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Spinal Muscular Atrophy (SMA), a neurodegenerative disorder, extends its impact

beyond the nervous system. The central protein implicated in SMA, Survival

Motor Neuron (SMN) protein, is ubiquitously expressed and functions in

fundamental processes such as alternative splicing, translation, cytoskeletal

dynamics and signaling. These processes are relevant for all cellular systems,

including cells of the immune system such as macrophages. Macrophages are

capable of modulating their splicing, cytoskeleton and expression profile in order

to fulfil their role in tissue homeostasis and defense. However, less is known

about impairment or dysfunction of macrophages lacking SMN and the

subsequent impact on the immune system of SMA patients. We aimed to

review the potential overlaps between SMN functions and macrophage

mechanisms highlighting the need for future research, as well as the current

state of research addressing the role of macrophages in SMA.
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Introduction

The Survival Motor Neuron (SMN) protein has been extensively studied in the

neuronal system as it causes the developmental and neurodegenerative disease Spinal

Muscular Atrophy (SMA). SMN is expressed ubiquitously and SMA is regarded as a multi-

system disease. However, the immune system has not been sufficiently analyzed in SMA

yet. Macrophages are innate immune cells. Their function is regulated by e.g., alternative

splicing, cytoskeletal modulation and signaling. Those mechanisms depend on SMN.

Therefore, the role of SMN functions in macrophages and the potential impact on the

immune system in SMA patients are yet to be investigated. This review aims to stimulate

future research about SMN functions in the immune system focusing on macrophages and

their role in SMA pathology.
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Macrophages and monocyte-
derived macrophages

Macrophages are innate immune cells forming a network in

tissues in which they provide homeostasis by phagocytosis of dying

cells, cell debris, bacteria, and immune complexes (1). They can be

classified into tissue-resident and blood-derived cells, the latter

being mediated by chemokines. Resident macrophages induce

tissue-specific metabolic processes, provide a first layer of defense

for the acute phase reaction, and activate the early innate immune

response. Following this dual characteristic in homeostasis and

defense, macrophages become specialized for specific tissues after

differentiation and additionally need to change their phenotype and

signaling profile rapidly (2). Macrophages start to differentiate

during organogenesis either from embryonic yolk sac, fetal liver

or from bone marrow. In adults, yolk sac-derived macrophages

persist in organs as self-maintaining populations or as bone

marrow-derived monocytes in the blood. Monocytes are

recruited into an organ upon infection or metabolic defect,

where they differentiate into macrophages, respectively,

contributing to clearance, wound repair, fibrosis, and angiogenesis

(2–4). The classification into M1 and M2 macrophages

represents an approximate categorization, which has been divided

into subclassifications depending on external stimuli and

expression profiles. M1 macrophages are activated by e.g.,

lipopolysaccharides (LPS) from bacteria, interferon gamma

(IFNy) produced by TH1 lymphocytes upon inflammation or

granulocyte macrophage colony-stimulating factor (GM-CSF). M1

cells display a phenotype with distinct cytokine production,

enhanced inflammatory, antimicrobial, and antigen-presenting

properties other than monocytes. M2 macrophages are

alternatively activated by TH2 lymphocytes by interleukin 4 (IL-4)

and IL-13 and perform anti-inflammatory activities (5). The

different types of macrophages have distinct expression profiles to

maintain functional plasticity (6).
Spinal muscular atrophy and the
survival motor neuron protein

The Survival Motor Neuron (SMN) protein is a ubiquitously

expressed multifunctional protein. Its central role was recognized

by identification of SMN as the disease-causing protein of the

neurodegenerative and neurodevelopmental disorder Spinal

Muscular Atrophy (SMA), the leading genetic disease of newborn

and infants (7). Total loss of SMN is embryonically lethal (8). SMN

is expressed from two genes, SMN1 and SMN2. Mutations or

deletions in SMN1 lead to SMA (9). SMN2 differs from SMN1 in

a crucial base transition resulting in a small amount of functional

protein expression failing to compensate the loss of SMN1 (10).

Patients with SMA have different residual amounts of full-length

SMN due to copy number variations (CNV) of the SMN2 gene,

which inversely correlate with disease severity (11). SMA has been

clinically classified into types 0 to IV defined by age of onset and

motor milestones. During embryogenesis and development, SMN
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levels decrease by cell type-specific needs, but SMN remains to be

important also in adults (12–14). SMN has several interaction

partners and fundamental functions e.g., in assembly of small

nuclear ribonucleoprotein particles (snRNPs) or cytoskeletal

regulation (15–17).

In SMA, research focused on protein restoration in the central

nervous system (CNS) and the periphery, as the role of this protein

is highly important in developmental processes and peripheral

tissues (14, 18, 19). Currently, three treatments are available for

SMA patients, increasing SMN expression in the central nervous

system (CNS) or periphery, respectively (20–22). The therapies

prolong the survival of patients, improve the phenotype, but do not

cure the disease. SMA is now considered as a multi-system disease

reflecting its ubiquitous expression pattern (23, 24).

We hypothesize that functions of SMN affect key mechanisms

in monocyte-derived and tissue-resident macrophages. Here, we

review the current knowledge about SMN functions to stress its

potential role in mechanisms important in macrophages (Figure 1).

We aim to highlight selected functional aspects of macrophages

which may be of relevance for SMN involvement. Moreover, we

want to point out the knowledge gap of SMN’s role in macrophages.
Development

Macrophages emerge early during embryogenesis forming a

structural network in developing organs. These tissue-resident

macrophages (TRM) are mainly self-renewal. During postnatal

tissue maturation, hematopoietic stem cell-derived monocytes

(HSC) differentiate into tissue-specific monocyte-derived

macrophages (MDM) (25). Several tissues are dependent on

regular replenishment during adulthood. In certain tissues, fetal-

derived and HSC-derived macrophages coexist in defined

anatomical niches contributing to specific function during both

homeostasis and inflammation (26). One of the best studied organs

with regard to macrophage niches and function is the central

nervous system (CNS) (26). In summary, the CNS harbors

microglia, a type of macrophages, in the parenchyma and tissue-

resident macrophages at ventricles, meninges, and perivascular

space (27). The whole adult population of microglia is derived

from fetal progenitors and undergoes long-lived self-renewal. They

depend on niche factors to maintain their roles in homeostasis,

surveillance, and CNS development (28). It has been recently shown

that skull bone marrow is a source of MDM progenitors. Those can

directly migrate during inflammation from the skull bone marrow

via dural channels into the inflamed CNS parenchyma (29).

Functional or molecular alteration of MDMs from skull bone

marrow in SMA has not been described yet. SMA is not only a

neurodegenerative disease but affects all tissues including bone and

its development (30, 31). Tissue-resident macrophages in the bone

are osteoclasts. SMN interacts by direct protein-protein interaction

with osteoclast stimulatory factor (OSF) resulting in altered

signaling in osteoclast formation and activity (32, 33). Since SMN

is expressed in high amounts during embryonal development, it can

be expected that SMN is needed especially during differentiation of

cells (12, 34). Whether SMN loss affects macrophage development
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and bone marrow-derived renewal remains unknown. This may be

particularly relevant as congenital bone fractures occur in severe

SMA patients (30). SMA patients with type I-III also can show

fragility fractures with lower bone mineral density (35).
RNA metabolism

SMN functions impact several RNA metabolic processes, e.g.

spliceosomal snRNP assembly in the cytoplasm mediated by the

SMN-complex comprising SMN, GEMIN2–8 and UNRIP (36, 37).

SMN localizes to Cajal bodies (CB) and regulates the integrity of

nuclear Gemini of Cajal bodies (gems) (38, 39). It also stimulates

alternative splicing of pre-mRNA mediated by snRNPs in

the nucleus (15). Macrophages comprise different types of

membraneless organelles to ensure a robust immune response

controlling the kinetics of inflammatory gene expression. The

nuclear paraspeckle regulates innate immune gene expression

through the nuclear retention of RNA via RNA-protein

interaction including Neat1 long non-coding (lnc) RNA (40, 41).

Another subnuclear body is the interleukin-6 (IL-6) and -10 (IL-10)

splicing activating compartment (InSAC) controlling processing of

interleukin RNAs in immune response. IL-6 and IL-10 regulate pro-

and anti-inflammatory homeostasis. Thereby, DNA-binding

protein-43 (TDP-43) scaffolds interleukin RNAs and recruits

spliceosomal components such as snRNPs from Cajal bodies

(CBs) under inflammatory conditions (42). Therefore, CBs are

disrupted during inflammation. This process includes a switch of

binding affinity of SMN’s interaction partners, leading to reduced

binding to TDP-43 and stronger binding to Coilin (43).
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Transcriptional regulation and alternative splicing control

specific gene expression profiles of different types of macrophages

(44, 45). Regulation of macrophage differentiation by splicing has

been analyzed by RNAseq in primary macrophages and THP-1

cells, a human monocyte cell line. RNA binding proteins (RBPs)

change their expression profile during differentiation and activation

of monocytes and macrophages. Induction results in regulation of

RNA-binding proteins such as SNRPE, GEMIN2, RAVER2 and

ELAVL4 (44). GEMIN2 is the main interactor of SMN in the SMN-

complex in snRNP assembly (37). Additionally, SMN regulates the

assembly of small nucleolar ribonucleoprotein complexes

(snoRNPs). Small nucleolar RNA (snoRNA) is a noncoding RNA

which is bound to specific proteins to form snoRNPs. Those

perform posttranslational modifications of non-coding RNAs and

ribosomal RNAs (46). During this process, SMN interacts with

snoRNP proteins as ribonucleoprotein complex subunit 1 (GAR1)

and Fibrillarin (47). Those are members of the alarmin protein

family which activate Toll-like receptors on the cells surface of

antigen presenting cells (APC) such as macrophages (48).

Activation of macrophages results in regulation of several

snoRNAs (49).
Cytoskeleton and actin

The actomyosin cytoskeleton maintains cell shape, drives cell

movement, and controls cellular mechanosensing, signaling and

cell-cell communication (50). Key elements are actin filaments,

actin binding proteins (ABP) and myosin (51). Assembly and

disassembly are important to regulate cellular functions such as
FIGURE 1

Schematic summary of SMN functions and changes in SMA (blue) affecting mechanisms of macrophage differentiation, migration, splicing regulation,
activation, and tissue specific functions. Interaction denoted as “:”. Increased and decreased expression/activity denoted as arrow. For references,
see text. Created with BioRender.com.
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membrane protrusion, endocytosis, exocytosis, vesicle trafficking,

organelle positioning and phagocytosis (52). Actin filament

assembly is regulated on the barbed end of filamentous actin (F-

actin) by ATP-bound actin interacting with profilin (53). Branching

starts by binding of the Arp2/3 complex bound to monomeric

globular (G-) actin on the side of a pre-existing F-actin filament

(54). Capping protein determines the growth and filament turnover

by hydrolysis of ATP bound to each actin-monomer (55). Actin

depolymerizing factor (ADF)/cofilin, which is regulated by Rho-

kinases, promotes the phosphate and ADP-actin dissociation from a

filament. G-actin recycling is regulated by profilin (56). Profilins

have binding sites for G-actin, phosphatidylinositol 4,5-

bisphosphate (PIP2) and poly-L-proline (PLP) (57). SMN

comprises PLP stretches and binds profilin1 and 2a (58). SMN

depletion results in profilin2a hyperphosphorylation leading to

dysregulated actin dynamics. Profilin2 regulation by the Rho-

associated coiled-coil kinase (ROCK) is activated in SMA leading

to an impaired actin cytoskeleton regulation and neurite outgrowth

(58–61). Macrophages dynamically alter their actin cytoskeleton to

migrate and engulf material. Thereby, the Arp2/3 complex is

important for extending large protrusions as lamellipodia (62,

63). However, macrophages are capable to use filopodia for

phagocytosis in a less motile state upon Arp2/3-deficiency (64).

Therefore, Arp2/3 is crucial for cell migration (65). In macrophage

activation, the actomyosin structures around the nucleus first

become contractile and later spread out with less association

between actin and myosin. This process influences the function of

macrophages. The importance of actin regulation for the function

of leukocytes, white blood cells including monocytes, has been

shown by lower chemokine levels and MHCII surface localization

upon Arp2/3 deficiency (66). In actinopathies, such as the Wiskott-

Aldrich syndrome, in which mutation in Arp2/3-activating

nucleat ion promoting factor (NPF) WASP results in

autoinflammation and immunodeficiency, leukocytes are

profoundly affected (66). Interestingly, SMN affects the

localization of RPS6 mRNA to the plasma membrane of

fibroblasts, where RPS6 mRNA associates with calveolin-1 (67).

Calveolin-1 is a key component of membrane dynamics and plays a

critical role in the differentiation of monocytes into macrophages

(68). Due to the interaction of SMN with profilin and association

with calveolin-1 during cytoskeletal modulation, we hypothesize

that SMN loss also affects the migratory behavior of macrophages

and engulfment of cellular debris.
Signaling: inflammatory response,
tissue recruitment and
lymphoid organs

Signal transduction regulates the functional plasticity of

macrophages to respond to different conditions and exerts their

specific functions. Macrophages are tightly regulated in

physiological conditions by signaling pathways, which can react

to numerous environmental stimuli and drugs [reviewed in (69)].

This functional plasticity is regulated by c-Jun amino terminal

kinase (JNK) and activator of transcription pathways such as Wnt
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and Notch signaling (69). The inflammatory responses are

mediated by nuclear factor-kappaB (NFkB) and JNK. SMN

protein depletion in the mouse macrophage-like cell line

RAW264.7 activates those pathways and increases TNF-a and

reactive oxygen species production (70). JNK and NFkB signaling

can be inhibited physiologically by TRAF6, which has been found to

be a direct interactor of SMN (71). Therefore, SMN may have a

regulatory function in inflammatory and oxidative stress response

in macrophages (70). During neurodegeneration, synaptic stripping

is a microglia-mediated process enabling removal of damaged pre-

synaptic axon ends by controlled phagocytosis to ensure cell repair

(72). In SMA, microglia exhibit an enhanced inflammatory profile

negatively affecting motoneuron survival (2, 73).

Recruitment of monocytes to inflammatory regions is regulated

by chemokine signaling. In symptomatic SMA (Smn−/−;SMN2tg/tg)

mice, Iba-1+ macrophage density was reduced in SMA muscles

although apoptosis and subsequent recruitment was stimulated.

Before muscle atrophy, newborn mice showed no difference in

densities. MCP-1 is a factor involved in monocyte recruitment and

was significantly downregulated in muscles of symptomatic mice

(74). MCP-1 secretion is decreased in SMN-deficient cultured

astrocytes, which fail to support wild type motor neurons.

Restoration of MCP-1 results in neurite outgrowth from motor

neurons (75). This defect in recruitment has not been observed in

spleen and liver of SMA mice. However, the weight of spleen and

thymus, two lymphoid organs, was reduced by 4- to 6-fold in SMA

compared with controls. Other peripheral tissues such as kidney

and liver as well as the whole body were only 2-fold reduced in

weight (74). Infiltration of macrophages was present in intestine of

severely affected SMA mice (denoted as the Taiwanese mouse

model) showing an aberrant number of neurons in the enteric

nervous system (ENS). This infiltration was reduced after increase

of SMN expression via antisense oligonucleotide (ASO)

treatment (20).

Astrocytes and glial cells exert functions in SMA (reviewed by

76). Gliosis, defective signaling between astrocytes and neurons,

structural dysfunctions of astrocytes, increased activation of

microglia, and infiltration of peripheral immune cells may

promote pathogenesis in SMA. SMN restoration in those cells

influences SMA pathology suggesting a role of SMN beyond the

motor neuron (76). Cell type specific loss of SMN in iPSC-derived

microglia results in a `amoeboid morphology`, displaying a

changed reactive transcript profile, increased migration and

phagocytotic activity (77).

In different SMAmouse models, abnormalities have been found

in the primary lymphoid organ thymus and in the secondary

lymphoid organs spleen and mucosa-associated lymphoid tissue

(MALT) (73, 78, 79). However, there is still limited knowledge

about alterations of lymph nodes or bone marrow in SMA. The

spleen displayed developmental defects in white pulp formation,

showed increased cell death and fibrotic tissue structures with lack

of collagen in the severe (Taiwanese) SMA mouse model at mid-

symptomatic [postnatal day 5 (P5)] stage (79). Intriguingly, the

number of yolk-sac derived red pulp macrophages (RPM) was

reduced at symptomatic P12 and at presymptomatic P2 stage in

the spleen of the SMND7 SMA mouse model (80). Macrophages
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localize diffusely in Smn2B/- spleen at P4 and infiltrate the white pulp

with increased unstructured localization at later time points. The

mechanisms behind those differences in mouse models are

currently unclear but could be a consequence of different kinetics

of pathogenesis. In the thymus of P19 intermediate Smn2B/- mice, an

organ for lymphocyte maturation, more macrophages with

apoptotic bodies have been found in mild and severe SMA

models. Cytokine expression profiles changed in P19 thymus

from Smn2B/- mice. Both organs were decreased in size in Smn2B/-

and were rescued by introduction of one SMN2 copy (78). Changes

in cytokine production also have been found in early and late

symptomatic SMND7 mice. These showed a selective reduction of

the red pulp (RP) and RPM, whereby the white pulp was preserved.

Pro-inflammatory cytokines were produced in early and late

symptomatic mice and after LPS challenge, the cytokine

production was reduced in astrocytes and splenocytes (not for IL-

1ß) (80). Taken together, SMA mouse models present different

structural and organizational defects in lymphatic tissues, which

may depend on migratory functions of cells but also chemokine

production, as these organs are structured by gradients. The high

expression of SMN in lymphoid organs of wild type mice compared

to tissues strongly associated with SMA (skeletal muscle, spinal

cord) underscores the need to evaluate its role in immune cells

during development and adulthood (78). SMN is expressed in high

amounts during embryogenesis and decreases over time (12, 81).

The tissue-specific need of SMN expression may influence immune

cells differently, as immune cells, also monocyte-derived

macrophages, differentiate throughout life.
Other peripheral defects in SMA

Macrophages are present in both neuronal and non-neuronal

tissues as microglia (CNS), osteoclasts (bone), Kupffer cells (liver),

alveolar macrophages (lung), Langerhans cells (skin) and histiocytes

(connective tissue) (82). In liver of presymptomatic Taiwanese SMA

mice, the number of Kupffer cells was increased reflecting early

systemic inflammation with increased expression of proinflammatory

cytokines (also in lung and intestine) including Interleukin-1b (IL-

1b), IL-6 and TNF-a (83). Those cytokines have also been found to

be upregulated in SMAmouse models and other tissues, e.g. in spinal

cord of SMA patients (however, with a decrease of IL-6) (78, 84).

The lung is one major organ displaying a connection with the

outer environment of the body. Thus, the lung has several immune

mechanisms, such as mechanical defense by surfactant, immune

sensing by airway epithelial cells, and bronchus-associated

lymphoid tissue (BALT). The lung can activate immediate

adaptive immune functions (85). Macrophages are the most

frequent immune cells present (86). In newborn lungs, fetal liver

and yolk sac-derived macrophages are present. Bone marrow-

derived macrophages start to immigrate and differentiate into

alveolar macrophages (AM), essential for clearance and

surfactant-regulation by local secretion of the cytokine GM-CSF

(2, 87, 88). Histological inspection of SMA indicates lesions of

alveolar septa in the lung that could not be rescued by general

increase of SMN levels through histone deacetylase (HDAC)
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inhibition by JNJ-26481585 (89). This inhibitor also activates

NFkB and IL-1b production in RAW 264.7 mouse macrophage

cells (90). Lung and pulmonary phenotypes have been described in

clinical studies, showing a decline in ventilation capacity with a

stabilization in adulthood and positive correlation with therapy (91,

92). Most studies trace defects in lung function to the degeneration

of intercostal muscles and diaphragm function, but SMN-

dependent primary defects and therapeutic assessment of those

have not been studied yet. The involvement of macrophages in lung

and other affected tissues in SMA are yet to be elucidated and in

focus of future research.

Defects in lymphoid organs and CNS, bone and liver, indicate a

putative regulatory role of macrophages being impaired in SMA. It is

still unclear whether SMA patients experience alterations of immune

responses and a putative change upon treatment. Interestingly, SMA

patients treated with the ASO Nusinersen showed macrophages with

dark inclusions in the cerebrospinal fluid (CSF). After treatment, the

CSF showed unique inclusions comprised of glycosaminoglycanes in

macrophages, which were most likely monocyte derived (93, 94).

Another study reported an increase in IL1ß, IL23 and IL6, which can

be produced by macrophages, in sera of pediatric and adult SMA

patients type I-III treated with Nusinersen (95). These findings

underline the need for further analyses of the current treatments

with regard to their impact on the immune response.
Conclusion

It is currently unknown whether macrophages play a significant

role in SMA, thereby impacting various organ function and

immune responses. The intricate balance between tissue-resident

and blood-derived macrophages, their diverse roles in tissue

homeostasis and defense, and their rapid adaptability underscore

their importance for tissue homeostasis. The Survival of

Motoneuron protein (SMN) is the disease-determining factor of

SMA and regulates critical mechanisms for cellular functions such

as translation, splicing and cytoskeletal modulation. The role of

SMN in macrophages has been studied only marginally showing a

role of SMN in signaling of macrophages and osteoclast

development. Vice versa, macrophages are involved in the

pathogenesis of SMA a multi-organ disease. The discussed high

overlap in molecular mechanisms important in macrophages and

regulated by SMN emphasize the need for a detailed analysis of the

role of SMN in monocytes, macrophages, and cells of the lymphatic

system. This addresses the broader systemic aspect of SMA,

potentially critical for SMA patients in the future.
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