
2.2 Data sources

We obtained the GWAS data for immune cell traits and IS from

the IEU Open GWAS project website (https://gwas.mrcieu.ac.uk/

datasets). For the exposure data, we used the GWAS summary

statistics for a total of 731 immune cell traits derived from a cohort

of 3,757 normal Europeans (13). These immune cell traits were

classified into four groups: absolute cell counts (AC) (n=118),

relative cell counts (RC) (n=192), median fluorescence intensities

(MFI) (n=389), and morphological parameters (MP) (n=32).

Specifically, AC, RC, and MFI contain TBNK (T cell, B cell,

natural killer cell), Treg, maturation stages of T cell, dendritic cell

(DC), B cell, monocyte, and myeloid cell panels, while MP contains

DC and TBNK panels. To ensure comparability in ancestry,

outcome data for IS were extracted from two GWAS statistics of

Europeans with the largest sample sizes, consisting of 11,929 cases/

472,192 controls (GWAS ID: ebi-a-GCST90018864; designated as

the discovery dataset) (14) and 34,217 cases/406,111 controls

(GWAS ID: ebi-a-GCST005843; designated as the validation

dataset) (15), respectively. Detailed information of datasets is

presented in Table 1.
2.3 Selection of IVs

To ensure the authenticity and reliability of IVs, a set of quality

control measures was implemented. Firstly, in accordance with the

recent studies (16, 17), the significance level of IVs for each immune

cell trait was set at 1×10−5. Secondly, to obtain independent IVs, the

linkage disequilibrium r2 threshold was set to 0.001 within a

10,000kb distance based on the reference panel of 1000 Genomes

Project (18). Thirdly, SNPs significantly correlated with
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confounders such as arterial hypertension and diabetes mellitus as

previously reported (19) were excluded using PhenoScanner (http://

www.phenoscanner.medschl.cam.ac.uk/) to preliminarily mitigate

the effect of horizontal pleiotropy (Supplementary Table 1).

Fourthly, to avoid bias from weak instruments, only IVs with F-

statistics greater than 10 were considered as strong instruments.

Finally, the GWAS data for each immune cell trait dataset and each

IS dataset were harmonized with the selected IVs.
2.4 Statistical analyses

To evaluate the potential causal effects of 731 immune cell traits

on IS, inverse variance weighting (IVW) as the primary method and

MR-Egger as the supplementary method were conducted. The

obtained results were visualized using scatter plots. Subsequently, a

range of sensitivity analyses were performed to assess the robustness

of the results. Cochran’s Q test and I2 statistics were used to detect the

heterogeneity among IVs. MR-Egger intercept test was utilized to

evaluate the presence of horizontal pleiotropy (20). The MR-PRESSO

global test, known for higher statistical power, was also employed to

further examine possible horizontal pleiotropy (21). Additionally,

leave-one-out sensitivity analyses were performed to determine

whether an individual SNP could influence the bias of causal

estimate. Finally, to facilitate the integration of results from the two
Frontiers in Immunology 03
different IS datasets, meta-analyses were conducted to consolidate the

findings. The analyses were carried out using the packages

TwoSampleMR (version 0.5.6), MR-PRESSO (version 1.0), and

meta (version 6.5) in R (version 4.1.0). Detailed procedure code is

provided in Supplementary Materials.
2.5 SNP annotation

An rs-codes of SNP converter g:SNPense was utilized for SNP

annotation (22). g:SNPense is an online tool for mapping human

SNP identifiers to their corresponding genes and providing their

predicted variant effects, with the Ensembl Variation data. Mapping

is only available for SNPs which overlap with at least one

Ensembl gene.
3 Results

3.1 Selection of IVs

Following stringent quality control measures, we identified 2 to

729 independent IVs for different immune cell traits. The F-

statistics for these IVs ranged from 19.548 to 2435.818, indicating
TABLE 1 Detailed information of datasets.

GWAS ID Phenotype Sample size Case Control Ancestry

ebi-a-GCST90001391–
ebi-a-GCST90002121

Immune cell traits – – – European

ebi-a-GCST90018864(discovery dataset) Ischemic stroke 484,121 11,929 472,192 European

ebi-a-GCST005843(validation dataset) Ischemic stroke 440,328 34,217 406,111 European
f

FIGURE 1

Schematic diagram of the MR study.
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a lack of potential bias from weak instruments. Comprehensive

details about the IVs, including rs-codes, effect allele, other allele,

beta value, standard error, P-value, and other information, are

systematically summarized in Supplementary Table 2.
3.2 MR analyses

Regarding the discovery dataset, the results of the IVW analyses

revealed 41 immune cell traits exhibiting significant causal

associations with IS risk, including 11 in the B cell panel, 10 in

the TBNK panel, 7 in the Treg panel, 5 in the maturation stages of T

cell panel, 3 in the monocyte panel, 3 in the myeloid cell panel, and

2 in the DC panel (Figure 2). A total of 20 immune cell traits, such

as CD25 on CD28+ CD4+ T cell (OR=1.071, 95%CI: 1.005–1.140,
Frontiers in Immunology 04
P=0.033), BAFF-R on IgD- CD38dim B cell (OR=1.057, 95%CI:

1.005–1.112, P=0.031), and IgD+ CD24+ B cell AC (OR=1.046,

95%CI: 1.010–1.082, P=0.012), were found to significantly

increase the risk of IS. Conversely, 21 immune cell traits, such as

CD28 on resting CD4 regulatory T cell (OR=0.926, 95%CI: 0.887–

0.965, P<0.001), CD62L- HLA DR++ monocyte AC (OR=0.952, 95%

CI: 0.917–0.989, P=0.011), and CD19 on IgD- CD27- B cell

(OR=0.953, 95%CI: 0.921–0.986, P=0.006), significantly decreased

the risk of IS (Figure 2).

Regarding the validation dataset, the results of the IVW

analyses demonstrated 35 immune cell traits exhibiting significant

causal associations with IS risk, of which 10 were in the B cell panel,

5 in the TBNK panel, 7 in the Treg panel, 6 in the maturation stages

of T cell panel, 3 in the myeloid cell panel, and 4 in the DC panel

(Figure 3). Among these immune cell traits, 22 of them, such as
FIGURE 2

Forest plot for the causal effects of immune cell traits on IS risk derived from inverse variance weighted based on discovery dataset. OR, odds ratio;
CI, confidence interval.
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CD27 on IgD- CD38+ B cell (OR=1.071, 95%CI: 1.029–1.115,

P<0.001), IgD+ CD38dim B cell%B cell (OR=1.059, 95%CI: 1.004–

1.116, P=0.035), and CD20 on IgD- CD27- B cell (OR=1.044, 95%CI:

1.005–1.084, P=0.025), were positively associated with the risk of IS.

On the contrary, 13 immune cell traits, such as Plasma Blast-Plasma

Cell AC (OR=0.960, 95%CI: 0.935–0.986, P=0.003), CD4+ CD8dim T

cell%leukocyte (OR=0.961, 95%CI: 0.928–0.995, P=0.024), and

CD11b on Granulocytic Myeloid-Derived Suppressor Cells

(OR=0.963, 95%CI: 0.941–0.987, P=0.002), were negatively

associated with the risk of IS (Figure 3). Details of MR analyses,

including the results estimated by MR-Egger, are summarized in

Supplementary Table 3.

Based on the results of MR analyses of the discovery and

validation datasets, we found that CD62L- plasmacytoid Dendritic

Cell AC and CD4+ CD8dim T cell%leukocyte were linked with the

susceptibility to IS in both datasets, serving as a risk factor and a

protective element, respectively (Table 2). Scatter plots illustrating

the causal effects of CD62L- plasmacytoid Dendritic Cell AC and

CD4+ CD8dim T cell%leukocyte in different IS datasets are presented

in Supplementary Figure 1.
Frontiers in Immunology 05
3.3 Sensitivity analyses

The results of sensitivity analyses confirmed the robustness of the

causal associations (Table 3). When I² statistics>50% or the P-value

for Cochran’s Q test<0.05, heterogeneity among IVs needs to be

considered. No evidence of heterogeneity was detected in our results.

Visualized funnel plots are presented in Supplementary Figure 2.

Neither the Egger intercept test nor the MR-PRESSO global test

identified significant horizontal pleiotropy, except for the Egger

intercept test for CD62L- plasmacytoid Dendritic Cell AC in the

discovery dataset (P=0.0022). It is worth noting that, compared to

the Egger intercept test, the MR-PRESSO global test demonstrates

higher statistical power (21). Therefore, it is justifiable to prioritize the

results of the MR-PRESSO global test. However, considering the

potential presence of horizontal pleiotropy, we conducted MR-Egger

causal estimation to complement the MR analysis, which can identify

and adjust for horizontal pleiotropy (20). The MR-Egger estimation

also revealed a consistent causal effect for CD62L- plasmacytoid

Dendritic Cell AC on IS (OR=1.085, 95%CI: 1.045–1.126, P<0.001)

(Supplementary Table 3), aligning with the IVW result in the
FIGURE 3

Forest plot for the causal effects of immune cell traits on IS risk derived from inverse variance weighted based on validation dataset. OR, odds ratio;
CI, confidence interval.
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discovery dataset, demonstrating the reliability of the finding. The

results of the leave-one-out sensitivity analyses demonstrated that no

single SNP could significantly influence the causal estimates

(Supplementary Figure 3).
3.4 Meta-analyses

Subsequently, we conducted meta-analyses to combine the MR

estimates from the two different datasets. For CD62L- plasmacytoid

Dendritic Cell AC, the meta-analysis results indicated that an

increase in CD62L- plasmacytoid Dendritic Cell AC led to a higher

risk of IS (pooled OR=1.030, 95%CI: 1.011–1.049, P=0.002) without

any heterogeneity observed (I2 = 0.0%, t2 = 0.0%, P=0.82)
Frontiers in Immunology 06
(Figure 4A). Regarding CD4+ CD8dim T cell%leukocyte, the meta-

analysis results showed that an increase in this trait decreased the

risk of IS (pooled OR=0.959, 95%CI: 0.935–0.984, P=0.001) without

any heterogene i ty observed ( I 2 = 0 .0%, t2 = 0 .0%,

P=0.90) (Figure 4B).
3.5 SNP annotation

We annotated the SNPs as IVs of the immune cell traits of

CD62L- plasmacytoid Dendritic Cell AC and CD4+ CD8dim T cell%

leukocyte. A total of 33 Ensembl genes were mapped using g:

SNPense (Table 4). These identified genes may be relevant to the

causal effect of CD62L- plasmacytoid Dendritic Cell AC and CD4+

CD8dim T cell%leukocyte on IS risk.
4 Discussion

Understanding the impact of immune cells on IS will provide

valuable insights into the role of inflammation and immune system

dysfunction in the onset and progression of IS. Recent research has

brought attention to the noteworthy influence of immunity on IS

risk, as evidenced by elevated levels of inflammatory markers in the

bloodstream, such as interleukin-6 (23), monocyte chemotactic

protein-1 (24), and C-reactive protein (25), as well as a rise in

total white blood cell count (26–28) and neutrophil count (27, 28).

However, due to the inherent limitations of observational studies

(29), these investigations can only establish the involvement of

inflammation and immune cells in the development of IS but

cannot offer reliable proof of causality. Given the methodological
TABLE 2 Common causal immune cell traits based on two ischemic
stroke datasets.

GWAS ID Immune cell trait OR
(95%CI)

P-
value

ebi-a-
GCST90018864

(discovery dataset)

CD62L- plasmacytoid Dendritic
Cell Absolute Count

1.028
(1.002-
1.054)

0.0337

CD4+ CD8dim T cell%leukocyte 0.958
(0.923-
0.993)

0.0210

ebi-a-GCST005843
(validation
dataset)

CD62L- plasmacytoid Dendritic
Cell Absolute Count

1.032
(1.005-
1.061)

0.0222

CD4+ CD8dim T cell%leukocyte 0.961
(0.928-
0.995)

0.0236
TABLE 3 Evaluation of heterogeneity and horizontal pleiotropy using different methods.

GWAS ID Immune
cell trait

Heterogeneity Horizontal pleiotropy

I2(%) Cochran’s
Q

P-value Egger
intercept

SE P-value MR-
PRESSO
P-value

ebi-a-
GCST90018864

(discovery
dataset)

CD62L-

plasmacytoid
Dendritic

Cell
Absolute
Count

27 31.5587 0.1097 -0.0169 0.0049 0.0022 0.0680

CD4+

CD8dim T
cell

%leukocyte

0 10.9666 0.6887 -0.0031 0.0087 0.7240 0.6740

ebi-a-
GCST005843
(validation
dataset)

CD62L-

plasmacytoid
Dendritic

Cell
Absolute
Count

15 20.0553 0.2714 -0.0084 0.0056 0.1486 0.2550

CD4+

CD8dim T
cell

%leukocyte

4 13.4926 0.4105 -0.0046 0.0077 0.5659 0.4770
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A

B

FIGURE 4

Forest plots for meta-analyses of MR estimates in two IS datasets. (A) CD62L- plasmacytoid Dendritic Cell AC. (B) CD4+ CD8dim T cell%leukocyte.
TABLE 4 SNP annotation of immune cell trait instrumental variables.

Immune
cell trait

SNP Chr Start End Strand Gene id Gene name

CD62L-

plasmacytoid
Dendritic Cell
Absolute Count

rs116054627 2 50941360 50941360 + ENSG00000179915 NRXN1

rs11659751 18 58069491 58069491 + ENSG00000049759 NEDD4L

rs116894787 10 12198107 12198107 + ENSG00000151465 CDC123

rs118054784 8 129646438 129646438 + ENSG00000229140 CCDC26

rs12061996 1 167845147 167845147 + ENSG00000143199 ADCY10

rs13201703 6 22921242 22921242 + ENSG00000233358 ENSG00000233358

rs1391986 5 52775477 52775477 + ENSG00000248898 PELO-AS1

rs1472757 5 6455759 6455759 + ENSG00000215218 UBE2QL1

rs150918748 22 43050384 43050384 + ENSG00000100271,
ENSG00000230319

TTLL1, TTLL1-AS1

rs16957038 13 99889998 99889998 + ENSG00000125246,
ENSG00000286757

CLYBL,
ENSG00000286757

rs170697 -1 -1

rs17224524 2 181481419 181481419 + ENSG00000115232 ITGA4

rs191779135 4 81581203 81581203 + ENSG00000138670 RASGEF1B

rs4462104 -1 -1

rs4928176 -1 -1

rs56374915 -1 -1

rs61936377 -1 -1

rs6535445 -1 -1

rs7114664 11 22771455 22771455 + ENSG00000148935 GAS2

(Continued)
F
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advantages of MR analysis in causal inference (11), this study’s

evaluation of the causal effects of immune cells on the risk of IS may

be more dependable than previous observational studies. In our

study, utilizing large-scale publicly available genetic data, we

conducted two-sample MR analyses to explore genetic evidence

supporting causal associations between immune cell traits and IS.

The results of this study demonstrated that 41 and 35 immune cell

traits had significant causal effects on IS based on the discovery and

validation dataset, respectively. Furthermore, the immune cell traits

CD62L- plasmacytoid Dendritic Cell AC and CD4+ CD8dim T cell%

leukocyte were significant in both the discovery and validation

datasets. In addition, the meta-analyses, combining the MR

estimates, further confirm that CD62L- plasmacytoid Dendritic

Cell AC and CD4+ CD8dim T cell%leukocyte have causal effects on IS.

DCs play a crucial role in initiating and coordinating the

immune response as professional antigen-presenting cells, which

can be classified into inflammatory DCs, Langerhans cells,

conventional DCs, and plasmacytoid DCs (30). The role of DCs

has not been sufficiently investigated in the context of IS. Regarding

clinical study, compared with healthy individuals, the number of

circulating plasmacytoid DC precursors was transiently reduced in
Frontiers in Immunology 08
IS patients, while a dense infiltration of plasmacytoid DCs was

observed in the infarcted brain, indicating the potential recruitment

of plasmacytoid DC precursors from blood into the infarcted brain

(31). Using a murine model of experimental IS, Barbara et al.

observed an induction of DC migration and maturation under

ischemic conditions, and inhibiting DC function can reduce the

infarct area and improve neurological function scores (32). The

adhesion molecule CD62L- DCs are considered immature with

relatively low migratory capability (13). According to our

research, elevated levels of CD62L- plasmacytoid Dendritic Cell

AC can increase the risk of IS. Self-DNA released from dying cells

can activate neutrophils to release the DNA-binding antimicrobial

peptide LL37 (known as Cramp in mice), which in can subsequently

convert self-DNA into a trigger for plasmacytoid DC activation

through Toll-like receptor 9, leading to the production of large

amounts of interferon-a (33, 34). The mechanism of plasmacytoid

DC activation by self-DNA is closely related to the occurrence and

progression of atherosclerosis and diabetes (35, 36). Both

atherosclerosis and diabetes are intricately connected to the onset

and development of IS (4, 5), which may partly explain why CD62L-

plasmacytoid Dendritic Cell AC could serve as a risk factor for IS.
TABLE 4 Continued

Immune
cell trait

SNP Chr Start End Strand Gene id Gene name

rs72716416 8 130980984 130980984 + ENSG00000155897 ADCY8

rs75472065 3 77027522 77027522 + ENSG00000185008 ROBO2

rs9403901 -1 -1

rs9502274 6 566060 566060 + ENSG00000112685 EXOC2

rs9900969 17 78198408 78198408 + ENSG00000183077 AFMID

CD4+ CD8dim T
cell%leukocyte

rs10858526 -1 -1

rs10880825 12 45598113 45598113 + ENSG00000257657 ENSG00000257657

rs114200183 2 96684492 96684492 + ENSG00000249715 FER1L5

rs150052968 -1 -1

rs150339178 2 85420783 85420783 + ENSG00000152292,
ENSG00000286011

SH2D6,
ENSG00000286011

rs17530643 1 83003581 83003581 + ENSG00000230817 LINC01362

rs2801996 1 89907158 89907158 + ENSG00000171492,
ENSG00000271949

LRRC8D,
ENSG00000271949

rs28521508 15 83463237 83463237 + ENSG00000140600 SH3GL3

rs35290870 2 86795980 86795980 + ENSG00000153563 CD8A
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In the realm of immune components, T cells are particularly

significant due to their potency in both innate and adaptive immune

responses. They are crucially involved in post-stroke inflammation,

primarily through the release of inflammatory cytokines and their

intricate interplay with other cells, thereby amplifying the cascade

of inflammation (37, 38). It has been reported that IS induced a

dramatic and immediate loss of circulating T cells within 12 hours

after onset (39). However, in the infarcted brain samples of IS

patients, T cell numbers have been shown to increase for at least 3

months (40). A recent study demonstrated that the decrease in the

percentage of circulating CD4+ naïve T cells is a risk factor for IS in

patients on hemodialysis (41). In our study, CD4+ CD8dim T cell%

leukocyte in TBNK panel was shown to be significantly associated

with decreased risk of IS. Interleukin-10 plays a significant role in

regu la t ing pro- inflammatory cytokines and exer t ing

immunomodulatory and neuroprotective effects in the context of

IS (42). In a murine model of experimental IS, Dan et al.

demonstrated that the adoptive transfer of interleukin-10-

producing CD4+ T cells resulted in a reduction in ischemic

infarct size (43). Further exploration is needed to elucidate the

mechanisms underlying the involvement of CD4+ CD8dim T cell%

leukocyte in the occurrence and progression of IS.

We identified 33 genes that may be associated with the causal

effect of CD62L- plasmacytoid Dendritic Cell AC and CD4+ CD8dim

T cell%leukocyte on IS risk by SNP annotation. Among these genes,

NEDD4L (44) and ABCC1 (45) have been reported to be involved

in IS through non-immune mechanisms. NEDD4L deletion can

exacerbate ischemic brain damage by diminishing a-Synuclein
polyubiquitination (44). ABCC1 is downregulated in response to

IS, which could be reversed by the deletion of apolipoprotein E (45).

There are several limitations of the present MR study. First, due

to the lack of detailed individual information, we could not delve

deeper into the causal effects of immune cell traits on subgroups of

the population. Second, since the dataset solely represents a

European population, caution must be exercised when

extrapolating the findings to other ethnic groups, necessitating

additional scrutiny. Third, all causal effects uncovered through

our MR study were derived from IVs at a relatively loose

threshold, which may potentially affect the precision of the

results. However, considering all F-statistics were greater than 10,

it appears unlikely that weak IVs could have influenced

our findings.

In summary, our results could offer novel perspectives on the

causal connections between immune cell traits and IS, and highlight

the intricate interactions between the immune system and IS. The

findings indicate that CD62L- plasmacytoid Dendritic Cell AC and

CD4+ CD8dim T cell%leukocyte hold potential as biomarkers for IS

risk, which could facilitate earlier diagnosis and more effective

treatment options. Furthermore, we call for experimental research

to explore the underlying mechanisms linking identified immune

cell traits to the risk of IS.
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