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The overconsumption of dietary fructose has been proposed as a major culprit

for the rise of many metabolic diseases in recent years, yet the relationship

between a high fructose diet and neurological dysfunction remains to be

explored. Although fructose metabolism mainly takes place in the liver and

intestine, recent studies have shown that a hyperglycemic condition could

induce fructose metabolism in the brain. Notably, microglia, which are tissue-

resident macrophages (Mjs) that confer innate immunity in the brain, also

express fructose transporters (GLUT5) and are capable of utilizing fructose as a

carbon fuel. Together, these studies suggest the possibility that a high fructose

diet can regulate the activation and inflammatory response of microglia by

metabolic reprogramming, thereby altering the susceptibility of developing

neurological dysfunction. In this review, the recent advances in the

understanding of microglia metabolism and how it supports its functions will

be summarized. The results from both in vivo and in vitro studies that have

investigated the mechanistic link between fructose-induced metabolic

reprogramming of microglia and its function will then be reviewed. Finally,

areas of controversies and their associated implications, as well as directions

that warrant future research will be highlighted.
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1 Introduction of microglia

Microglia, which are tissue resident macrophages (Mjs) of the central nervous system,

constitute a major component of the innate immune system in the brain. Depending on the

area, microglia can comprise 5% to 12% of the total cell populations in the brain (1).

Although microglia are classified as tissue resident Mjs, their ontogeny is notably distinct
when compared to other types of Mjs. Genetic fate-mapping studies have now

demonstrated that microglia are derived from primitive Mjs, which are differentiated
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from erythro-myeloid precursors in the yolk sac, and they colonize

the developing brain as early as embryonic day 9.5 (2–4). Upon

colonization, they retain their embryonic origin throughout adult

life with no replacement from circulating monocytes.

To provide immune protection and maintain a healthy neural

microenvironment, microglia are responsible for monitoring and

scavenging the parenchyma continuously through its interaction

with environmental cues, such as chemokines, cytokines, and other

trophic factors (5–7). Upon detection of changes in the local

environment, depending on the type of stimuli, microglia

becomes activated and display a diverse profile of phenotypes.

Similar to other tissue resident Mjs, microglia can also be

divided into M1 and M2 Mjs. As M1 Mjs, they display cytotoxic

and pro-inflammatory responses upon recognition of inflammatory

stimulus, such as bacterial lipopolysaccharides (LPS). On other

hand, they can also be alternatively activated into M2 Mjs, where
they can perform repair and regeneration functions (M2a),

immune-regulatory functions (M2b) or the acquisition of a

deactivating phenotype (M2c) (8, 9). Overall, microglia

demonstrate high phenotypic and functional plasticity in response

to the wide spectrum of changes that take place in the brain (1, 10).

Apart from its scavenging functions, microglia are also now

recognized to be involved in other dynamic processes that can

modulate brain functions, including the formation and maturation

of synapse, brain homeostasis, neurogenesis and regulating

neuronal excitability (11).
2 Metabolic reprogramming
of microglia

Recent advances in the immunometabolism field have shown

that the acquisition of altered metabolic adaptations due to the

rewiring of metabolic circuits, known as metabolic reprogramming,

is critical for the activation of immune cells and their functions. To

support the heterogenous phenotypes and functions of microglia as

described above, they are capable of metabolizing a variety of

carbon sources, such as glucose (12), fructose (13), free fatty acids

(14), lactate (15), and ketone bodies (16), in which the type of fuel it

metabolizes can modulate its ability to perform its effector

functions. In general, microglia express GLUT3 and GLUT5 to

facilitate the uptake of glucose and fructose respectively (17–19).

However, under inflammatory conditions, microglia can undergo

metabolic reprogramming by transcriptionally activating the

expression of glycolytic genes, such as glucose transporters

(GLUT1) and lactate transporters (MCT1), to increase the

breakdown of glucose (glycolysis) (15, 20, 21). More importantly,

it has been shown that LPS-induced activation of microglia cell lines

increased the rate of glycolysis while decreased the rate of oxidative

phosphorylation (OXPHOS) (22). This shift from OXPHOS to

aerobic glycolysis is known as the Warburg effect, which was first

observed in cancer cells by Otto Warburg (23). Mechanistically, it is

believed that this metabolic shift is due to the activation of
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mechanistic target of rapamycin (mTOR) complex 1 and

hypoxia-induced factor 1a (HIF-1a) (24–26), which directly

transactivate the expression of glycolytic and inflammatory genes,

along with the activation of HIF-1a co-activators.

The increased flux of glycolysis in activated microglia is directly

linked to its ability elicit an inflammatory response as blocking

glycolysis with 2-deoxy-glucose impaired its production of pro-

inflammatory cytokines, such as Tumor Necrosis Factor alpha

(TNF-a) and Interleukin-6 (IL-6), in a NF-kB-dependent manner

(27, 28). On the other hand, incubation of microglia with increased

concentration of glucose further enhanced its production of TNF-a
(29, 30). Although the direct link between the consequence of

increased glycolytic flux and production of inflammatory cytokines

is an ongoing investigation, recent reports have shown that the

induction of glycolysis could lead to increased flux of the pentose

phosphate pathway (PPP) and multiple disruptions in the

tricarboxylic acid (TCA) cycle of Mjs in general (31–33). While

the increased flux of PPP increased the production of NADPH, which

is critical for regulating Mj inflammatory responses (34), the

disrupted TCA cycle had led to the accumulation of key

metabolites that are linked to inflammation. For instance, the

accumulation of succinate due to the inhibition of succinate

dehydrogenase is important for the stabilization of HIF-1a and its

direct transcription of Il1b transcripts (35, 36). On the other hand, the

accumulation of citrate due to the inhibition of isocitrate

dehydrogenase (36, 37) can be converted back to acetyl-CoA by

ATP citrate lyase and it is critical for histone acetylation of

inflammatory genes (38, 39), as well as de novo lipid synthesis,

which supports the secretion of pro-inflammatory mediators (40).

Apart from metabolites, the increased flux of the PPP also fuels the

production of nitric oxide (NO) by nitric oxide synthase, in which the

production of NO could inhibit the function of the electron transport

chain (ETC) in Mjs (41, 42). The impaired activity of the ETC then

induce the reversal of electron flow and drive the production of ROS,

which is responsible to inhibit the activity of prolyl hydroxylases and

thus stabilizing HIF-1a levels (43). More recently, it has also been

revealed that blocking the activity of factor inhibiting HIF (FIH), an

enzyme that inhibits the transactivation capacity of HIF-1a, is also
critical for fully activating HIF-1a transcriptional function in Mjs
(44). Collectively, these studies have shown that glucose metabolism

plays a critical role in orchestrating the inflammatory response of

activated microglia (Figure 1).

On the other hand, under anti-inflammatory conditions, such

as stimulation by Interleukin-4 or Interleukin-13, microglia are

metabolically adapted to utilize OXPHOS, which led to an

attenuated uptake of glucose and production of lactate, and

display similar oxygen consumption rate (OCR) and extracellular

acidification rate (ECAR) levels as unstimulated microglia (14, 31).

Finally, under homeostatic physiological conditions, microglia

utilize a combination of oxidative catabolism of glucose and free

fatty acids to fuel the TCA cycle and electron transport chain for

generating large amounts of ATP, thereby sustaining the energetic

needs for their basic surveyance functions (14, 45).
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3 Fructose-induced metabolism in the
brain and its reprogramming
of microglia

It is well-established that glucose metabolism is vital to fuel the

inflammatory functions of microglia, yet the role of fructose

metabolism in modulating microglia inflammatory response is

largely unexplored. In fact, it was previously unclear if dietary

fructose consumption could even affect fructose metabolism in the

brain as the breakdown of fructose mainly takes place in the intestine

and liver (46–49). Until recently, Hwang et al. have used 1H magnetic

resonance spectroscopy (MRS) scanning to measure intracerebral

fructose levels, and found it was rapidly increased in the human brain

under hyperglycemic condition (intravenous injection of 20%

dextrose in human subjects) (50). Specifically, the authors found

the fructose levels in the brain rose significantly, as early as 20

minutes post dextrose injection, and maintained elevated until the

end of the study (240 minutes), with the range of fructose

concentration changing from 0 to 0.7mmol/L approximately (50).

More importantly, the authors also discovered that the rapid rise of

intracerebral fructose levels occurred prior to the increase of plasma

fructose levels, suggesting that the hyperglycemic condition could

induce endogenous fructose production in the brain (50). Similar

findings were also observed in a previous study performed by Hwang

et al, where the authors have used gas chromatography-mass

spectroscopy to measure fructose concentration in cerebrospinal

fluids (CSF) from pregnant women and found that CSF-derived

fructose and sorbitol levels were much higher (9-20-fold) than the
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levels in plasma (51). Taken together, these findings collectively

demonstrate that fructose could be produced endogenously in the

brain and that the effects of intracerebral fructose extend beyond its

dietary consumption.

Understanding that fructose can be endogenously produced in

the brain under hyperglycemic condition, and that a high-fructose

diet is known to induce hyperglycemia, this then raises the

possibility that a high-fructose diet can potentially modulate the

metabolic and inflammatory profiles in the brain. Indeed, past

reports have already revealed that a high fructose diet increased

the expression of GLUT5 (52), as well as pro-inflammatory

mediators , such as Tnfa , in the hippocampus (53) .

Mechanistically, fructose-diet induced Toll-like receptor 4/NF-kB

and p38 MAPK/ERK inflammatory phosphorylating signaling

cascades in the hippocampus, which eventually led to the

increased expression of pro-inflammatory cytokines (54).

To further investigate if dietary fructose-induced inflammation

in the hippocampus is due to increased activation of microglia,

recent effort has been invested to elucidate the link between

fructose-mediated metabolic reprogramming in microglia and its

effector functions. Using leptin receptor-deficient type 2 diabetes

mellitus (db/db) mice, Li et al reported an upregulation of fructose-

related metabolism in the hippocampus, as determined by

metabolomic, proteomic, and transcriptomic analysis (13). Single-

cell RNA sequencing of hippocampus also revealed that the

expression of fructose metabolism-related genes, such as Khk and

Slc2a5, as well as ROS generating enzymes, such as NADPH

Oxidase 4 (Nox4), were increased in microglia in db/db mice

compared to littermate control (13). Mechanistically, selective
FIGURE 1

Glucose-induced metabolic reprogramming of activated microglia and macrophages. Upon LPS stimulation, microglia upregulate the expression of
glucose transporters (GLUT1) and lactate transporters (MCT1) to increase the rate of glucose metabolism. This induction of glycolysis then leads to
the increased rate of PPP, which is responsible for the synthesis of nucleotides and NADPH. The augmented production of NADPH subsequently
drives the production of nitric oxide and ROS by Nos2 and Nox2 respectively. Upon nitric oxide-mediated inhibition of succinate dehydrogenase
activity, it leads to the accumulation of succinate, which together with ROS, inhibit the activity of both FIH and PHDs. This eventually leads to the
stabilization and activation of HIF-1a transactivation capacity, and the transcription of its targeted genes, such as Il1b and other glycolysis genes.
Apart from this, another metabolic break happens at the isocitrate dehydrogenase level due to its suppressed expression post LPS stimulation,
thereby leading to the accumulation of citrate. The rapid increased levels of citrate can then be converted to acetyl-CoA by ACLY and contribute to
histone acetylation and de novo lipid biosynthesis (ex. synthesis of fatty acids), which can promote histone acetylation of pro-inflammatory genes
and secretion of pro-inflammatory cytokines respectively. All figures are created with BioRender.com.
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knockdown of Khk in the hippocampus and microglia resulted in

reduced expression of Nox4 in microglia (13). Fructose-mediated

Nox4 regulation was also linked to its mitochondrial translocation

and that Nox4-induced ROS impaired mitochondrial homeostasis,

eventually leading to the damage of synaptic plasticity (13). Similar

to this, another study done by Hyer et al also found that high

fructose diet induced the activation of microglia in male, but

interestingly not in female rats (55). Specifically, male rats fed on

a high fructose diet had increased activation of microglia with

reduction of their dendritic complexity, which correlated to an

impairment of their reverse learning ability (55).

Although the studies above demonstrated that the metabolism

and function of microglia in vivo was modulated in response to high

fructose diet, in vitro studies that investigated the direct intrinsic

effects of fructose on microglia remains to be controversial. For

instance, Mizuno et al have treated primary microglia and SIM-A9

cells (murine microglia cell lines) with high concentration of

fructose (7.5mM for 24h) and glucose (7.5mM for 24h) separately

and found that only glucose has induced inflammation and

expression of Slc2a5 (GLUT5) (56). However, on the other hand,

Xu et al have treated microglia BV-2 cells with high concentration

of fructose (5mM for 24h) and found it induced TLR4/NF-kB
activation, as well as pro-inflammatory gene expression, such as

Il1b, Il6 and Tnfa (57). Similar findings were also reported by

Cigliano et al where they also incubated BV-2 cells with a range of

concentration of fructose (0 to 10mM, 24h) and found it increased

TNF-a production as measured by ELISA (54). Overall, these

studies suggest that the intrinsic inflammatory effect of fructose

appears to be dependent on specific experimental condition, and

further experiments are needed to resolve the controversies.

Several important points of consideration need to be taken

when comparing the results obtained from the presented in vitro

and in vivo studies, one of which is the discrepancy between the

intracerebral fructose levels quantified in the in vivo experiments,

and the experimental fructose levels that were used in the in vitro

experiments. For instance, as shown in the MRS scanning study

performed by Hwang et al., the intracerebral fructose levels

fluctuated only between 0 to 0.7mmol/L post dextrose injection

(50). Yet, all the in vitro studies presented in this review have

incubated microglia with fructose at a much higher concentration

(at least 5mM). This not only raises concerns that the in vitro

findings may not demonstrate physiological relevance, but also

suggests the need of more in vitro studies that incubate microglia

with physiologically relevant levels of fructose. Apart from this, the

expression and function of proteins involved in fructose

metabolism, such as GLUT5, is not always measured in the in

vitro studies discussed in this review, thus making it difficult to draw

a mechanistic link between the observed inflammatory phenotypes

in microglia and their metabolism of fructose.
4 Conclusion and future perspectives

The overconsumption of dietary fructose has been associated

with the rise of chronic inflammatory diseases, such as obesity,

diabetes, cardiovascular disease, and cancer (58–60). Furthermore,
Frontiers in Immunology 04
epidemiological studies have now revealed that high fructose

consumption can also induce brain disturbances and negatively

affect the development of neural system (61, 62). Early studies that

investigated the relationship between the effects of dietary fructose

and neural functions have shown that microglia do express fructose

transporter (GLUT5) (18) and that fructose metabolism in the brain

was stimulated under hyperglycemic condition (50). Understanding

that the type of carbon fuel in which microglia metabolize can

profoundly shape their effector functions, the focus of recent

research has now shifted to the elucidation of a mechanistic link

between high fructose consumption and its metabolic effects on

microglia activation and inflammatory response. While this topic is

still currently under heavy investigation, recent completed studies

have generally demonstrated that high fructose-diet induced

fructose metabolism in microglia is linked to its increased

activation and inflammatory response, which can possibly lead to

cognitive dysfunction and impairment (Figure 2). Yet, in vitro

studies that directly investigate the intrinsic inflammatory

response of fructose in microglia remains to be controversial and

warrants future research to further determine the inflammatory

signaling cascades that fructose metabolism may enhance, as well as

the transcriptional regulation that modulates the expression of

fructose metabolism genes.

The controversial findings observed in vitro could also suggest

the existence of other external factors derived from the high fructose

diet that could enhance the inflammatory responses of microglia in

vivo, such as circulating metabolites that can cross the blood brain

barrier. Furthermore, external variables such as sex can also

modulate the effects of dietary fructose on neural functions. As
FIGURE 2

Fructose-induced metabolic reprogramming of activated microglia.
Upon chronic exposure of high fructose, microglia upregulates the
expression of fructose transporters (GLUT5) and keto-hexokinase
(KHK). Through an unidentified mechanism, KHK promotes the
translocation of Nox4 into the mitochondria and Nox4-mediated
ROS synthesis disrupts mitochondrial homeostasis and eliminates
dendrites. This eventually damages synaptic transmission and
promotes the development of cognitive disorders. Apart from this,
chronic exposure of high fructose also activates TLR4/NF-kB
signaling pathways through an unidentified mechanism, thereby
leading to the transcription and synthesis of pro-inflammatory
mediators. All figures are created with BioRender.com.
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described from the study by Hyer et al, cognitive flexibility was only

impaired in male, but not female rats fed on high fructose diet,

implicating that female sex hormones may play a role in the

protection against fructose diets (55). Indeed, past research has

shown that females do not develop hyperinsulinemia post fructose

feeding with the exception of ovariectomy (63). Understanding the

underlying differences between how high fructose consumption

differentially affect the neural function of males and females may

help to identify novel mechanisms that protect the deleterious

effects of fructose in an in vivo setting.
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