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This comprehensive review delves into the complex interplay between

mitochondrial gene defects and pancreatic cancer pathogenesis through a

multiomics approach. By amalgamating data from genomic, transcriptomic,

proteomic, and metabolomic studies, we dissected the mechanisms by which

mitochondrial genetic variations dictate cancer progression. Emphasis has been

placed on the roles of these genes in altering cellular metabolic processes, signal

transduction pathways, and immune system interactions. We further explored how

these findings could refine therapeutic interventions, with a particular focus on

precision medicine applications. This analysis not only fills pivotal knowledge gaps

about mitochondrial anomalies in pancreatic cancer but also paves the way for

future investigations into personalized therapy options. This finding underscores

the crucial nexus between mitochondrial genetics and oncological immunology,

opening new avenues for targeted cancer treatment strategies.
KEYWORDS

mitochondrial gene defects, pancreatic cancer, multiomics analysis, immune escape,
disease progression, clinical application prospects
1 Background

Pancreatic cancer, which is characterized by aggressive progression and a high

mortality rate, is one of the most common fatal cancers worldwide (1, 2).

Epidemiological studies indicate an increasing incidence of pancreatic cancer in

industrialized nations, closely linked with aging demographics and lifestyle factors (3).
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The treatment landscape of pancreatic cancer is challenging and

characterized by late-stage diagnosis and limited effective treatment

options (2, 4). The ineffectiveness of conventional treatments is

compounded by the prevalence of metastatic disease at diagnosis,

coupled with a generally poor response to chemotherapy and

radiation therapies (5, 6). Consequently, there is a pressing need

for research focused on early detection methods and novel

therapeutic approaches (7).

The role of mitochondrial gene defects has emerged as a

significant area of interest in pancreatic cancer research (8, 9).

These defects can lead to disrupted energy metabolism, increased

oxidative stress, and changes in apoptotic pathways, all of which

critically affect the survival and proliferation of pancreatic cancer

cells (8, 10). Such metabolic and signaling disturbances not only

facilitate tumor growth but also may contribute to resistance against

standard therapies (11, 12). Furthermore, mitochondrial

dysfunction is known to impact the tumor microenvironment,

particularly affecting immune cell regulation, a key element in the

immune escape mechanisms of pancreatic cancer (13, 14).

Employing a multiomics approach to study mitochondrial gene

defects in pancreatic cancer offers significant insights (15). Through

the integration of genomics, transcriptomics, and proteomics, we

can comprehensively analyze the impact of these genetic defects on

tumor cell metabolism, signaling, and immune responses (6, 16).

This multifaceted analysis is crucial for understanding how

mitochondrial gene defects influence the development of

pancreatic cancer at the molecular level and for identifying new

therapeutic targets, especially those that regulate immune responses

and counteract immune evasion (17–20). As such, deepening our

understanding of mitochondrial gene defects in pancreatic cancer is

vital not only for deciphering disease mechanisms but also for

advancing the development of innovative therapeutic strategies,

notably in precision medicine and immunotherapy (18).

This review aims to provide an in-depth overview of the

epidemiology, pathological features, and therapeutic challenges of

pancreatic cancer, with an emphasis on the pivotal role of

mitochondrial gene defects in its development. Additionally, we

discuss the potential impact of these findings on the formulation of

novel therapeutic strategies, particularly those focused on precision

medicine and immunotherapy. Through this comprehensive

analysis, we seek to offer new insights and directions for the

research and treatment of pancreatic cancer.
2 Pancreatic cancer and
mitochondrial function

2.1 Basic mitochondrial functions

Mitochondria, often referred to as cellular powerhouses, are

critical for energy production within cells and play a central role in

numerous cellular processes (21). They are primarily responsible for

generating the bulk of cellular energy in the form of ATP through a

process that involves a series of electron transport chain complexes.

This process culminates in the activation of ATP synthase, which

synthesizes ATP (22).
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Furthermore, mitochondria are instrumental in regulating

apoptosis, an orderly self-destructive process vital for maintaining

tissue health. They exert this control primarily through the release

of apoptosis-associated proteins, such as cytochrome. Once released

into the cytoplasm, cytochrome c initiates a cascade of reactions

culminating in cell death (23, 24).

In cancer cells, mitochondrial function often undergoes

significant alterations. A notable example is the Warburg effect,

where cancer cells preferentially generate energy through glycolysis

rather than oxidative phosphorylation, even in oxygen-rich

conditions. This metabolic shift plays a crucial role in the rapid

growth and survival of cancer cells (25–28). Specifically, in

pancreatic cancer, such mitochondrial metabolic reprogramming

is closely linked to increased tumor aggressiveness, resistance to

treatment, and a poorer prognosis (29).
2.2 Role of mitochondria in
tumor progression

The role of mitochondria in tumor progression manifests

primarily in three areas: metabolic reprogramming, anti-apoptotic

mechanisms, and immune escape, all of which are crucial for cancer

progression and resistance to therapy (13, 30–32) (Figure 1A).

The Warburg effect is important for tumor metabolic

reprogramming. The (platelet and lymphocyte ratio) PLR

describes the propensity of cancer cells to rely on glycolysis for

energy production, even in the presence of adequate oxygen

(33–35). Although ATP production is less efficient than oxidative

phosphorylation, glycolysis supplies rapidly dividing cancer cells

with necessary biosynthetic precursors. In pancreatic cancer, for

instance, this metabolic shift is facilitated by the upregulation of key

glycolytic enzymes such as hexokinase and lactate dehydrogenase,

promoting tumor growth and contributing to alterations in the

tumor microenvironment. This includes environmental

acidification, which subsequently impacts the interactions

between tumors and immune cells (29, 36).

The role of mitochondria in antiapoptotic mechanisms is equally

significant. Cancer cells often evade apoptosis by modulating

mitochondrial pathways, thus ensuring their survival and

proliferation (37, 38). This evasion is largely orchestrated through

the regulation of the Bcl-2 protein family, which comprises both

proapoptotic (e.g., Bax and Bak) and antiapoptotic (e.g., Bcl-2 and

Bcl-xl) members (39–44). In various cancers, such as certain breast

cancers and leukemias, resistance to apoptosis is achieved by either

upregulating antiapoptotic proteins (e.g., Bcl-2) or suppressing

proapoptotic proteins (e.g., Bax) (41, 45–47). For instance,

overexpression of Bcl-2 in tumor cells has been linked to resistance

against certain chemotherapeutic agents (48–50).

In addition, mitochondrial dysfunction is increasingly recognized

as a contributing factor to immune escape mechanisms in the tumor

microenvironment (30, 51). Mitochondria influence the tumor

microenvironment by regulating inflammatory responses and

cytokine production, which in turn affects immune cell infiltration

and activity (13, 31). Therefore, in some tumors, the anti-tumor

immune response is weakened due to impaired mitochondrial
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function, providing favorable conditions for tumor cell escape and

proliferation (30).
3 Multiomics analysis of mitochondrial
gene defects and pancreatic cancer

In the field of pancreatic cancer research, multiomics analyses

have played a pivotal role in elucidating the impact of

mitochondrial gene defects. Alterations in the mitochondrial

genome (mtDNA), such as mutations or deletions, have been

associated with increased chemoresistance and metastatic

capabilities in various cancer types. Moreover, recent studies have

highlighted the potential of microRNAs that regulate mtDNA-

encoded mitochondrial proteins (mitomiRs) and nuclear-encoded

mitochondrial proteins as valuable biomarkers for cancer diagnosis

and prognosis (9). For example, in the diagnosis of pancreatic

cancer, several miRNAs (pancreatic intraepithelial neoplasia) have

already been identified by researchers in the PanIN (pancreatic

intraepithelial neoplasia) staging of pancreatic cancer, allowing us

to study them as potential biomarkers (52).

Genomic analysis plays a crucial role in identifying specific

mutations in the mitochondrial DNA of pancreatic cancer cells. An

example is the point mutation in the MT-ND4 gene, which is

known to disrupt the mitochondrial electron transport chain,

leading to functional deficits (53, 54).

Transcriptomic analyses complement these findings by

shedding light on the impact of these genetic variations on

mitochondrial gene expression. In some cases, pancreatic cancer

cells exhibit altered expression of mitochondria-encoded subunits

of the oxidative phosphorylation complex, directly influencing

cellular energy metabolism (17).

Proteomics studies have delved into the detection of aberrant

expression of mitochondrial proteins in cancer cells by mass

spectrometry to further confirm that changes in mitochondrial
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protein function may lead to unexpected mitochondrial

dysfunction that can cause disease. This technique, particularly

quantitative mitochondrial proteomics, provides a thorough and

precise analysis of mitochondrial protein levels, including

posttranslational modifications (PTMs), thus offering a

comprehensive view of the changes in mitochondrial protein

dynamics in cancer cells (55). For example, a study analyzing

colorectal cancer tissue revealed significant alterations in the

expression of mitochondrial enzymes involved in the Krebs cycle,

including a marked increase in the levels of malate dehydrogenase, a

key enzyme in this pathway (56). In pancreatic cancer, similar

studies have linked changes in the levels of mitochondrial

respiratory chain complexes I and II to increased oxidative

stress (57).

Metabolomic analyses contribute to elucidating the changes in

the metabolic profiles of pancreatic cancer cells caused by

mitochondrial gene defects (58, 59). Notably, the increased

production of lactate signals a shift toward glycolysis, which is a

hallmark of cancer cell metabolism (17, 60).

Overall, the integration of genomic, transcriptomic, proteomic,

and metabolomic analyses provides a holistic understanding of the

role of mitochondrial gene defects in pancreatic cancer

development (Figure 1B). For example, Rae-Anne Hardie and her

team performed a multiomics analysis of mitochondrial DNA from

12 pancreatic cancer cell lines (PDCL) and identified 24 somatic

mutations in them. The study showed metabolic changes consistent

with mitochondrial dysfunction, including decreased oxygen

consumption and increased glycolysis (17). Furthermore,

individual tumors adapt to increased anabolic demands through

different genetic mechanisms, so targeting therapy to the resulting

metabolic phenotype may be an effective strategy. This multifaceted

approach not only enhances our understanding of disease

pathogenesis, but also holds promise in guiding the development

of future therapeutic strategies, especially in the context of

personalized medicine.
FIGURE 1

(A) Mitochondrial changes in pancreatic cancer. (B) Multi-omics analysis of mitochondrial gene defects in pancreatic cancer.
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4 Mitochondrial gene defects and
pancreatic cancer development

4.1 Specific genetic defects

In the context of pancreatic cancer, particular mitochondrial

gene defects significantly influence tumor biology (17, 18, 61, 62).

Mutations in genes such as MT-ND4 (mitochondrial NADH

dehydrogenase subunit 4) have been implicated in compromising

the mitochondrial electron transport chain, leading to increased

intracellular oxidative stress and destabilized energy metabolism

(54, 63). The specific study found that the majority of mtDNA

mutations (41.5%) in PDAC-EV were located in respiratory

complex I (RCI) (ND1-ND6), followed by the RCIII gene (CYTB;

11.2%).This provides a solid foundation for further research into

mtDNA biomarkers for PDAC diagnosis and the development of

innovative, clinically feasible EV-based assays. Additionally,

variations in mitochondrial DNA copy number, particularly in

the MT-CO1 gene (mitochondrial cytochrome c oxidase subunit

I), are linked with the proliferative and invasive capacities of

pancreatic cancer cells (64, 65). These genetic anomalies not only

affect the metabolic and survival pathways of tumor cells but also

substantially impact the tumor microenvironment, consequently

influencing the progression of cancer and the response to therapy.

Thus, understanding these mitochondrial gene defects is vital for

comprehending the pathogenesis of pancreatic cancer and for

developing new therapeutic strategies (Table 1).
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4.2 Metabolism and the
tumor microenvironment

Mitochondrial gene defects profoundly alter the metabolic

landscape of the pancreatic cancer tumor microenvironment (13,

18). These defects typically result in enhanced glycolysis and

reduced oxidative phosphorylation, culminating in acidification of

the tumor microenvironment (66, 69, 70). This acidic milieu not

only promotes the survival and proliferation of tumor cells but also

hinders the functioning of immune cells, thus facilitating tumor

immune escape. Furthermore, mitochondrial dysfunction is

associated with elevated reactive oxygen species production,

which contributes to DNA damage, gene mutation, and

accelerated tumor progression (71–73). Therefore, mitochondrial

metabolism is a crucial factor in shaping the tumor

microenvironment, impacting both tumor growth and the

effectiveness of therapeutic interventions.
5 Mitochondrial gene defects from an
immunologic perspective

5.1 Mitochondrial gene defects and
immune escape

Mitochondrial gene defects significantly contribute to immune

escape mechanisms in pancreatic cancer (13). Mutations in genes
TABLE 1 Mitochondrial gene defects in pancreatic cancer.

Analysis
region

Analysis
type

Samples Mutation Findings and conclusions Reference

mtDNA in
the EVs

mtDNA
content

Serum samples; pancreatic
cancer patients (n=20), non-
cancer subjects (n=10)

Mainly in RCI (ND1-ND6), RCIII genes
(CYTB), D-Loop, RNR2

Circulating EVs detects mtDNA
mutations and may diagnose PDAC

(66)

Whole
mtDNA

mtDNA
copy
number

Peripheral blood leukocyte
samples; PDAC cases
(n=476), controls (n=357)

Increased mtDNA copy number is
associated with reduced risk of
developing PDAC

(66)

Whole
mtDNA

mtDNA
copy
number

Tissue samples; resectable
pancreatic ductal
adenocarcinoma (n = 43),
adjacent normal pancreas
(n = 31)

Mitochondrial DNA copy number is
significantly lower in pancreatic cancer
tissue and is not a significant predictor
of prognosis in resectable
pancreatic cancer

(67)

Whole
mtDNA

mtDNA
copy
number

268 mitochondrial genomes
from early resected pancreatic
ductal adenocarcinoma tissues
and paired non-tumor tissues

Frequent mutations in ND5, RNR2,
CO1, transfer RNA genes (n=29)

61% of the tumor samples had at least 1
mtSNV;
The mtSNVs in ND4 and ND6 were
associated with shorter overall survival
times;
Tumors accumulate mitochondrial
mutations with progression

(68)

Whole
mtDNA

Mutations
12 patient-derived pancreatic
cancer cell lines (PDCL)

24 somatic mutations in the mtDNA
(ETC complex I subunit (n = 9),
noncoding control region (n = 10), COI
of complex IV (n = 2)), CyB of complex
III (n = 3))

Decreased oxygen consumption and
increased glycolysis consistent with
mitochondrial dysfunction;
Heterogeneous genomic landscapes of
pancreatic tumors may converge on
common metabolic phenotypes

(16)
RCI, respiratory complex I; PDAC, pancreatic ductal adenocarcinoma; mtSNV, mitochondrial single nucleotide variant (defined as a location where the difference in heterogeneity score between
tumor and normal samples is ≥0.2); COI, cytochrome C oxidase subunit I; CyB, cytochrome B0.
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such as MT-CO1 and MT-ND4 can lead to dysfunction in the

mitochondrial electron transport chain, affecting oxidative

stress levels and altering metabolite concentrations within cells

(64, 74, 75). These changes may disrupt antigen processing and

presentation on the cell surface, thus impairing the recognition of

tumor cells by immune cells. For instance, mitochondrial defects

that alter metabolites such as lactate can acidify the tumor

microenvironment, which suppresses T-cell activity and supports

tumor immune escape (76–79).
5.2 Regulation of the
immune microenvironment

Mitochondrial functionality is pivotal in regulating the immune

microenvironment in pancreatic cancer (80). Through their

influence on metabolic pathways, including ROS production and

energy metabolism, mitochondria indirectly regulate the infiltration

and activity of immune cells. Increased ROS production triggers the

release of inflammatory factors such as IL-6 and TNF-a, altering the
tumor microenvironment, which in turn affects the function of T

cells and other immune cells (81–83). In addition, mitochondrial

adenosine triphosphate (ATP) synthase, which produces most of

the ATP required by mammalian cells, has been shown to decrease

ATP production when cellular respiration is impaired, potentially

affecting autophagy and immune function (84, 85). In certain

pancreatic cancer models, the inflammatory milieu resulting from

mitochondrial dysfunction has been shown to promote the

recruitment of immunosuppressive cells, such as tumor-associated

macrophages, further enhancing the tumor’s ability to evade the

immune response (18, 86, 87).
6 Clinical application and
therapeutic prospects

The clinical application and therapeutic prospects of pancreatic

cancer treatment are increasingly focused on two main areas: the

development of targeted therapeutic strategies and the

implementation of precision medicine (88, 89). In regard to

therapeutic strategies, a key area of exploration is the creation of

drugs that specifically target mitochondrial gene defects in

pancreatic cancer. For instance, targeted therapies aimed at

identifying mutations within the MT-CO1 gene could inhibit

tumor growth by restoring normal mitochondrial electron

transport chain function. Additionally, the use of metabolic

modulators such as 2-deoxyglucose (2-DG) might prove

especially effective in targeting pancreatic cancer cells exhibiting

the Warburg effect by impeding their glycolytic pathways (18, 29).

In the realm of precision medicine, the integration of multiomics

data—including genomics, transcriptomics, and proteomics—

enables the development of personalized treatment plans for

patients with pancreatic cancer (90–92). This approach involves

analyzing the mitochondrial genome of a patient’s tumor to identify

and tailor therapies that are best suited to the patient’s unique
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genetic profile. For instance, selecting small molecule inhibitors that

specifically target identified mitochondrial mutations can be a direct

outcome of this analysis (93). This method also has the potential to

better predict a patient’s response to standard chemotherapy,

thereby optimizing treatment regimens, reducing adverse effects,

and improving overall treatment efficacy.
7 Discussion

Mitochondria are important organelles responsible for many

physiological processes, such as energy production, apoptosis, and

cellular metabolism. Mitochondrial dysfunction is increasingly

recognized as a central mediator of many common diseases,

including tumors and cardiovascular diseases, and there is

growing evidence that mitochondrial metabolic disorders are

involved in cancer development, which explains the significance

of the Warburg effect for metabolic reprogramming in tumors (94).

Furthermore, specific mitochondrial gene defects substantially

affect the tumor microenvironment by influencing metabolic

pathways, (including ROS production and energy metabolism),

enhancing immune escape of cancer cells; mutations alter

cytokine and chemotactic factor release, thereby affecting immune

cell infiltration and function in the tumor microenvironment (95).

For instance, mitochondrial dysfunction may foster the recruitment

of immunosuppressive cells such as tumor-associated macrophages,

subsequently dampening T-cell-mediated immune responses (96).

A key future research trajectory is the development of targeted

therapies for specific mitochondrial gene mutations. Employing

small molecule drugs or gene editing techniques to correct these

genetic anomalies could restore mitochondrial function and impede

tumor growth. Additionally, the use of metabolic modulators may

augment the efficacy of chemotherapy and immunotherapy (97).

The advancement of personalized treatment strategies

represents a significant research avenue (98). The integration of

multiomics data enables the formulation of optimal treatment plans

tailored to the unique genetic and microenvironmental

characteristics of each patient ’s tumor (99–101). This

personalized approach holds the promise of a major

breakthrough in pancreatic cancer treatment, potentially

enhancing patient prognosis and survival.

Interestingly, we also found that mitochondrial retrograde

signaling is also important for metabolic activities (13).

Mitochondrial retrograde signaling communicates with the

nucleus to maintain mitochondrial homeostasis and respond to

stress. This process involves mitochondria-derived molecules (ROS,

calcium, exported mtDNA, mitochondrial double-stranded RNA),

the mitochondrial unfolded protein response (mtUPR), and the

integrative stress response (ISR). Among these, ROS is a by-product

of mitochondrial respiration and an important mediator of

retrograde mitochondrial signaling. These findings suggest that

targeting mitochondrial retrograde signaling may be a potential

therapy against cancer progression. In addition, it has been found

that mtDNA mutations can be detected in circulating extracellular

vesicles (EVs) and may serve as a reliable diagnostic tool for
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pancreatic ductal adenocarcinoma (PDAC), compensating for the

lack of highly sensitive and specific biomarkers for the diagnosis of

early-stage pancreatic ductal adenocarcinomas and enriching the

choice of multimodal therapy (18).
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