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Background: Multiple sclerosis (MS) is the most common chronic inflammatory

disease of the central nervous system. Currently, the pathological mechanisms of

MS are not fully understood, but research has suggested that iron metabolism

disorder may be associated with the onset and clinical manifestations of MS.

Methods and materials: The study utilized publicly available databases and

bioinformatics techniques for gene expression data analysis, including

differential expression analysis, weighted correlation network analysis, gene

enrichment analysis, and construction of logistic regression models.

Subsequently, Mendelian randomization was used to assess the causal

relationship between different iron metabolism markers and MS.

Results: This study identified IREB2, LAMP2, ISCU, ATP6V1G1, ATP13A2, and SKP1

as genes associated with multiple sclerosis (MS) and iron metabolism,

establishing their multi-gene diagnostic value for MS with an AUC of 0.83.

Additionally, Mendelian randomization analysis revealed a potential causal

relationship between transferrin saturation and MS (p=2.22E-02; OR 95%

CI=0.86 (0.75, 0.98)), as well as serum transferrin and MS (p=2.18E-04; OR

95%CI=1.22 (1.10, 1.36)).

Conclusion: This study comprehensively explored the relationship between iron

metabolism and MS through integrated bioinformatics analysis and Mendelian

randomization methods. The findings provide important insights for further

research into the role of iron metabolism disorder in the pathogenesis of MS

and offer crucial theoretical support for the treatment of MS.
KEYWORDS

multiple sclerosis, iron metabolism, Mendelian randomization, bioinformatic analysis,
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1 Introduction

Multiple sclerosis (MS) is the most common chronic

inflammatory, demyelinating and neurodegenerative disease of

the central nervous system(CNS), with a global prevalence

exceeding 2 million, including approximately 400,000 cases in the

United States (1). The pathological hallmark of this disease is the

occurrence of disseminated “plaques of sclerosis” in multiple

regions of the CNS, including white matter, gray matter,

brainstem, spinal cord, and optic nerve (2, 3). The pathogenesis

of MS is a complex and dynamic process among the immune

system, glial cells, and neurons (4). These interactions lead to the

pathophysiological changes in MS, including inflammatory

demyelination, neuronal injury, and brain lesions (5). However,

current treatments for MS mostly focus on controlling the degree of

disease inflammation, with limited effectiveness in targeting

inflammation (6).

Iron is an essential trace metal involved in the metabolism of

catecholamine neurotransmitters and the formation of myelin in

the nervous system (7). Multiple studies have indicated a link

between brain iron deposition and normal aging as well as MS

(8–10). MRI studies have shown excessive iron deposition in the

gray matter of MS patients, which primarily concentrated in

the basal ganglia. Additionally, iron deposition is also present in

the white matter, particularly near lesion areas. Such iron

deposition may be related to the development and clinical

manifestations of the disease (11). The mechanism may involve

the abnormal deposition of iron leading to oxidative stress, which

further damage brain cells (12). Oxidative stress has been

considered as part of the pathogenesis of MS, potentially

contributing to demyelination and cell death. Therefore,

abnormal iron deposition may be an important factor in the

pathological process of MS (13). However, other studies have

found that iron deficiency can also impact the pathology of MS.

In a study investigating changes in iron content in the brains of MS

patients, it was observed that the iron content in the deep gray

matter showed a decreasing trend. Furthermore, the research

revealed that as the disease progressed, the iron levels in patients

with progressive MS were lower than those with relapsing-remitting

MS (14). Similar results have been reported in other studies (15, 16).

Systemic iron deficiency can also lead to MS. Multiple studies have

indicated that the serum iron levels of MS patients are similar or

lower compared to healthy control groups. This suggests that in MS

patients, there may be a trend of decreased serum iron levels. The

reduction in serum iron levels may be associated with the

pathophysiological processes of MS (17). Iron deficiency in MS

may involve variations in multiple genes, including TMPRSS6,

HFE, TF, Dual Oxidase 2, CUBN, and SLC25A37. These genes

encode proteins related to iron absorption, transport, and loss,

which may result in iron deficiency (18, 19). Iron deficiency may

further lead to MS because the majority of brain iron is found in

oligodendrocytes. Therefore, iron deficiency may impact the

pathophysiological processes in MS patients, including affecting

the health and regeneration of oligodendrocytes and myelin sheaths
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(20). Additionally, Iron deficiency may lead to heightened oxidative

metabolism activity in oligodendrocytes, as well as impact the

synthesis and maintenance of enzymes that involve in oxidative

metabolism and myelin sheath production (21).

In a word, iron metabolism dysfunction seems to be an

important pathogenic mechanism in MS. We use comprehensive

bioinformatic analysis and mendelian randomization (MR)

methods to explore the relationship between iron and MS, with

an aim to provide new evidence for further research on the

pathogenic mechanism of iron in MS.
2 Materials and methods

2.1 Study design

First, we utilized a large volume of publicly available databases

and conducted Differential Expression Analysis, Weighted Gene

Correlation Network Analysis (WGCNA), Gene Ontology (GO)

analysis, and Logistic Regression Model to demonstrate the role of

iron in MS. Subsequently, we employed two-sample MR to assess

the causal relationship between different iron metabolism indicators

and MS. MR uses genetic variation as a proxy for risk factors.

Therefore, effective instrumental variables (IVs) must satisfy three

key assumptions in causal inference: (1) genetic variation is directly

associated with the exposure; (2) genetic variation is unrelated to

potential confounding factors between the exposure and the

outcome; (3) genetic variation does not affect the outcome

through pathways other than the exposure (22, 23).

In the study design, we used comprehensive informatics

analysis and various MR methods to demonstrate the role of iron

in MS. The study workflow is illustrated in Figure 1.
2.2 Bioinformatic analysis

2.2.1 Data source
The gene expression data for MS was obtained from the NCBI

Gene Expression Omnibus public database (GEO), specifically the

study data GSE78244 (24), which analyzed the gene expression

profiles of resting and activated CD4+ T cells from MS patients,

including 28 MS patients and 28 healthy individuals. Data from

GSE135511 and GSE117935 (25, 26) were also utilized for further

validation. The iron-related data was derived from a study on

pivotal genes and diagnostic models related to iron metabolism in

Alzheimer’s disease, encompassing approximately 520 iron

metabolism-related genes (27, 28).

2.2.2 Differential expression analysis
Differential expression analysis of MS and control group samples

was performed using the “limma” package in R software. Genes with

p_adj < 0.05 and |logFC| > 0.585 were considered as differentially

expressed genes (DEGs). Heatmaps and volcano plots of the DEGs

were created using the “pheatmap” and “ggplot2” packages.
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2.2.3 Weighted correlation network analysis
The “WGCNA” package in R software was utilized to construct

a gene co-expression network and identify relevant differentially

expressed genes. WGCNA is a systems biology approach used to

identify patterns in gene co-expression networks and group related

genes into modules. This method, through the analysis of gene

expression data, can reveal correlations between genes, aiding in the

identification of gene modules associated with specific biological

states. WGCNA is often used to discover biomarkers associated

with diseases and to understand gene regulatory networks and

signaling pathways (29).

2.2.4 Gene enrichment analysis
To identify key genes associated with iron metabolism and MS,

we used the “VennDiagram” package in R to find the overlap of

Differentially Expressed Genes (DEGs), genes from WGCNA, and

the iron metabolism gene set. We visualized the expression

differences of these central genes between MS and control samples

using violin plots, and employed t-tests or Mann-Whitney U tests to

determine significance (p < 0.05). Subsequently, we conducted

enrichment analysis of these hub genes to explore their impact on

MS. We analyzed the involvement of these genes in biological

processes (BP) using GO and presented the results using chord

diagrams with the “GOplot” package in R. GSEA was also

performed to unveil the specific functions of each gene, and the

results were visualized using the “enrichplot” package in R. These

analyses were carried out using the “clusterProfiler” package in R,

with a filtering criterion of p_adj < 0.05.
2.2.5 Logistic regression model
The logistic regression model is commonly used for automated

disease diagnosis. In this study, we employed a logistic regression

model with two response variables, where a response variable of 1

represented MS samples and 0 represented control samples. We

initially conducted stepwise regression analysis to simplify the model

by eliminating non-significant factors and retaining only significant

factors. Stepwise regression iteratively added or removed variables

from the model to minimize the Akaike information criterion (AIC).

Subsequently, logistic regression was used to establish the relationship
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between these significant factors and the response variable. Finally,

we evaluated the diagnostic performance of the model using the

“stats” and “pROC” packages in R software, by plotting the receiver

operating characteristic (ROC) curve and calculating the area under

the ROC curve to assess the model’s performance.
2.3 MR study

2.3.1GWAS data source
The exposures included ferritin, iron, transferrin saturation,

and transferrin. There exposures were derived from a study on the

impact of new loci affecting iron homeostasis on disease in a

European population, which incorporated data from 11 cohorts

comprising 23,986 individuals (30). Our study included 2,036,124

SNPs from this research. The targeted outcomes in this study

stemed from an investigation of a novel MS susceptibility locus.

The study encompassed a total of 4888 cases and 10,395 controls,

with GWAS summary data containing 7,910,365 SNPs (31). Our

validation data were obtained from the International MS Genetics

Consortium’s study on risk allele genes for MS which identified

their GWAS summary data containing 327,095 SNPs through

whole-genome research (32).

2.3.2 IV selection
We established criteria for IV selection to ensure the accuracy

and effectiveness of the causal relationship between exposure and

outcome. Firstly, we set the genome-wide significance threshold at a

p-value of <5e-06, included only SNPs meeting this criterion as

exposure and outcome IVs in the MR study. Secondly, we used the

TwoSampleMR R package with r² = 0.01 and kb = 10000 to ensure

the independence of the selected IVs and reduce linkage

disequilibrium effects from random allele distribution.

Additionally, considering the magnitude and precision of the

SNP's genetic effect on the trait, we calculated the F-statistic using

the formula F = R2(N − 2)/(1 − R2) to assess the strength of each

SNP, through which we could estimate the proportion of SNP-

explained trait variance. We excluded SNPs with an F-statistic less

than 10, as only an F-statistic greater than 10 indicates sufficient

strength to ensure the validity of the SNP.
BA

FIGURE 1

The workflow of the analyses. First, we conducted comprehensive informatics analysis (A), and then we validated using Mendelian randomization
method (B).
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2.3.3 MR methods
MR is a method that utilizes genetic instruments to study causal

relationships between modifiable exposures and outcomes. The

analysis in our study employed five MR methods, including the

ratio test, Inverse Variance Weighted (IVW) method, weighted

generalized linear regression, weighted median method, and

Mendelian Randomization Egger regression. Among these, the

IVW method is the most crucial, as it calculates the inverse

variance-weighted average of ratio estimates from multiple SNPs.

The IVW method assumes that all SNPs are valid instruments, or

any bias between instruments is balanced. It can provide estimates

using fixed-effects or random-effects models. By employing these

five MR methods, we aimed to minimize bias as much as possible

and obtain reliable estimates of the causal relationship between the

exposure of interest and the outcome.
2.4 Statistical methods

To obtain reliable causal relationships, we conducted a meta-

analysis of the different results obtained from the initial and

replication stages of the MR analysis (33). In this meta-analysis,

we initially used a fixed-effects model and only employed a random-

effects model in the presence of heterogeneity, with a statistical

significance cutoff of p < 0.05 indicating meaningful results.

For sensitivity analysis, we measured heterogeneity using the

Cochran Q method. In cases of significant heterogeneity (p < 0.05),

we conducted MR analysis using a random-effects model;

otherwise, we used a fixed-effects model. MR-Egger regression

was employed to assess potential pleiotropy of the SNPs used as

IVs. In MR-Egger regression, when the intercept term p < 0.05, it

indicates the presence of directional pleiotropy. We also used the

MR-PRESSO test to assess horizontal pleiotropy, with p < 0.05

indicating its presence. We used Radial MR to test for outliers,

which can more directly detect and visualize outliers. Finally, for the

robustness of the results, we conducted a leave-one-out analysis.

This analysis included removing each SNP one at a time and then

conducting MR analysis to determine if individual SNPs

significantly affected the results. To explore whether MS is

causally related to established iron levels, we also conducted

reverse MR analysis (using MS as the exposure and established

iron levels as the outcome).

In the comprehensive informatics analysis, t-tests and Mann-

Whitney U tests were chosen based on the normality of the data

distribution. Typically, the significance level is defined as p < 0.05.

All statistical analyses in this study were conducted using the R

software package (v4.2.1) within the R programming language.
3 Results

3.1 Acquisition of hub genes related to iron
metabolism in MS

Using the selection criteria “p_adj < 0.05, abs(logFC) > 0.585”,

we obtained 2967 differentially expressed genes from the GSE78244
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database. Details of these differentially expressed genes are provided

in the Supplementary Table S1). The volcano plot (Figure 2A) and

heatmap (Figure 2B) display the top 50 differentially expressed

genes. After removing outlier samples and filtering genes, a dataset

containing 25298 genes and 56 samples was used to construct a

weighted gene co-expression network. When the soft threshold

power was set to 4, the scale independence reached 0.89 (Figure 3A),

and the average connectivity was 439.86 (Figure 3B). Sample

clustering (Figure 3C) and gene clustering (Figure 3D) were used

to identify samples and genes with similar expression patterns,

aiding in understanding the relationships between genes and the

differential expression patterns among different samples. Hub genes

obtained from limma analysis, iron metabolism-related genes

obtained from WGCNA, and iron metabolism genes were

analyzed. The Venn diagram results are provided in the

Supplementary Table S2), revealing 8 common genes (Figure 4A):

IREB2, LAMP2, ISCU, CDK5RAP1, ATP6V1G1, DCUN1D1,

ATP13A2, and SKP1. Except for LAMP2 and DCUN1D1, the

other six genes showed differential expression between the MS

and control groups, with ATP13A2 being higher in the control

group, while the rest were higher in the MS group. Violin plots are

depicted in Figure 5.
3.2 Biological processes and pathways
enriched for the hub genes

To understand the potential biological roles of these genes,

enrichment analysis was conducted. The GO analysis revealed that

6 out of the 8 genes were involved in related biological processes,

including cellular iron ion homeostasis, iron ion homeostasis,

and iron ion transport, all these genes were related to iron

metabolism (Figure 4B). Subsequently, GSEA analysis of these

genes showed associations with several neurodegenerative

diseases (In Huntington ’s disease, Amyotrophic lateral

sclerosis preceded by e.g.) and pathways related to MS

(GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES,

B_CELL_RECEPTOR_SIGNALING_PATHWAY, Toll-like

Receptor Signaling Pathway), as well as other pathways such as

GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BIO

SYNTHESIS, TYROSINE_METABOLISM, and LYSOSOME

(Figure 6).
3.3 Construction of diagnostic model and
brain validation

A multi-gene prediction model derived from stepwise logistic

regression analysis was developed and found to demonstrate strong

diagnostic performance, as evidenced by an AUC of 0.83

(Figure 7A). Furthermore, the model was subsequently validated

in blood samples, showing high AUC values in GSE135511 and

GSE117935, with values of 0.98 and 0.99, respectively (Figures 7B,

C). These encouraging outcomes in brain samples indicate the

potential clinical utility of the model for diagnosing MS patients.
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3.3.1 Results of MR
In the MR analysis, we observed potential causal relationships

between transferrin saturation, serum transferrin receptor, and MS.

The IVW method results of the MR analysis are as follows:

transferrin (p= 2.18E-04; OR 95%CI= 1.22 (1.10, 1.36)),

transferrin saturation (p= 2.22E-02; OR 95%CI= 0.86 (0.75,

0.98)), iron (p= 6.83E-01; OR 95%CI= 0.96 (0.79, 1.17)), and

serum ferritin (p= 8.33E-01; OR 95%CI= 1.04 (0.70, 1.55))

(Figure 8). Further MR methods are detai led in the

Supplementary Table S3). To mitigate the potential influence of

MS on iron levels, we conducted a reverse MR study. The IVW

results of the reverse MR analysis are as follows: MS and iron (p=

7.88E-01; OR 95%CI= 0.99 (0.96, 1.03)), MS and Ferritin (p= 4.32E-

01; OR 95%CI= 1.01 (0.98, 1.04)), MS and transferrin saturation

(p= 9.04E-01; OR 95%CI= 1.00 (0.96, 1.04)), MS and serum

transferrin (p= 4.47E-01; OR 95%CI= 0.99 (0.95, 1.02)). The

detailed results of the reverse MR analysis are available in the

Supplementary Table S4). Our findings suggest that the risk of MS is

influenced by iron metabolism.

In the sensitivity analysis, we utilized the Cochran Q method,

MR-Egger, and MR-PRESSO to assess heterogeneity and pleiotropy.

All the results were greater than 0.05, indicating no evidence of

heterogeneity and pleiotropy in the SNPs, as shown in Table 1.

Additionally, we conducted a leave-one-out analysis, which also

demonstrated the stability of our results (Figure 9). Finally, we used

Radial MR to test for outliers, and the results showed that there was

no interference from outliers in transferrin saturation and serum

transferrin receptor, as indicated in the test results (Figure 10). The

Radial MR results are available in the Supplementary Table S4).

3.3.2 Replication and meta-analysis
In the meta-analysis, MS with at least two reliable MR results

were integrated. The summarized results of the meta-analysis are

shown in the additional file (Supplementary Table S6). We found

that there is still a significant relationship between transferrin and

transferrin saturation with MS after integrating two MR results

from different data sources. The meta-analysis results using the

fixed effect model are as follows: Iron (p= 6.17E-01; OR 95%CI=
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0.95(0.79,1.15)), Ferritin (p=8.79E-01; OR 95%CI= 1.03(0.70,1.51)),

Transferrin Saturation (p= 2.24E-02; OR 95%CI= 0.87(0.83,0.90)),

Transferrin (p= 3.00E-04; OR 95%CI= 1.21(1.09,1.35)). All meta-

analysis heterogeneity tests were greater than 0.05, as shown

in Figure 11.
4 Discussion

In our study, we employed a comprehensive bioinformatics

analysis to demonstrate the role of iron metabolism in MS.

Additionally, we utilized MR methods to analyze the causal

relationship between different iron statuses and MS, further

substantiating the significant role of iron in MS. In our MR

results, we found that transferrin levels are associated with an

increased risk of MS, while transferrin saturation is associated

with a decreased risk of MS. Transferrin is a potent chelator that

tightly but reversibly binds to iron (34). Transferrin saturation

refers to the proportion of transferrin bound to iron in the blood

(35). An increase in transferrin concentration is a sign of iron

deficiency. When iron levels are low, transferrin concentration

typically increases to regulate iron homeostasis in the blood. An

increase in transferrin saturation indicates an increase in iron levels

in the blood. Therefore, our results suggest that iron deficiency may

be an important contributing factor to MS. The role of transferrin is

in the transport and metabolism of iron. Iron binds to transferrin

and crosses the blood-brain barrier (BBB) or enters the

cerebrospinal fluid, facilitating the transport of iron from the

blood to the brain (36). Transferrin plays a role in iron transport

within oligodendrocytes. Oligodendrocytes are the main type of

iron-containing cells in the brain, and transferrin helps these cells

acquire the necessary iron from the surrounding environment (37).

Additionally, transferrin may be involved in regulating the

utilization and storage of iron within oligodendrocytes. Once

transferrin transports iron into oligodendrocytes, the iron can be

utilized for cellular metabolic activities or stored in iron-binding

proteins (38). This intrinsic regulation helps maintain appropriate

iron levels within oligodendrocytes (39). Iron is an essential factor
BA

FIGURE 2

Differentially expressed genes between MS and control group samples. (A) Red genes represent significantly high expression in MS, green genes
represent significantly high expression in the control group, and gray genes indicate insignificant changes. (B) The heatmap shows the top 50 genes
significantly highly expressed in MS or control group samples.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1376838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2024.1376838
for myelin sheath formation, and oligodendrocytes are the main

producers of myelin sheaths. Iron directly participates in cholesterol

and lipid biosynthesis, which are necessary for myelin sheath

formation (40).

However, an excess of iron may also contribute to the

progression of MS. Numerous studies have indicated the presence

of abnormal iron deposition in the brains of MS patients, which is

not only localized to specific brain regions but also correlated with

clinical features (41, 42). In a study involving 30 MS patients and 15

healthy controls, the researchers analyzed of quantitative

susceptibility maps reconstructed from 3T magnetic resonance

brain images. The results revealed regional differences in iron
Frontiers in Immunology 06
concentrations in MS lesions, normal-appearing white matter,

thalamus, and basal ganglia, despite similar brain iron loads in

MS patients and controls after adjusting for brain volume. These

regional iron loads were also associated with age, disease duration,

Expanded Disability Status Scale scores, Timed 25-Foot Walk test

results, and disease-modifying therapy duration (8). Similar results

have been reported in other studies (9, 43).

Iron can influence the progression of MS through various

mechanisms. Iron metabolism dysregulation has been shown to

be associated with pathogenic T lymphocytes. Studies have

demonstrated that iron can promote the differentiation and

function of pathogenic T lymphocytes. Specifically, the iron-
B

C

D

A

FIGURE 3

Results of the WGCNA. (A) The corresponding scale-free topological model fit indices at different soft threshold powers. (B) The corresponding
mean connectivity values at different soft threshold powers. (C) Cluster dendrogram of samples. (D) Cluster dendrogram of genes.
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dependent production of granulocyte-macrophage colony-

stimulating factor is associated with the binding of iron in the

form of Fe2+ and the stabilization of the RNA-binding protein Poly

(rC) Binding Protein 1 (44). This process further promotes the

transition of T cells to a more inflammatory and pathogenic

phenotype, potentially exacerbating the development of

autoimmune diseases (45).

These findings highlight the complex interplay between iron and

MS, shedding light on the potential mechanisms through which iron

influences the pathogenesis and progression of the disease. Further
Frontiers in Immunology 07
research in this area is crucial for a deeper understanding of the role

of iron in MS and the development of targeted therapeutic

interventions. Furthermore, iron can influence the function of T

cells by regulating their metabolism (46). Iron has been shown to

promote the glycolysis and oxidative phosphorylation (OXPHOS) of

T cells, leading to the acquisition of more pathogenic metabolic

characteristics (47, 48). These metabolic features may further

promote the transition of T cells to a more inflammatory and

pathogenic phenotype. Excessive accumulation of iron may also

lead to iron-mediated lipid peroxidation, triggering ferroptosis
BA

FIGURE 4

Hub genes and GO analysis. (A) Eight hub genes were obtained by taking the intersections of the DEGs, WGCNA, and iron metabolism-related
genes. (B) Biological processes in which the hub genes were involved.
FIGURE 5

Expression of hub genes in the MS and control groups of the MS experimental samples.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1376838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2024.1376838
B C

D E F

A

FIGURE 6

GSEA revealed the enriched pathways of the hub genes. (A) ATP6V1G1. (B) ATP13A2. (C) IREB2. (D) ISCU. (E) LAMP2. (F) SKP1.
B CA

FIGURE 7

ROC curves and corresponding AUC values for the three expression cohorts. (A) samples from GSE78244. (B) Blood samples from GSE135511.
(C) Blood samples from GSE117935.
FIGURE 8

The forest plot of Mendelian randomization results for 4 different iron metabolism markers and MS.
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(49, 50). This iron-mediated cell death mechanism has been

implicated in the pathogenesis of MS (51, 52). Ferroptosis is a

novel iron-related form of non-apoptotic cell death, distinct from

other known cell death mechanisms such as apoptosis (53). It is

initiated by lipid peroxidation, generating harmful lipid peroxides

within the cell, ultimately leading to cell death (54). This process may

be related to the loss of oligodendrocytes (OL) in the central nervous
Frontiers in Immunology 09
system (55). Oligodendrocytes have high levels of iron and are highly

sensitive to oxidative stress due to their low levels of the antioxidant

enzyme glutathione and high iron content (56). Therefore, the

content and metabolism of iron in oligodendrocytes may have a

significant impact on the development and progression of MS.

The strengths of this study include the use of multiple

methods, including bioinformatics analysis and MR methods, to
B

C D

A

FIGURE 9

Leave-one-out results plot for (A) Iron and multiple sclerosis, (B) Ferritin and multiple sclerosis, (C) Transferrin Saturation and multiple sclerosis,
(D) Transferrin and MS.
TABLE 1 Heterogeneity and horizontal pleiotropy analysis between iron markers and MS.

Exposure Heterogeneity Horizontal pleiotropy MR-PRESSO P value

method Q Q_df Q_pval egger_intercept se pval

Iron MR Egger 3.84 6 0.70 0.03 0.05 0.61

IVW 4.13 7 0.76 0.8

Ferritin MR Egger 5.34 6 0.50 0.04 0.07 0.56

IVW 5.72 7 0.57 0.07

Transferrin Saturation MR Egger 9.23 7 0.24 0.00 0.05 0.93

IVW 9.24 8 0.32 0.26

Transferrin MR Egger 15.27 14 0.36 0.04 0.03 0.20

IVW 17.29 15 0.30 0.25
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comprehensively investigate the relationship between iron and MS

from different perspectives, making the research results more

comprehensive and reliable. Additionally, the study utilized

publicly available databases and a large amount of gene

expression data, providing a solid foundation for the research.

Finally, the study employed rigorous statistical analysis methods,

including stepwise regression analysis, logistic regression models,

and MR methods, to ensure the reliability and accuracy of the

research results. However, there are also some limitations. Due to

the lack of GWAS data on iron-related hub genes, we were unable to

validate the relationship between the genes obtained from

comprehensive bioinformatics analysis and MS using MR

methods. In addition, the data used in this study were derived
Frontiers in Immunology 10
from European population databases, and the results may not be

generalizable to all populations.
5 Conclusion

This study provides an in-depth exploration of the relationship

between iron and MS using multiple methods, offering important

insights for further research on the role of iron in the pathogenesis

of MS. These findings are expected to provide new perspectives and

directions for the prevention and treatment of related diseases,

offering important theoretical support for clinical practice and

treatment strategies.
B

C D
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FIGURE 10

Radial MR results plot for (A) Iron and multiple sclerosis, (B) Ferritin and multiple sclerosis, (C) Transferrin Saturation and multiple sclerosis,
(D) Transferrin and MS.
FIGURE 11

Forest plot of meta-analysis results for multiple sclerosis from two different sources.
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