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For many decades viral infections have been suspected as ‘triggers’ of

autoimmune disease, but mechanisms for how this could occur have been

difficult to establish. Recent studies have shown that viral infections that are

commonly associated with viral myocarditis and other autoimmune diseases

such as coxsackievirus B3 (CVB3) and SARS-CoV-2 target mitochondria and are

released from cells in mitochondrial vesicles that are able to activate the innate

immune response. Studies have shown that Toll-like receptor (TLR)4 and the

inflammasome pathway are activated by mitochondrial components.

Autoreactivity against cardiac myosin and heart-specific immune responses

that occur after infection with viruses where the heart is not the primary site of

infection (e.g., CVB3, SARS-CoV-2) may occur because the heart has the

highest density of mitochondria in the body. Evidence exists for

autoantibodies against mitochondrial antigens in patients with myocarditis

and dilated cardiomyopathy. Defects in tolerance mechanisms like

autoimmune regulator gene (AIRE) may further increase the likelihood of

autoreactivity against mitochondrial antigens leading to autoimmune disease.

The focus of this review is to summarize current literature regarding the role of

viral infection in the production of extracellular vesicles containing

mitochondria and virus and the development of myocarditis.
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Highlights
Fron
• Mitochondrial extracellular vesicles contain CVB3

• Extracel lular vesicles containing mitochondrial

components activate TLR4/NLRP3

• Autoantibodies against mitochondria are found in patients

with myocarditis

• The autoimmune regulator AIRE may bind few

mitochondrial genes
Introduction

The immune system protects the host against infection by

specifically recognizing and eliminating foreign pathogens, but in

the process must avoid responding to host antigens. During

maturation of the immune system, immune cells that react

against self-antigens are eliminated providing an immune system

that is ‘tolerant’ to self (1). T cells that escape central tolerance are

additionally regulated with peripheral tolerance mechanisms that

include the conversion of self-reactive T cells to regulatory T cells.

Autoimmunity that progresses to autoimmune disease can occur if

this process breaks down (2). Genetic and environmental factors

contribute to the development of autoimmune diseases, but twin

studies indicate that environmental factors are a significant

contributor (3, 4). For many decades viral infections have been

suspected as ‘triggers’ of autoimmune disease, but mechanisms for

how this could occur have been difficult to establish (2, 5, 6). Recent

findings suggest that subversion of host cellular extracellular vesicle

(EV) processing by viral infections may lead not only to activation

of the immune response against the virus but also against

mitochondrial or other self-antigens thereby contributing to the

development of autoimmune disease. In this review, we describe

EVs with mitochondrial content, their relationship to viral

infections such as coxsackievirus B3 (CVB3), and their potential

role in driving autoimmune diseases with a focus on myocarditis.
Extracellular vesicles

In the last decade there has been a major increase in interest in

EVs in their role in cell-to-cell communication, as biomarkers and

as therapeutics (7, 8). Many terms and definitions are used to

describe EVs, and in this review we use the term EVs to refer to all

extracellular, lipid bilayer, sub-cellular particles and their functional

contents with sizes ranging from several nm to several mm (9, 10).

This umbrella term includes the widely recognized major subgroups

termed exosomes, microvesicles, and apoptotic bodies, which are

currently distinguishable only by their theorized origin and size but

not by experimental means (11). EVs are engaged in cellular

communication in both health and disease as transporters of

molecular signals in the form of nucleic acids (e.g., DNA, mRNA,
tiers in Immunology 02
microRNA/miRs, long-coding RNA/lcRNA and circular RNA/

circRNA), proteins and lipids (11).

When tissue environments are perturbed or cells become

damaged as occurs during a viral infection, EV content changes

based on cellular reprogramming in response to pathological stress

(11, 12). EVs can either activate or inhibit innate and adaptive

immune cell responses based on their content (13–15). EVs have

been demonstrated to express major histocompatibility complex

(MHC) class I or II and directly activate innate antigen presenting

cells (APCs) or adaptive T and B cells in an antigen/self-antigen-

specific manner (16, 17). Tetraspanins like CD9, CD63 and CD81,

which are commonly used to characterize EVs, bind factors on

innate immune cells like integrins (i.e., CD11b) that are important

in activating and modulating immune responses (12, 18).
Viral infection and EVs

Importantly, many viruses use EV cellular machinery (i.e.,

exosome endosomal sorting complexes required for the transport/

ESCRT pathway) for viral transmission such as cytomegalovirus,

coxsackievirus, SARS-CoV-2, human immunodeficiency virus 1

(HIV-1), hepatitis viruses B, C and E (HBV, HCV, and HEV), and

multiple members of the human herpesvirus (HHV) family (reviewed

in (19–22). As a result, EVs can contain infectious virus, viral particles

and/or viral proteins following infection that can subvert the immune

response to promote viral replication. Important from an autoimmune

disease context, a ‘mix’ of self and foreign antigens in/on EVs that may

occur after viral infection may be presented to APCs and drive the

immune response to target not only the infectious agent but also host

antigens resulting in an autoimmune response.
EVs and autoimmune disease

The role of EVs in the development of autoimmune disease has

been studied in patients and animal models. A review article by

Tian et al. recently examined the role of EVs in a number of

autoimmune diseases including thyroiditis, systemic lupus

erythematosus (SLE), multiple sclerosis (MS), rheumatoid

arthritis (RA), anti-phospholipid syndrome and type I diabetes

(23). Many investigators have reported that the number of

circulating EVs are elevated in patients with autoimmune disease

compared to controls (24–26); however, the wide variety of

methods and procedures for isolating EVs as well as differences in

storage conditions makes it difficult to interpret these findings.

Studies examining changes in EV content and function may

provide a clearer picture of their effects in patients with

autoimmune disease. MicroRNA (miRs) content in blood EVs

(exosomes) were identified as biomarkers that distinguished

patients with relapsing-remitting MS (i.e., miR-15b-5p, miR-451a,

miR-30b-5p, miR-342-3p) from those with progressive MS or

healthy controls (27, 28). Eight out of the nine miRs that were

identified in the study were confirmed in a separate group of

patients indicating that the miRs/EVs could serve as biomarkers
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to predict MS type. Similar results have been found for other

autoimmune diseases like type I diabetes (29). EVs have also been

found to either promote inflammation/remodeling or to inhibit

harmful immune responses for a number of autoimmune diseases

including RA (30–33), Hashimoto’s thyroiditis (34), type I diabetes

(35), SLE (36), and myocarditis (15). Additionally, EVs have been

found with immunoglobulins (Ig) on their surface including IgG or

internally in the form of self-antigen-complement-Ig immune

complexes (ICs) (37, 38) suggesting that EVs may initiate and/or

promote autoimmune damage and inflammation via ICs (39–42).

Understanding the role of EVs in autoimmune disease is an

emerging field with many questions still to be answered.
Mitochondrial extracellular vesicles

Another form of EVs that have received recent attention and

may play a role in autoimmune disease are those that contain host

cellular components such as mitochondria (e.g., primarily

mitochondrial proteins or RNA) (43). The earliest evidence of

mitochondria and mitochondrial components in vesicles comes

from a description by Vishwa Nath in 1932 of work by Koltzoff in

1906 studying sperm cells from Paratelphusa spinigera (44).

Koltzoff and Nath observed sub-cellular structures in crab

spermatocytes undergoing a process that sounds similar to our

current understanding of mitochondrial-derived vesicles (MDVs)

(intracellular vesicles for mitochondrial transport) (44–46) or

mitophagosomes (mitochondria fission products contained in

autophagosomes for selective autophagy) (47, 48). Both MDVs

and fragmented mitochondria fission products can be sent to

autophagosomes for selective autophagy (46, 49) in a specific

lysosomal degradation of mitochondria process referred to as

‘mitophagy’ (49). The formation of the endoplasmic reticulum

barrier around fragmented mitochondrial pieces (i.e., the

autophagosome), a process that occurs in receptor-mediated

mitophagy, is what Nath suspected protected these structures

(which he only knew as another membrane around a

mitochondrial mass) from rupture and lysis when exposed to

acetic acid (44). Another process that has been referred to as

‘mitoptosis’ involves selective removal of damaged mitochondria

from the cell in vesicles (i.e., EVs) that are generally referred to as
Frontiers in Immunology 03
mitochondrial EVs (50) or mitovesicles (51) that contain whole or

pieces of mitochondria (52, 53). See images of mitochondrial EVs

budding from cardiac myocytes in Figure 1 (54). Importantly, this

process can occur for healthy physiological removal or transfer of

mitochondria as well as for damaged mitochondria (55).

EVs that contain mitochondria lack standardized definitions

but are known to contain inner and outer mitochondrial membrane

components, mitochondrial nucleic acid (i.e., DNA, RNA), and/or

cardiolipin - a signature phospholipid that is more concentrated in

mitochondrial membranes than cellular membranes (9). The two

known major populations of mitochondrial EVs also differ in terms

of their size: MDVs are smaller (30-100 nm) and EVs containing

larger mitochondrial components or whole mitochondria have a

larger size.
Coxsackievirus B3-induced
mitochondrial EVs

For decades, small non-enveloped RNA viruses like CVB3 were

thought to cause host cell lysis as the primary method of viral

dissemination, but recent evidence has demonstrated that infectious

CVB3 and viral particles are released in mitochondrial EVs (47, 56).

The first evidence that CVB3 infection disrupts cardiac

mitochondria was published in 1964 using young Swiss white

mice (Webster strain) inoculated with tissue culture-derived virus

(57). Investigators utilized microscopy to assess subcellular changes

to the myocardium during viral infection. Notably, they identified

an increase in mitochondrial fission, disruption of mitochondrial

cristae, and smaller mitochondria with additional membranes that

enclosed them that likely depict mitophagosomes (57). A later study

from 1997 identified CVB3 localization around and within cardiac

mitochondria during myocarditis in mice (Figure 2) (58).

In 2017, Roberta Gottlieb’s laboratory published a study

demonstrating CVB3 viral transmission via EVs containing

mitochondrial components (47). Using an in vitro neural

progenitor stem cell model of viral infection, Robinson et al.

demonstrated that CVB3 localizes to the mitochondrial

compartment of infected cells and is later ejected from cells in

vesicles containing virus, inner and outer mitochondrial membrane

components, and autophagy machinery (i.e., microtubule-
FIGURE 1

Mitochondrial derived vesicles (MDVs) from cardiac mitochondria. Widefield transmission electron microscopic images of mitochondria isolated from
bovine heart. (A) 60-100 nm vesicles containing mitochondria. Scale bar, 500 nm, (B) MDV budding from mitochondria containing inner and outer
mitochondrial membrane, (C) Protrusion of MDV from mitochondria showing constriction at its base, (D) MDV forming with only outer
mitochondrial membrane. Panels (B–D), scale bars 100 nm. Reused with permission from (54).
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associated protein light chain 3/LC3-II) (47). Using electron

microscopy, they found these particles ranged in size from 100-

200 nm in diameter and contained single or multiple virions

(Figure 3) (47). They also observed that the ejected particles were

infectious to adjacent uninfected host cells.

The protein dynamin-related protein 1 (Drp1) is required for

mitochondria to undergo fission. Drs. Gottlieb and Sin showed that

CVB3 infection led to Drp1-induced mitochondrial fission resulting

in damaged mitochondria being processed into mitophagosomes

via mitophagy and released from host HL-1 cardiomyocytes in

culture as mitochondrial EVs (48). The role of fission in the

production of mitochondrial vesicles was confirmed by

inhibition/blocking mitochondrial fission machinery using

mitochondrial division inhibitor-1 (Mdivi-1) or direct inhibition

of Drp1 with siRNA which resulted in less viral replication and

fewer/no virus containing EVs in the culture supernatant (48). Dr.

Sin’s group additionally showed that Tank binding kinase I (TBK1)

increased phosphorylation of GABA type A receptor associated

protein-like (GABARAPL) proteins leading to EVs that contain

mitochondria being released from the cells (59). CVB3 infection has

also been shown to perturb syntaxin-17 facilitated mitophagosome-

lysosomal fusion, which may lead to build up and release of formed

mitophagosomes from the cell (60). Thus, these studies confirm that

CVB3 localizes to mitochondria and is released in mitochondrial
Frontiers in Immunology 04
vesicles. Further research is needed to better understand the

molecular mechanisms of intracellular mitophagosome formation

in the context of viral infections to determine how viruses take

advantage of mitochondrial compartments and evade intracellular

degradation by targeted autophagy. A summary of our current

understanding of CVB3-mitochondria interaction and the

development of EV populations containing mitochondria and

virus is illustrated in Figure 4.
Mitochondrial autoimmunity
and myocarditis

It turns out that many viruses are known to localize to

mitochondria (61–64), utilize mitochondrial machinery for

replication (48, 65), evade immune responses within EVs (66)

and modify cellular processes (59, 60, 67). Importantly, most of

the viruses that are associated with causing myocarditis [e.g., CVB,

influenza, HIV, poliovirus, hepatitis C virus, SARS-CoV-22 (68,

69)] have been found to target mitochondria to gain a replicative

advantage (61–64) and are ejected from cells/tissues in EVs (60, 65,

70, 71) suggesting that these mechanisms may provide an

explanation for how viruses could cause autoimmune disease.
Mitochondrial autoantibodies in patients
with myocarditis

Dr. Peter Schultheiss, a major contributor to the fields of cardiology

and myocarditis, began identifying and characterizing autoimmune

antibodies in patients with myocarditis in the 1970s. In 1978, Bolte and

Schultheiss reported that 76% of 17 patients with viral myocarditis had

autoantibodies in sera and 41% of these were anti-nuclear antibodies

(72). They went on to show that autoantibodies against the adenine

nucleotide transporter (ANT), which is a component of the inner

mitochondrial membrane, were elevated in patients with myocarditis

and dilated cardiomyopathy (DCM) (73, 74). Myocarditis progresses to

DCM in susceptible patients and animal models (75). Patients with

suspected or confirmed viral myocarditis or cardiomyopathy/DCM

had the highest reactivity to anti-mitochondrial antigen and highest

expression of anti-mitochondrial antibodies (74). Further analysis

found that the sera had uniquely specific reactivity toward cardiac

mitochondrial antigen compared to liver or kidney mitochondrial

antigen (76).

Another group independently reported that patients with various

cardiomyopathies including myocarditis had autoantibodies reactive

against mitochondrial proteins (77). They found that 13% with acute

myocarditis, 31% of patients with DCM, and 33% with hypertrophic

cardiomyopathy generated antibody responses specifically to the M7

antigen of the mitochondrial enzyme sarcosine dehydrogenase, and

25% of these reacted against the cardiac-specific form of the

mitochondrial antigen (77). Another group observed autoantibodies

against ANT in patients diagnosed with myocarditis or DCM (78).

They also observed cardiac-specific reactivity and suggested

mitochondrial autoimmune activity as a potential mechanism for the
FIGURE 2

CVB3 localizes around and within murine cardiac mitochondria
during myocarditis. Immunogold electron micrograph of mouse
cardiomyocyte with CVB3 myocarditis on day 8 post infection. Black
dots (arrows) are gold staining of CVB3 viral genome localizing
around and in cardiomyocyte mitochondria. Scale bar, 100 nm. Mt,
mitochondria; Mf, myofibril. Reused with permission from (58).
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development of DCM following acute myocarditis (78). This agrees

with our current understanding of the development of DCM following

acute myocarditis (75, 79, 80).
Mitochondrial autoantibodies in models
of myocarditis

Although viral-induced myocarditis is often categorized as a

distinct condition from autoimmune myocarditis clinically and in

animal models, the distinction between the two conditions is not

clear-cut because patients with viral myocarditis and mouse models of

viral myocarditis have been demonstrated to develop autoantibodies

and autoreactive T and B cells against cardiac myosin and other self-

antigens including mitochondria (2, 39, 79, 81–83).

Importantly, a study examining autoantibody levels that

compared experimental autoimmune myocarditis (EAM) to
Frontiers in Immunology 05
CVB3-induced myocarditis in mice found that ANT was only

produced after viral infection but not in EAM suggesting that

viral infection was necessary for the production of mitochondrial

autoantibodies whereas both models produced autoantibodies

against cardiac myosin (84). Additionally, Lin et al. showed that

depletion of Drp1 (required for fission) in mice using the

mitochondrial fission inhibitor Mdivi-1 reduced CVB3

myocarditis and restored mitochondrial function in the heart (71)

suggesting that mitochondrial EVs containing virus may increase

myocarditis, although they did not examine this in the study.

Overall, these findings suggest that viral infection may be an

important mechanism to produce mitochondrial autoantibodies

found in patients with autoimmune diseases.
Anti-mitochondrial antibodies in rheumatic
autoimmune diseases

Anti-mitochondrial antibodies (for example, antibodies that

target cardiolipin, mitofusin 1, mitochondrial DNA or

mitochondrial RNA) are commonly found in patients with

rheumatic autoimmune diseases such as RA, SLE, and anti-

phospholipid syndrome (85–87). Mobarrez et al. reports most

larger EVs (0.7 - 3.0 mm) found in SLE patients contain

functional mitochondrial components, as indicated by the

presence of the translocase of outer mitochondrial membrane 20

(TOMM20) and hexokinase1 (25). Elevated levels of these type of

EVs containing mitochondria are positively associated with

increased SLE disease activity, proinflammatory cytokines, and

anti-dsDNA antibodies, suggesting that these EVs may be

involved in disease pathogenesis (25). Becker et al. recently

reviewed the mechanism of immune activation leading to

autoimmune disease by mitochondria in these rheumatic

conditions but does not discuss the potential role of viral

infections in the process or whether the mitochondrial EVs also

contain virus or viral components (85). These findings suggest that

damage to mitochondria resulting in autoimmune responses may

be a common mechanism in the pathogenesis of many

autoimmune diseases.
Activation of autoimmunity by
mitochondrial EVs

One possible mechanism where myocarditis and other

autoimmune diseases could be induced and/or exacerbated by

mitochondrial EVs is by activation of Toll-like receptor (TLR)4,

interleukin (IL)-1b and leucin-rich repeat (LRR)-containing protein
(NLRP)3, which is a pathway that has been demonstrated to

increase myocarditis and viral replication in CVB3 models of

myocardit is (88, 89). Mitochondria are known to be

immunogenic and the TLR4/NLRP3 signaling pathway can be

activated by mitochondrial components such as cytochrome c,

mitochondrial transcription factor A (TFAM), ATP and

cardiolipin, which can all be found in mitochondrial EVs, to

initiate a proinflammatory and profibrotic immune response (90–
FIGURE 3

CVB3 identified in EVs using transmission electron microscopy.
(A) Widefield transmission electron microscopic view of single virion
(green arrow) in an extracellular EV or free virion (pink arrow) from
culture of CVB3 in C2C12 cells. (B) Higher digital magnification
(dashed purple box) of a virus-like particle revealed an icosahedral
shape structure (dashed green polygon) slightly larger than 31 nm in
diameter enclosed within a membrane structure. (C) Large EV
containing multiple virions (green arrows). Scale bars = 100 nm.
Reused with permission from (47).
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94). Mitochondrial and viral antigens may be expressed on the cell

surface or interior of EVs and activate APCs via MHC class II

presentation, TLRs or be processed for presentation after the EV

lipid membrane has ‘merged’ with an APC (23).

However, not all mitochondria found in EVs stimulate the innate

immune response. In some cases, healthy mitochondria within EVs are

found to fuse with recipient mitochondria in cultured cardiomyocytes

and in a mouse model of myocardial infarction where they improve

mitochondrial function and disease (95). These investigators showed a

similar improvement in doxorubicin-induced toxicity in cultured

cardiomyocytes (96). Thus, transfer of healthy intact mitochondria

within EVs represents a novel and potentially viable therapy for

patients with mitochondrial damage or dysfunction (97, 98).
Tolerance against mitochondrial
antigens and myocarditis

As mentioned earlier, a key feature of the immune response that

protects against the development of autoimmunity is the generation

of tolerance to self-antigens that occurs in the thymus (1). Since the
Frontiers in Immunology 06
generation of T cell receptors (TCRs) in the thymus is a random

process, negative selection of T cells that react too strongly to self-

antigen is required to prevent autoimmunity. To determine whether

there are too many self-reactive T cells, the thymus utilizes the

autoimmune regulator gene (AIRE) and dendritic cells (99, 100).
AIRE and tolerance to self

AIRE is a transcriptional regulator that protects against self-

reactivity by inducing the production of tissue-specific antigens

normally not expressed in the thymus, a process that occurs in

medullary thymic epithelial cells (mTECs) (99). Resident dendritic

cells of the thymus take up self-proteins and present them to T cells. If

reactivity to self-antigen is too strong, dendritic cells undergo cytokine

signalling programs that destroy autoreactive T cells (99). Migratory

and peripheral dendritic cell populations further contribute to negative

selection of autoreactive T cells by selecting against cells reactive to

peripheral antigen from other tissue microenvironments. Migratory

dendritic cells take up antigen in their respective resident tissues and

travel to the thymus whereas peripheral dendritic cells test autoreactive
FIGURE 4

Formation of mitochondrial EVs from cardiomyocytes after CVB3 infection (1). CVB3 gains entry to cardiomyocytes via the coxsackievirus
adrenoreceptor (CAR) or passive entry from previously formed mitochondrial EVs containing replicative virus (2). CVB3 mitochondrial localization
induces mitochondrial stress and damage leading to (3a) mitochondrial-derived vesicle (MDV) formation and Drp1-mediated mitochondrial fission
and recruitment of the endoplasmic reticulum (ER) for autophagosome formation alongside LC3 lipidation (LC3-II). (3b) MDVs containing replicative
and or non-replicative viral particles may either eject from the cell or join multi-vesicular bodies before release from cardiomyocytes (MDVs can also
be slated for receptor mediated mitophagy and potentially escape the cell without GABARAPL phosphorylation, which is not shown in this diagram)
(4). LC3-II binds mitophagy adaptors situated on the outer mitochondrial membrane to form a mitophagosome with GABARAPL proteins on the
endoplasmic reticulum (ER) facing the cytosol (5). Phosphorylation of the mitophagosome on GABARAPL proteins by tank-binding kinase 1 (TBK1)
leads mitophagosomes to subsequent (6) lysosomal fusion and degradation (7). Non-phosphorylated mitophagosomes do not proceed to fusion
with the lysosome but either (8) join the multivesicular body for cell release and dissemination or are ejected alone. The resulting EVs containing
mitochondrial components and viral particles (replicative and/or non-replicative) we term as “mitopods” or mitochondrial escape-pods for CVB3.
The two major sources of mitopods are MDV-derived or fission-derived. Another possible distinguishing feature of fission-derived versus MDV-
derived mitopods would be an additional membrane derived from the ER. This figure was created using BioRender.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1374796
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Di Florio et al. 10.3389/fimmu.2024.1374796
T cells in the periphery (i.e., their tissue of origin) thereby inducing,

depending on the conditions, cell deletion, anergy or polarization

toward a regulatory phenotype (100). It is estimated that there are

1,140 murine genes that interact with or localize to mitochondrial

compartments (101), so AIRE should protect the host from developing

autoimmunity against these mitochondrial antigens. One important

question is whether mitochondrial genes represent a gap in the normal

negative selection criteria in the thymus.
AIRE and mitochondrial autoimmunity

To our knowledge, no studies examining the function of AIRE

describe its ability to produce mitochondrial self-antigen. Two

major studies exist with publically available data of AIRE

genomic binding and related expression (102, 103). A study by

Bansal et al. reported murine transcriptomic data that examined

AIRE binding using chromatin immunoprecipitation (ChIP)

sequencing (ChIPseq). We examined whether any of the antigens

that they reported for AIRE were directed against mitochondrial

antigens using their published transcript-level data. They did not

have protein/proteomic level data available to assess this question.

They estimated AIREs coverage of genes by assessing transcription

among AIRE knockout (KO) mice versus wild type (WT) controls

in data derived from mouse mTECs (103). A negative log fold-

change (LogFC) indicated downregulation of the transcript in the

AIRE KO mice, suggesting that in WT conditions, AIRE may be

responsible, in part, for regulating the transcription of a respective

gene. To determine AIRE regulation of mitochondrial related genes,

we performed a keyword search for “mitochondri” (which yielded

results for mitochondrial, mitochondria, and mitochondrion) in the

gene description column of their dataset, which yielded 315 genes.

Among these, 20 were significantly downregulated at an FDR p ≤

0.05 comparing AIREWT to KO indicating that AIRE may regulate

only 6.3% of the 315 mitochondrial related genes. We also assessed

the potential role of AIRE to regulate 85 murine nuclear-encoded

mitochondrial respiratory chain genes using keyword searches in

the gene name column for “nduf,” “sdh,” “cox,” “uqcc,” and “atp,”

which are the prefixes for gene names among components of

respiratory complexes I-V, respectively. Their data showed a

significant downregulation of 2 of 85 (2.3%) nuclear encoded

mitochondrial respiratory chain genes in AIRE KO vs WT

samples. Mitochondrial genes that were regulated by AIRE are

listed in Table 1. Thus, only a small percentage of potential

mitochondrial genes were regulated by AIRE using this method.

More research is needed to better understand whether AIRE

contributes to tolerance against mitochondrial antigens. Thus, a

lack of mitochondrial tolerance may be one possible explanation for

the development of mitochondrial targeted autoimmune responses

in myocarditis and other autoimmune diseases.
Summary

In summary, we propose the following possible scenario for the

role of mitochondrial EVs in the induction of autoimmune diseases
Frontiers in Immunology 07
like myocarditis. The initial infection with virus will activate

antiviral TLRs like TLR3, 7, 8, 9 in the first few minutes/hours

after infection. The virus will traffic to the mitochondria at the local

site of infection and mitochondria within the virus’ favorite cell

type/primary tropism to obtain a replicative advantage. The virus

will be released from the cell in mitochondrial EVs. Mitochondrial

components expressed within or on the surface of the EVs then

activate TLR4 on APCs. The presence of virus/viral particles and

mitochondrial components together may create a strong ‘adjuvant’

effect to activate the immune response. During the viremic stage of

viral replication, which typically occurs in the first few days after

viral infection, the virus within EVs can traffic through the

bloodstream or lymphatics to the heart where infection of cardiac

tissues can occur in a non-viral receptor specific manner via EVs or

also with viral receptors if they are present in cardiac tissue. For

example, CVB3 may enter cardiac cells via coxsackievirus-
TABLE 1 Mitochondria related and respiratory complex genes expressed
by AIRE in mice from Bansal et al. (103) in order of FDR p value.

Gene
Symbol

Nominal
p value

FDR
p value

LogFCa Category

Mrpl13 0.0000163 0.000559 -1.29492 Mito Related

Mrps30 0.0000776 0.00182 -0.85468 Mito Related

Gls2 0.000243 0.00422 -0.87328 Mito Related

Mtarc1 0.000294 0.00486 -0.74663 Mito Related

Slc25a13 0.000842 0.0107 -0.84998 Mito Related

Cox7a2l 0.000932 0.0116 -0.87238 Resp Chain

Tmem243 0.00111 0.0131 -0.68091 Mito Related

Cox17 0.00149 0.0161 -0.67956 Resp Chain

Immp1l 0.00158 0.0167 -0.58226 Mito Related

Mtrf1l 0.00211 0.0208 -0.5228 Mito Related

Mrpl22 0.00219 0.0215 -0.58552 Mito Related

Mtarc2 0.00239 0.0228 -0.54555 Mito Related

Mterf1 0.00289 0.0260 -0.46945 Mito Related

Mrpl47 0.00307 0.0273 -0.52963 Mito Related

Mto1 0.00388 0.0325 -0.45504 Mito Related

Tomm20 0.00433 0.0349 -0.53508 Mito Related

Micu2 0.0049 0.0381 -0.46659 Mito Related

Diablo 0.00498 0.0385 -0.47024 Mito Related

Tk2 0.00512 0.0394 -0.44682 Mito Related

Bcat2 0.0069 0.0489 -0.53663 Mito Related
aBcat2, branched chain amino acid transaminase 2; Cox7a2l, cytochrome c oxidase subunit
7A2-like; Cox17, cytochrome c oxidase copper chaperone; Diablo, IAP-binding mitochondrial
protein; Gls2, glutaminase 2; Immpl1, inner mitochondrial membrane peptidase subunit 1;
LogFC, Log Fold-Change; Micu2, mitochondrial calcium uptake 2; Mito Related,
mitochondrial related; Mrpl13, mitochondrial ribosomal protein L13; Mrpl22/47,
mitochondrial ribosomal protein L22/47; Mrps30, mitochondrial ribosomal protein S30;
Mtarc1/2, mitochondrial amidoxime reducing component 1/2; Mterf1, mitochondrial
transcription termination factor 1; Mto1, mitochondrial tRNA translations optimization 1;
Mtrf1l, mitochondrial translation release factor 1-like; Resp Chain, respiratory chain;
Slc25a13, solute carrier family 25 member 13; Tk2, thymidine kinase 2; Tmem243,
transmembrane protein 243; Tomm20, translocase of outer mitochondrial membrane 20.
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adenovirus receptor (CAR) which is expressed in the heart. Release

of mitochondrial EVs from mitochondrially rich cardiomyocytes

may drive a cardiac-specific autoimmune response because the

mitochondrial content in/on EVs may contain heart specific

mitochondrial antigens. TLR4 signaling has been found to be an

important pathway in the pathogenesis of many autoimmune

diseases including myocarditis. Autoantibodies against

mitochondrial components are found in patients with many

different autoimmune diseases including myocarditis and in viral

animal models of myocarditis providing evidence of an

autoimmune response against mitochondria. Whether

mitochondrial EVs that originate from the heart occur at a

sufficient level to activate a cardiac-specific autoimmune response

may be one reason why myocarditis occurs only rarely. Defects in

AIRE may also confer susceptibility to autoimmune responses

against mitochondrial antigens in some patients.
Conclusions

For decades the question of whether viruses can cause

autoimmune disease has lacked a plausible explanation. Evidence

exists that viral infections cause myocarditis that is also associated

with autoimmune responses against the heart in patients and

animal models, yet how viruses could cause autoimmunity in

myocarditis is not clear. Recent evidence substantiates that many

viruses, and in particular the viruses that are associated with clinical

cases of myocarditis, target mitochondria to promote viral

replication and to evade the immune response they are ejected

from cells within EVs. Often these EVs also contain mitochondrial

components. It is known that EVs contain proteins, receptors and

other components that identify them as originating from self-tissue.

EVs that contain replicative virus and/or virus particles and

mitochondrial components may form powerful danger signals to

the immune system activating TLR4- a key pathway in the

pathogenesis of myocarditis and DCM. Autoantibodies against

mitochondrial components and specifically cardiac mitochondria

are found in patients with myocarditis and DCM providing insight

that viral infections may promote the release of mitochondrial

antigens to activate an autoimmune response. Additionally,

defects in AIRE may allow heightened self-reactivity against

mitochondrial antigens. These mechanisms provide an

explanation for how viral infections may initiate or promote

autoimmune diseases like myocarditis.
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