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NETosis of psoriasis: a critical
step in amplifying the
inflammatory response
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Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China, 3Department of Dermatology,
Jining No.1 People’s Hospital, Jining, Shandong, China
NETosis, a regulated form of neutrophil death, is crucial for host defense against

pathogens. However, the release of neutrophil extracellular traps (NETs) during

NETosis can have detrimental effects on surrounding tissues and contribute to

the pro-inflammatory response, in addition to their role in controlling microbes.

Although it is well-established that the IL-23-Th17 axis plays a key role in the

pathogenesis of psoriasis, emerging evidence suggests that psoriasis, as an

autoinflammatory disease, is also associated with NETosis. The purpose of this

review is to provide a comprehensive understanding of the mechanisms

underlying NETosis in psoriasis. It will cover topics such as the formation of

NETs, immune cells involved in NETosis, and potential biomarkers as prognostic/

predicting factors in psoriasis. By analyzing the intricate relationship between

NETosis and psoriasis, this review also aims to identify novel possibilities targeting

NETosis for the treatment of psoriasis.
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1 Introduction

Psoriasis is a chronic immune-mediated disease that not only affects skin but is also

associated with conditions such as arthritis, diabetes mellitus, metabolic syndrome,

vascular complications (including stroke and ischemic heart disease), and depression (1).

It is widely recognized that Th1 and Th17 and their associated cytokines, including IL-17A,

IL-12, and IL-23, play a key role in the pathogenesis of psoriasis. Inhibitors targeting these

cytokines have proven effective in achieving clinical remission by rapidly clearing skin

lesions. However, some patients do not respond to these inhibitors or experience disease

recurrence during treatment, suggesting the involvement of other immune cells in the

pathogenesis of psoriasis.

Dysfunctional immune system involvement has been well-documented in typical

psoriatic dermatoses, making it a focal point for investigating the pathogenesis of the

disease (2). Neutrophils have been observed to be highly abundant in psoriatic lesions,

particularly in the epidermis, where they accumulate in Munro micro-abscesses in the
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stratum corneum and spongy pustules of Kogoj in the spinous layer

(3). Some researchers believe that neutrophils, as the most abundant

of the innate immune cells, play a crucial role in the development

and progression of psoriasis (4). Although the precise role of

neutrophils in the development and progression of psoriasis

remains unknown, a wealth of clinical data supports their

relevance (5–7). For instance, the treatment drug for psoriasis,

dimethyl fumarate has been shown to reduce neutrophil levels,

thereby mitigating the immune system’s impact on the body.

Additionally, secukizumab, a drug that significantly reduces

epidermal neutrophil levels, has demonstrated efficacy in treating

moderate-to-severe psoriasis (8). These findings suggest that

neutrophils are involved in the pathogenesis of psoriasis and

represent a potential target for therapeutic intervention.

Activated neutrophils employ a mechanism known as NETosis

to capture and eliminate pathogens by releasing neutrophil

extracellular traps (NETs) into the cell. The formation of NETs is

accompanied by a unique form of neutrophil death, distinct from

apoptosis and necrosis, known as NETosis (9). These NETs have

been identified in peripheral tissues, such as the skin and kidneys, of

individuals with autoimmune small vessel vasculitis, SLE, and

rheumatoid arthritis (10–12).

In this narrative review, we extensively examine published

articles focusing on the formation of NETs and their key

components, as well as the potential role of NETosis in psoriasis.

We also explore new treatments for psoriasis.
2 Overview of NETosis

2.1 NET formation and NET components
in psoriasis

NETs, which are composed of decondensed chromatin forming

a reticulated DNA structure with pores of approximately 200 nm,

are surrounded by nuclear proteins (13). These proteins can be

classified into three categories: histones, granule proteins, and

cytoplasmic proteins. Granule proteins mainly include neutrophil

elastase and myeloperoxidase. Cytoplasmic proteins include

representatives such as S100 calcium-binding proteins A8, A9,

and A12, as well as actin and a-actin (14–16).

The formation of NETs can involve two main mechanisms,

namely vital NETs and suicidal NETs (17). Suicidal NETosis is the

release of DNA networks by neutrophils through apoptosis, in which

the nucleus is discharged into the surrounding environment (18).

When neutrophils perceive a stimulus, the stimulus directly activates

the protein kinase C (PKC) and Raf-MEK-ERK-MAP kinase

pathways. Next, the activation of MAP kinase will initiate the

formation of the NADPH oxidase complex (19, 20), leading to the

rapid generation of reactive oxygen species (ROS) (21). Neutrophil

elastase (NE) and myeloperoxidase (MPO) contribute to the

enhancement of nuclear membrane permeability and the promotion

of chromatin formation (22), as well as in the nucleus, where NE

and MPO can facilitate the digestion of histones H2b and H4

through synergistic effects (23, 24). At the same time, ROS may

increase Ca2+ in the cytoplasm by disrupting the endoplasmic
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reticulum or mitochondrial membrane, thereby activating peptide-

based arginine deaminase 4 (PAD4) (25). Then, PAD4 modifies

histone H3 by converting arginine to citrulline, leading to chromatin

depolymerization (26). During nuclear rupture, citrulline histones

(26, 27) and nuclear DNA (28)are released together. The released

DNA is further decorated by granular (NE and MPO) (29) and

cytosolic proteins (Calpain) (30). The increase of intracellular ROS

can also activate receptor interacting protein kinase 3 (RIPK3) and

mixed lineage kinase domain like protein (MLKL), promoting

membrane rupture (31, 32).

Vital NETosis is formed by neutrophils passing through the cell

membrane and releasing DNA and proteins into the surrounding

environment to form NETs (33). At first, PMA stimulates neutrophils,

leading to rapid activation of intracellular NADPH oxidase and

ultimately increasing ROS (19, 34). When DNA dissociated from

chromatin leaves the cytoplasm through vesicles, it can be modified

by granular proteins (NE, MPO, and PR3) (29, 34). Subsequently,

neutrophils maintain activity and exert further functions (35), using the

increased intracellular ROS to mobilize the cytoskeleton to transport

particles and mitochondria (36), and using ATP to transport particles

to the outside of neutrophils through actin (37).
2.2 NET components in psoriasis

There is a higher likelihood of NET formation in neutrophils in

individuals with psoriasis than in healthy individuals (38). Furthermore,

it has been observed that there may be alternations in NETs during the

onset of the disease. A recent study suggests that NETs in individuals

with psoriasis exhibit an increased presence of proteins, including

inflammatory mediators and antimicrobial proteins such as histone,

myeloperoxidase, neutrophil elastase LL37, and RNA-LL37 (39). These

proteins are believed to play a role in the inflammatory process that

contributes to the development of skin lesions.
3 NETosis is associated with the
amplification of psoriasis inflammation

NETosis, a process in which neutrophils release NETs, plays a

significant role in amplifying inflammation in psoriasis. During

NETosis, neutrophils produce LL37, which can bind to the P2X7

receptor on monocytes and promote RNA uptake. This RNA is then

directed to intracellular compartments, triggering the activation of

endosomal toll-like receptors and subsequent secretion of IL-1b,
leading to inflammatory vesicle activation (40).. Additionally, LL37

promotes RNA uptake by neutrophils and facilitates its

transportation to intracellular compartments, resulting in TLR

induction, cytokine release, and IL-8 production and CD62L

shedding upon stimulation of the neutrophils (41, 42). The

released IL-8 can restimulate neutrophils (43), recruiting more

neutrophils to the lesion site (2). In a study conducted by

Franziska et al., it was demonstrated that NETs contain RNA,

and the RNA-LL37 complex has the ability to induce the release of

new NETs by neutrophils, creating a repetitive cycle of immune

activation that further amplifies psoriatic inflammation (42).
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Furthermore, the tyrosine phosphatase SHP2 has been found to

be highly correlated with neutrophils and the development of

psoriasis. Experimental results from Ding Y et al. suggested that

SHP2 promotes the production of NETs and increases the

expression of inflammatory cytokines associated with psoriasis

through the ERK5 pathway. SHP2 predominantly increased in

macrophages and acts as an IL-10 inhibitor to exacerbate psoriasis

progression. It is worth noting that the inhibition of SHP2

significantly improves psoriasis-like skin inflammation in mice

(44–48). In addition, molecular complexes containing the

adapter molecule Act1 and SHP2 mediate autonomous IL-17R

signaling, thereby accelerating and maintaining inflammation

(49). Consequently, SHP2 exacerbates the progression of

psoriasis, making it a potential therapeutic target for the treatment

of psoriasis (50).
4 Immune cells and inflammatory
factors associated with NETosis
in psoriasis

4.1 Neutrophils

Psoriasis, as an inflammatory skin disease, is characterized by

the infiltration of neutrophils. In response to inflammatory signals,

circulating neutrophils are recruited to an inflammatory site and

become activated. These activated neutrophils produce and release

large amounts of ROS as part of their antimicrobial activity. Two

key enzymes involved in the respiratory burst and subsequent ROS

production are NADPH oxidase (NOX2) (51) and MPO (52).

Research has shown that neutrophils from psoriasis patients have

higher MPO and NOX2 activity, leading to increased ROS release

compared with neutrophils from healthy individuals (53, 54). An

imbalance in ROS production, either through overproduction or

insufficient clearance of ROS, can result in oxidative-stress-

related dysfunctions.

In patients with psoriasis, neutrophils are pre-activated and

form NETs within psoriatic lesions. These NETs are increased in

blood samples and correlate with the severity of psoriasis. NETs

create a highly immunogenic environment and are involved in the

initial and maintenance phases of psoriasis. They are enriched in

RNA, particularly LL37. When RNA binds to LL37 and

subsequently stimulates neutrophils, this can lead to the release of

IL-8 and a moderate shedding of CD62L (41, 42). The data suggest

that the involvement of neutrophils and their activation in psoriasis

highlight their significant role in the pathogenesis of the disease.
4.2 Keratinocytes

One of the central features of psoriasis is the dysregulated

crosstalk between keratinocytes and immune cells. Activated

keratinocytes in psoriatic skin release pro-inflammation, IL-1, TNF,
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and IL-6. These cytokines not only amplify the inflammatory

response but also induce the production of chemokines, which

attract immune cells to the sites of inflammation. These cytokines

activate dendritic cells, which in turn produce the cytokines IL-12 and

IL-23, leading to the differentiation of TH1 and TH17 cells.

As shown in Figure 1, in the context of NETosis, keratinocytes

have been shown to be with NETs and their components. Studies

have demonstrated that keratinocytes can internalize NETs and

take up antimicrobial peptides, such as LL37 and human beta-

defensin 2 (HBD2), present in these structures (55).

NETs, including psoriatic NETs, have been shown to induce

HBD-2 mRNA production in epidermal keratin-forming cells,

thereby promoting the expression of HBD-2 (56). Moreover, it is

well-established that HBD-2 is primarily expressed in keratinocytes

(57–59). In line with previous studies, Gambichler et al. reported

elevated levels of HBD-2 in psoriatic skin compared with healthy

controls (60). The induction of HBD-2 expression in keratinocytes

by NETs suggests a potential mechanism through which

neutrophils and keratinocytes contribute to the inflammatory

cascade observed in psoriatic skin.

Similarly, Kanda et al. shed light on the association between

LL37 levels and psoriasis. Their findings revealed significantly

higher levels of LL-37 in the sera of patients with psoriasis than

in normal subjects. Interestingly, the researchers also observed a

correlation between serum LL-37 levels and HBD-2 levels in

patients (61). HBD-2 is believed to contribute to psoriasis

development by acting on neutrophils.

Taken together, the interaction between keratinocytes and

neutrophils, mediated by factors such as HBD-2 and LL37, plays

a role in promoting inflammation and NETosis in psoriasis. Further

studies of HBD-2 may provide valuable insights into the

pathogenesis of psoriasis and potential therapeutic targets.
4.3 Mast cells

Mast cells (MCs) play a crucial role in immune modulation

through the release of various pro- and anti-inflammatory

mediators (62). The role of mast cells in psoriasis has been

extensively studied, with investigations indicating a significant

increase in the number of mast cells at psoriatic lesions compared

to healthy individuals (63). In the context of psoriasis, MCs

contribute to the inflammatory state by producing caspase-1 and

chymotrypsin. These enzymes play a crucial role in activating

immature IL-1b into mature active IL-1b (64). The production of

IL-1b by MCs further amplifies inflammation and leads to an

increase in the number of infiltrating neutrophils in response to

protease release (65).

Neutrophils release LL37-RNA through the NETosis process.

This LL37-RNA can be recognized by MCs triggering their

activation and the subsequent production of IL33. IL33 then

binds to ST2R on the surface of macrophages, stimulating the

production of IL-36 by macrophages.
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4.4 DCs

Dendritic cells (DCs) are specialized antigen-presenting cells that

play a crucial role in the immune system. They act as a bridge

between innate and adaptive immunity by capturing, processing, and

presenting antigens to T cells. They are a heterogeneous population of

cells comprising different subpopulations, including plasmacytoid

DCs (pDCs), classical/myeloid DCs (cDCs/mDCs), and monocyte-

derived dendritic cells (moDCs) (66, 67). cDCs are a major subset of

DCs specialized in presenting antigens to CD4+ helper T cells.

Through this antigen presentation, effector T cells including Th2

and Th17 cells are activated (68). pDCs mainly produce a large

amount of IFN-a and IFN-b, which can also directly activate T cells

through stimulation (69). moDC can effectively express TNF- a and

inducible nitric oxide synthase (iNOS), and iNOS-mediated NO

production inhibits T cell proliferation (70).

In psoriasis, studies have shown that the number and activity of

pDCs are increased in areas of skin lesions. These pDCs are

responsible for producing interferon in psoriatic plaques (71).

Interferon production by pDCs in psoriasis may trigger an immune

response that exacerbates symptoms. The overproduction of

interferon can lead to the abnormal proliferation of skin cells and

inflammation, ultimately resulting in the formation of typical psoriatic

lesions. Recent studies have also found that the overexpressed

antimicrobial peptide LL37 in the skin of patients with psoriasis can

form a new complex with self -DNA. These complexes can trigger

TLR9 in dendritic cells, specifically pDCs (72, 73). When neutrophils
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capture pathogens and release NETs, the DNA-LL37 complexes

within these NETs can be captured by dendritic cells, particularly

pDCs. Dendritic cells then process these antigens and present them to

T cells, initiating a specific immune response. This immune response

involves the production of TNF-a and IL-6 (41, 73). These data

indicate that the interaction between DCs and NETs is involved in the

pathogenesis and progression of psoriasis.

When grouping DCs in the blood of psoriasis patients, it can be

found that not only the skin but also the mDCs in the blood have Th1

polarization and Th1/Th17 recruitment abilities (74). This discovery

provides a possible blood testing target for the diagnosis of psoriasis. In

addition to directly stimulating Th1 polarization, mDCs can also co-

culture with inflammatory polymorphonuclear leukocytes (PMNs) to

form NETs, from which they can absorb antigens. This process

potentially allows for antigen processing and presentation, indirectly

stimulating Th1 polarization. Reducing mDCs can block the occurrence

of NETosis. In a mouse model, mDCs activated by NETs can induce

antineutrophil cytoplasmic antibody (ANCA) and autoimmune

responses (75). When psoriasis patients experience renal organ

damage, ANCA positivity may occur. mDCs may work together with

NETs in this situation, exacerbating the progression of the disease.
4.5 Monocytes/macrophages

Monocytes and macrophages are key components of the immune

system and play key roles in immune defense, surveillance, and self-
FIGURE 1

NETosis amplifies immune effects in psoriasis. The LL37-DNA causes Th17 cells to secrete cytokines, which promote keratin-forming cells to secrete
LL37, which can in turn act on Th17 cells to amplify the immune effect. Beyond that, the LL37-DNA complex produced by NETosis cell can also
stimulate the TLR9 receptor of PCDs, and the released TNFa binds to the receptor on monocytes. The further released IL23 can be recognized by
Th17 cells. IL-17a produced by Th17 cells reactivates neutrophils, amplifying the immune and inflammatory effects.
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stabilization. They are capable of phagocytosing and eliminating

intracellular parasites, foreign bacteria, and mutated tumor cells, as

well as their own senescent and abnormal cells. Macrophages can

differentiate into different cell subpopulations, including two

representative subpopulations, M1 and M2, based on the stimulation

of different stimuli and the production of different cytokines.

Studies onmouse models of psoriasis have demonstrated a strong

correlation between macrophages and the severity of psoriasis (76,

77). Pathological sections of skin lesions from psoriasis patients have

also shown the presence of aggregated macrophages (78). When

staining the skin lesions of psoriasis patients, it can be observed that

CD68+iNOS+M1 increase and CD68+CD163+M2 decrease (79).

Increased M1 polarization in psoriasis patients is associated with

increased disease severity (80). In addition, the number of CD68+

(81) and CD163+ macrophages expressing TNF-a in the dermis (82)

also increased in human skin with psoriasis lesions (82). Activation of

the NLRP3 inflammasome by macrophages can also be involved in

psoriasis (83). Research has shown that NLRP3 may be a promising

therapeutic target for the treatment of psoriasis (84). The method of

inhibiting NLRP3 inflammasome activation can alleviate psoriasis

inflammation (85).

In this context, when dying neutrophils release LL37 through

NETosis, the P2X7 receptor on monocytes is activated. This

activation triggers the release of inflammatory vesicles and the

production of IL-1b (32, 33). Similarly, when LL37-DNA

complexes are released, the TLR9 receptor on monocytes is

activated, leading to the release of IL-6, IL-12, IL-23, and TNF-a
(20). These cytokines, including those produced by pDCs, can

further stimulate monocytes/macrophages to produce IL-23. The

accumulation of IL-23 at the site of a skin lesion can lead to the

production of additional cytokines by macrophages, including IL-

17A, IL-22, and IFN-g, in addition to TNF-a (86).
4.6 Th17 cells

It is widely recognized that IL-23 plays a crucial role in

maintaining the activation of Th17 cells (87). IL-23 promotes

the production of IL-17A by Th17 cells, which in turn leads to the

recruitment and activation of neutrophils (88). This cytokine cascade

contributes to the inflammatory response observed in psoriasis. In in

vitro experiments, the percentage of CD3+CD4+IL-17+ (Th17) cells

among T cells is significantly higher in the presence of NETs compared

to the control group without NETs. Act1 is a key mediator for IL-17

signal transduction (89). In the presence of NETs, the downstream key

factor Act1D10N of the psoriasis susceptibility gene TRAF3IP2

mutation is enhanced, further inducing the production of Th17 cells

(90). In summary, these results indicate that NETs are of great

significance in the immunogenetic study of neutrophil-induced

human Th17 cells and psoriasis.

Studies have indicated that NETs are abundant in environments rich

in myeloid cells andmemory T cells. This suggests that NETS play a role

in inducing the formation of other immune cells (91, 92). Experimental

findings by Evans et al. support this notion, demonstrating a link

between NETs and Th17 responses in psoriasis patients. The

researchers further explored this interaction, showing that NETs can
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induce the differentiation of memory CD4 T cells into LL37-specific

Th17 cells (93). These memory T cells not only secrete IL-17A but also

express IL-17F and RORC, which stimulates keratinocytes to secrete

LL37 (90). Subsequently, IL-6/IL-23 secreted by monocytes induces

LL37-specific Th17 cells to migrate to the epidermis, where they

recognize the LL37 expressed by keratinocytes (94). This mechanism

creates an immune amplification effect. Th17 cells identify the synthesis

of LL37 as a T-cell antigen, and their responses are further fueled by a

synergistic interaction of IL-1, IL-6, and IL-23 (34, 35).
5 NET markers as prognostic/
predicting factors in psoriasis

MicroRNAs (miRNAs) are small non-coding RNAs with

important roles in post-transcriptional gene expression. Deregulation

of miRNAs and the corresponding target gene expression have been

shown to be involved in psoriasis (95). Pathogenesis MiRNA-155 (96,

97), 210 (98), and 20b (99) are significantly increased in psoriasis

lesions. Among them, the expression of miRNA-155 is increased in

diseased psoriasis skin compared with normal skin (100). The

pathological miRNA-210 is positively correlated with the Psoriasis

Area and Severity Index (PASI) and body surface area (BSA) affected

by psoriasis (99). MiRNA pathway enrichment and target gene

network analysis were performed on the serum of psoriasis patients,

and researchers found a high correlation between miR-214–3p, miR-

7–5p, miR-761, miR-665, and miR-1207–5p (101). The above results

indicate an important relationship between this miRNA and disease

activity, and may encourage further studies to explore the possibility of

using this miRNA as one of the markers of psoriasis severity.

Studies have shown that circulating MPO/DNA or NE/DNA

conjugates, as well as plasma circulating citrullinated histone H3

(H3Cit) levels, have a stronger specificity for NET formation than

evaluatingmicroRNAs alone (102). A study was conducted on the sera

of 50 adult patients with chronic plaque psoriasis and 25 healthy

controls, and it was found that there was a significant difference in

serum myeloperoxidase levels between the two groups (103). MPO-

DNA complex level is also an important detection method. It has been

reported that the MPO-DNA complex level in serum was significantly

increased in patients with PsA/PsO compared with healthy controls.

The level of MPO-DNAwas also positively associated with the Disease

Activity in Psoriatic Arthritis score (DAPAS) and its components

(104). Vascular endothelial cells play an important role in maintaining

the vascular barrier and controlling blood flow. Additionally, they can

target immune cells to specific areas of vascular damage, infection, or

foreign objects (105). According to one report, H3Cit can directly

cause inflammatory damage by disrupting the microvascular

endothelial barrier (106). However, currently, there are no clinical

data to prove the association between H3Cit and psoriasis. Whether

H3Cit can become a diagnostic marker in the blood of psoriasis

patients deserves further research.

Some data suggest that circulating NETs may play a role in

predicting the severity of psoriasis. However, owing to the lack of

specific antibodies for NETs and specific and standardized testing

methods for NETs at present, NET substitutes are usually used. These

detectable alternatives include circulating cell-free DNA (cfDNA), or
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circulating NET-associated proteins such as NE orMPO, and/or levels

of circulating histone H3 (H3Cit) or other NET-associated proteins

(107). Therefore, further research and technological improvements are

needed to better define the prognosis and/or predictive ability of NETs

at different stages of psoriasis.
6 The potential of drugs targeting
NETosis in psoriasis

Exploring potential drugs targeting NETosis holds great promise

for individuals with psoriasis, considering the involvement of NETosis

in the condition. NETs inhibitors can target various stages of NETosis

to inhibit the generation of NETs. For example, researchers have

focused on the stress response protein REDD1, which is closely related

to NETosis. Key mediators, such as endothelin-1 (ET-1) and hypoxia

inducible factor-1a (HIF-1a), drive the generation of NETs through

REDD1. Inhibitors like bosentan and L-ascorbic acid can respectively

inhibit ET-1 and HIF-1a, thereby inhibiting NETosis in

neutrophils (108).

Another crucial enzyme involved in NET formation is a protein

arginine deiminase, PAD4, which catalyzes the conversion of

arginine to citrulline and mediates NET formation. Drugs

targeting PAD4, such as JBI-589 (109), have shown efficacy in

rheumatoid arthritis mouse models. Additionally, drugs like

dipyridamole (110) and cannabidiol (111) can inhibit NETosis

and have potential in the treatment of psoriasis.
Frontiers in Immunology 06
Neutrophil elastase inhibitor sivelepristal sodium (112) and

myeloperoxidase inhibitor PF-1355 (113) have demonstrated

effectiveness in inhibiting NET formation, making them potential

treatments for acute respiratory distress syndrome (ARDS) or

systemic inflammatory response syndrome (SIRS) with acute lung

injury (ALI) (114).Metformin commonly used as a first-line drug for

the treatment of type 2 diabetes, has also shown potential in

downregulating the generation of NETs and reducing the release of

NET DNA in the mouse model of systemic lupus erythematosus

(SLE) (115). However, there is a need for relevant clinical and in vivo

experiments to determine their effectiveness in psoriasis.

Clearing NETs and preventing their accumulation in the body is

another approach worth considering. Deoxyribonuclease I (DNase I)

(116) has been shown to effectively clear NETs in experiments.

Although it can promote inflammation resolution and reduce the

accumulation of ROS, it has the disadvantage of a short action time

and limited range of action. In 2021, Xin’s team developed a new

nanocarrier that can release DNase I in response to MMP-9, effectively

degrading the structure of NETs (117). This carrier successfully

addresses the drawbacks of DNase I drugs. Tofacitinib (118), another

type of NET scavenger, can simultaneously regulate the formation and

degradation of NETs. A clinical trial conducted in SLE patients showed

that Tofacitinib can reduce low-density granulocytes and circulating

NETs, indicating its potential for treating psoriasis (119). Figure 2

provides a brief summary of these possible NETosis drugs.

In summary, drug development targeting NETosis and the

interactions between NETs and various immune cells holds great
FIGURE 2

The regulatory mechanisms underlying the formation of vital neutrophil extracellular traps (Vital NETs) and suicidal neutrophil extracellular traps
(Suicidal NETs), as well as a schematic diagram of the mechanism of action of NETosis drugs. The characteristics of suicidal NETosis are the
production of ROS and the rupture of neutrophils. Neutrophils are stimulated and activated, inducing the phosphorylation of NOX complexes and
release of ROS, a process dependent on high Ca2+concentrations. Subsequently, PAD4 is activated and causes NE and MPO to be transported from
neutrophilic granules to the nucleus. NE and MPO binding to PAD4 leads to histone citrullination and chromatin deconcentration. After the nuclear
membrane ruptures, the desorbed chromatin mixes with granular proteins and enters the cytoplasm. Finally, the cytoplasmic membrane leaks, and
the modified chromatin is released from neutrophils, forming NETs. The formation of Vital NET can occur without NOX complexes and ROS. The
formation of Vital NET is initiated by stimulation, which activates PAD4 and transports NE and MPO to the nucleus, promoting chromatin
deconcentration. Decondensed chromatin decorated with granular proteins and histones is enveloped in vesicles germinating from the nucleus.
Subsequently, these vesicles are expelled from intact neutrophils and form NETs near the neutrophils. Under this method, neutrophils remain intact
and can further phagocytose. NETosis-related drugs can exert effects on the occurrence process of these two types of NETosis.
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promise. However, it is important to consider that NETosis also

serves as a mechanism to trap and kill bacteria and other pathogens.

In individuals with psoriasis, skin inflammation is associated with

bacterial infection, and NETosis may be a means through which

neutrophils fight infection. Furthermore, the adverse reactions and

success rates of new drugs are worth further discussion.
7 Conclusion

Understanding the role of NETosis in the pathogenesis of

psoriasis could provide insights into potential therapeutic

strategies. NETosis, psoriasis, and the immune response are

interconnected and closely related. Recent advancements in

understanding NETosis have the potential to improve our

comprehension of the complex process of psoriasis pathogenesis.

This interaction provides new insights into the molecular

mechanisms underlying the disease. The regulation of NETosis is

rapidly emerging as a promising therapeutic target for psoriasis.

Studying the exact mechanisms of NETosis in psoriasis is of

significant importance for developing novel therapeutic approaches.
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