
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Mehdi Raissy,
Azad University, Iran

REVIEWED BY

Nan Wu,
Chinese Academy of Sciences (CAS), China
Qing Chu,
Ludong University, China

*CORRESPONDENCE

Xinping Zhu

zhuxinping@prfri.ac.cn

Wei Li

liwei@prfri.ac.cn

RECEIVED 26 January 2024
ACCEPTED 22 April 2024

PUBLISHED 10 May 2024

CITATION

Ji L, Chen C, Zhu J, Hong X, Liu X, Wei C,
Zhu X and Li W (2024) Integrated time-series
biochemical, transcriptomic, and
metabolomic analyses reveal key
metabolites and signaling pathways in the
liver of the Chinese soft-shelled turtle
(Pelodiscus sinensis) against
Aeromonas hydrophila infection.
Front. Immunol. 15:1376860.
doi: 10.3389/fimmu.2024.1376860

COPYRIGHT

© 2024 Ji, Chen, Zhu, Hong, Liu, Wei, Zhu and
Li. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 10 May 2024

DOI 10.3389/fimmu.2024.1376860
Integrated time-series
biochemical, transcriptomic, and
metabolomic analyses reveal key
metabolites and signaling
pathways in the liver of the
Chinese soft-shelled turtle
(Pelodiscus sinensis) against
Aeromonas hydrophila infection
Liqin Ji, Chen Chen, Junxian Zhu, Xiaoyou Hong, Xiaoli Liu,
Chengqing Wei, Xinping Zhu* and Wei Li*

Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of
Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery
Sciences, Guangzhou, Guangdong, China
Introduction: Aeromonas hydrophila, a bacterium widely distributed in the

natural environment, causes multiple diseases in various animals. Exploring the

mechanism of the host defense against A. hydrophila can help develop efficient

strategies against Aeromonas infection.

Methods: Herein, we investigated the temporal influence of A. hydrophila on the

Chinese soft-shelled turtle, an economically important species, at the

biochemical, transcriptomic, and metabolomic levels. Plasma parameters were

detected with the test kits. Transcriptome and metabolome were respectively

applied to screen the differentially expressed genes and metabolites.

Results: The contents or activities of these plasma parameters were significantly

increased at 24 hpi and declined at 96 hpi, indicating that 24 and 96 hpi were two

important time points during infection. Totals of 3121 and 274 differentially

expressed genes (DEGs) from the transcriptome while 74 and 91 differentially

abundant metabolites (DAMs) from the metabolome were detected at 24 and 96

hpi. The top DEGs at 24 hpi included Ccl2, Ccl3, Ccl4, Il1b, Il6, Il7, Il15, Tnf, and
Tnfr1 while Zap70, Cd3g, Cd8a, Itk, Pik3r3, Cd247, Malt1, and Cd4 were the most

abundant at 96 hpi. The predominant DAMs included O-phospho-L-serine, g-
Aminobutyric acid, orotate, L-tyrosine, and L-tryptophan at 24 hpi, as well as L-

glutamic acid, L-arginine, glutathione, glutathione disulfide, and citric acid at

96 hpi.

Discussion: The combined analysis of DEGs and DAMs revealed that tryptophan

metabolism, nicotinate and nicotinamide metabolism, as well as starch and

sucrose metabolism, were the most important signaling pathways at the early

infective stage while tyrosine metabolism, pyrimidine metabolism, as well as
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alanine, aspartate and glutamate metabolism were the most crucial pathways

at the later stage. In general, our results indicated that the Chinese soft-

shelled turtle displays stage-specific physiological responses to resist A.

hydrophila infection.
KEYWORDS

Chinese soft-shelled turtle, plasma parameters, transcriptome, metabolome, liver,
Aeromonas hydrophila
1 Introduction

Aeromonas species are widely distributed in the soil and in

aquatic habitats such as sediment, feces, and drinking water (1, 2).

Aeromonas hydrophila is a freshwater, facultatively anaerobic,

Gram-negative bacterium that can infect various species,

including shrimp, fishes, amphibians, reptiles, and mammals (3,

4). Aeromonas hydrophila survives in the temperature range of 0°C–

45°C, with the optimal range of 22°C–32°C (5). Multiple stress

conditions such as temperature fluctuation, water pollution,

overcrowding, low dissolved oxygen, and concurrence with other

pathogens may increase the vulnerability to A. hydrophila infection,

indicating that A. hydrophila is an opportunistic pathogen (6, 7).

Turtles are common carriers of pathogenic A. hydrophila, and

humans are at risk of infection by physical contact (8). The turtles

have a unique evolutionary status as secondary aquatic reptiles;

therefore, their response mechanism against pathogens may be

distinct from those of mammals and fishes (9, 10). The Chinese

soft-shelled turtle (Pelodiscus sinensis) is an economically important

reptile in East Asian countries, being especially popular in China

and Japan, owing to its food and medicinal value for humans. The

consumption of turtles is deemed beneficial for enhancing

immunity, anti-aging, and relieving cardiocerebrovascular diseases

based on ancient Chinese medicine theory (11). Aeromonas

hydrophila infection has led to more than 15 diseases in turtles,

such as keratitis, red-neck disease, septicemia, and furunculosis (12,

13). These diseases account for approximately 60% of the total

disease cases in turtles and have led to severe economic losses (14).

Therefore, research on the response mechanisms of Chinese soft-

shelled turtles against A. hydrophila is needed for the prevention of

related diseases.

Previous studies on the immune response of Chinese soft-

shelled turtles to A. hydrophila emphasized the spleen, a typical

immune organ (10, 14). The immune response of the liver has

received comparatively less attention in aquatic animals.

Traditionally, the liver plays crucial roles in lipid metabolism,

detoxification, and glycogen storage (15). During the past several

decades, the liver has gradually been perceived as an organ with

critical functions in immunity. MacParland et al. have performed

single-cell RNA sequencing of human liver samples, providing a

map of the human hepatic immune microenvironment (16). These
02
immune cells include innate forms such as Kupffer, dendritic, and

natural killer (NK) cells as well as adaptive immune cells such as

CD4+, CD8+ T cells, and B cells (16). In addition, the gut–liver axis,

involving the intestinal microbiome and the hepatic immune

system, plays important roles in the immune response of

mammals and fishes (17). For example, Wu et al. produced a

sophisticated profile of fish gut–liver immunity during both

homeostasis and inflammation in healthy and infected tilapia

(18). Therefore, comprehensively exploring the immune

mechanism of the liver in resisting bacterial infection would

extend our knowledge of immune processes in Chinese soft-

shelled turtles.

Hematology can be used to monitor the physiological status of

the liver (19). The serum biochemical parameters often provide the

first clue of the presence of liver pathology. For example, glutamate

pyruvate transaminase (GPT) and glutamic oxalacetic transaminase

(GOT), as ubiquitous transaminases, are two clinical biomarkers of

hepatic health. These two enzymes, generally existing in

hepatocytes, are secreted into the blood when the permeability of

the hepatic cell membrane becomes damaged (20). Alkaline

phosphatase (AKP), existing in macrophage lysosomes, has

important functions in immunity, as it can mitigate the negative

effects of lipopolysaccharides and alleviate inflammation (21). One

of the functions of catalase (CAT), as an endogenous antioxidant

enzyme, is to remove excessive reactive oxygen species (ROS)

generated by bacterial infection (22). Malonaldehyde (MDA) is

the final product of lipid peroxidation, and its concentration is

associated with the toxic effects of ROS (23). Thus, the analysis of

plasma parameters can help to assess the health status

of individuals.

Metabolites are involved in regulating the immune response or

signal pathways of the hosts challenged by pathogens or external

stresses (24–26). For example, the liver metabolome of yellow

catfish showed that iron metabolism modulated by hepcidin

could contribute to the defense against Aeromonas veronii

infection (24). The metabolomic analysis of the gill in

Oreochromis mossambicus found that the levels of amino acids,

osmolytes, and energy substances are significantly affected by

osmotic stresses (25). The spleen metabolome of Paralichthys

olivaceus identified numerous metabolites responding to

Edwardsiella tarda invasion and temperature alteration, including
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L-methionine and UDP-glucose (26). Recently, it has been

demonstrated that a combination of metabolome and

transcriptome can provide more comprehensive information than

a single omics technique (27). For example, a combined analysis of

gut transcriptome and metabolome in zebrafish was employed to

explore the potential anti-inflammatory mechanisms of gallic acid

in alleviating soybean meal-induced enteritis (28). The integration

of two omics identified the key pathways in the liver of the yellow

catfish responding to A. veronii infection related to ascites, body

surface ulcers, and hemorrhagic septicemia (29). A two-omics

analysis of the liver in Acipenser dabryanus revealed the

molecular mechanisms for dealing with thermal stress (30).

Our study detected plasma biochemical indicators, the hepatic

transcriptome, and the metabolome of Chinese soft-shelled turtles

challenged by A. hydrophila at different infective stages. These

findings deciphered the immunological and metabolic

mechanisms of hepatic tissue responding to bacterial infection in

Chinese soft-shelled turtles. The screened metabolites and signaling

pathways responding to A. hydrophila provided valuable strategies

for preventing bacterial disease in Chinese soft-shelled turtles.
2 Materials and methods

2.1 Experimental animals and
bacterial infection

A total of 80 healthy Chinese soft-shelled turtles with an average

body weight of 452 ± 47 g were purchased from Huizhou Wealth

Xing Industrial Co., Ltd. (Huizhou, China). The experiments were

performed in the Guangzhou Aquatic Thoroughbred Base of the

Pearl River Fisheries Research Institute (Guangzhou, China). These

animals were acclimated for 2 weeks in 16 acrylic tanks (1 m × 1 m

× 0.25 m) and fed commercial pellet diets with product number

0081 (Guangdong Nutriera Group Co., Ltd., Guangzhou, China)

twice a day at 9:00 and 16:00. Turtles were fed by hand to apparent

satiation (over 90% of the individuals had no apparent feeding

behavior, and over 5 g of pellets reached the bottom of the tank).

The residual pellets were siphoned out 1 h after each meal. During

the trial, the water temperature was kept at 27°C ± 1°C via air

conditioning. The pH, dissolved oxygen, NH3-N, NO2
–, and

alkalinity of the water were maintained at 8.0 ± 0.4, 6.0 ± 1.7 mg/

L, 4.0 ± 1.2 mg/L, 1.0 ± 0.4 mg/L, and 45 ± 4, respectively.

Approximately one-third of the tank’s water was renewed once a

week during acclimation. After the acclimation, the turtles were

fasted for 48 h prior to the bacterial challenge test. Healthy

individuals that had no clinical signs of disease on the surface

were chosen for the bacterial infection.

Aeromonas hydrophila originally isolated from a diseased

Chinese soft-shell turtle was kindly gifted by Dr. Aiping Tan from

the Pearl River Fisheries Research Institute, Chinese Academy of

Fishery Sciences (Guangzhou, China). Aeromonas hydrophila was

identified by 16S rDNA sequence analysis before the challenge test.

The bacteria were cultured in brain heart infusion (BHI) broth at

28°C for 24 h and then centrifuged at 2,500×g for 10 min, and the

supernatant was discarded. The bacteria were resuspended in sterile
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0.85% NaCl (31), adjusting the concentration to 8.0 × 108 CFU/mL

in accordance with the 0.5 McFarland standard. A concentration of

8.0 × 108 CFU/mL was the median lethal concentration for turtles

during A. hydrophila infection in a preliminary experiment.

The turbidity was adjusted using a turbidimeter (BioMerieux,

USA). Sixty turtles intraperitoneally injected with 500 mL of freshly

prepared A. hydrophila (8.0 × 108 CFU/mL) comprised the infected

group (IG); meanwhile, 10 turtles injected with 500 mL of 0.85%

NaCl were regarded as the control group (CG).
2.2 Sample collection

Sampling (n = 6) took place at 0, 12, 24, 48, and 96 h post-

infection (hpi). Individuals from the control group injected with an

equal volume of 0.85% NaCl were considered as the 0-hpi sample.

The turtles were rapidly anesthetized by immersion in 250 mg/L of

MS222 solution prior to dissection. The blood samples for

biochemical analysis were collected from the jugular vein using a

5-mL vacutainer with heparin sodium and kept at 4°C for 5 h. Then,

the blood samples were centrifuged at 4,000×g for 20 min at 4°C to

obtain plasma, which was stored at −80°C for analysis of plasma

biochemical parameters. The collected liver tissues were snap-

f rozen in l iqu id ni t rogen and stored at −80°C for

subsequent detection.
2.3 Plasma biochemical parameters

The concentrations or activities of plasma malonaldehyde

(MDA), glucose (GLU), catalase (CAT), glutamate pyruvate

transaminase (GPT), glutamic oxalacetic transaminase (GOT),

and alkaline phosphatase (AKP) were assayed using test kits

(Nanjing Jiancheng Bioengineering Institute, Nanjing, China),

with six biological repeats at each time point (n = 6) (30).
2.4 RNA extraction, library preparation, and
RNA sequencing

Liver tissues from three time points (0, 24, and 96 hpi) with five

biological repeats at each time point (n = 5) were analyzed for RNA

sequencing. Total RNA was extracted from the liver tissues using

TRIzol reagent (Ambion Life Technologies, Carlsbad, USA) and

treated with RNase-free DNase I (Qiagen, Germantown, USA) at

37°C for 1 h to remove residual genomic DNA. RNA integrity and

quantity were assessed by electrophoresis in 1% agarose gels and a

NanoDrop 2000 spectrometer (Thermo Fisher Scientific,

Wilmington, USA) with A260/A280 ratios between 1.8 and

2.0, respectively.

The RNA-seq libraries were constructed using 5 mg of RNA

and were paired-end sequenced on an Illumina HiSeq 4000

sequencing platform (Illumina, San Diego, USA) by Gene Denovo

Biotechnology Co. Ltd. (Guangzhou, China). The clean data were

screened from the raw reads by removing adapter sequences, poly-

N sequences, and low-quality sequences with fastp 0.18.0 software
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(32). Effective reads were mapped to the P. sinensis genome (https://

www.ncbi.nlm.nih.gov/datasets/genome/GCF_000230535.1/) using

HISAT2 (33). The sequencing datasets are available from the Short

Read Archive (SRA) of NCBI with accession number SUB14127776.

The expression levels of the genes in different cDNA libraries were

calculated with the fragments per kilobase of exon per million mapped

fragments (FPKM) values (34). Differentially expressed genes (DEGs)

were identified by DESeq2 (35) and defined by fold change >2 and false

discovery rate (FDR) <0.05. The DEGs were further subjected to GO

analysis (36) and KEGG enrichment analysis (37).
2.5 Metabolomic analysis

2.5.1 Metabolic extraction
Liver tissues (50 mg) of five individuals (n = 5) from each of the

three time points (0, 24, and 96 hpi) were collected for metabolomic

analysis. Liver tissues were homogenized with 500 mL of prechilled 70%
methanol containing internal standard (L-2-chlorophenylalanine, 1

ppm) at 30 Hz for 30 min in an ice bath. Then, the mixture was

vortexed for 5 min and incubated on ice for 15 min. The mixture was

centrifuged at 14,000 rpm at 4°C for 20min. The supernatant was dried

in a vacuum centrifuge and redissolved in 100 µL of acetonitrile solvent

(acetonitrile/water = 1:1) for LC–MS/MS analysis. Finally, 60 µL of the

supernatant was analyzed by a liquid chromatography tandem-mass

spectrometry system (LC–MS) (38).

2.5.2 LC–MS analysis
High-performance liquid chromatography (HPLC) separation

was performed with a 1290 Infinity LC UHPLC System (Agilent

Technologies, Waldbronn, Germany). To determine stability and

reliability, quality control (QC) samples were prepared by pooling

an equal aliquot of each sample and analyzing these together with

the experimental samples. Mass spectrometry was carried out by a

Q Exactive™ HF mass spectrometer (Thermo Scientific, San Jose,

USA) after the separation of the samples by HPLC. Each sample was

operated in positive/negative polarity mode by electrospray

ionization (ESI) with the following parameters: spray voltage, 3.5

kV; source temperature, 320°C; sheath gas flow rate, 45 arb; and aux

gas flow rate, 15 arb.

Peak alignment, peak picking, and metabolic quantitation

were performed using the Compound Discoverer 3.1 program.

Publicly available metabolite databases, including KNApSAcK

(http://kanaya.naist .jp/KNApSAcK/), MassBank (http://

www.massbank.jp/), HMDB (http://www.hmdb.ca/), and

METLIN (http://metlin.scripps.edu/index.php), were utilized for

annotating the metabolites. Multivariate statistical analyses were

carried out using the MetaboAnalystR (V1.0.1) R package,

including principal component analysis (PCA), partial least

squares discriminant analysis (PLS-DA), and orthogonal partial

least squares discriminant analysis (OPLS-DA). The criteria for

differential abundance metabolites (DAMs) were variable

importance in projection (VIP) >1 and P <0.05 in an

independent sample t-test. These were selected as differential
Frontiers in Immunology 04
metabolites for pairwise comparisons for three groups, namely,

comparisons of CG vs. IG24, CG vs. IG24, and IG24 vs. IG96.
2.6 Correlation analysis of metabolomic
and transcriptomic data

DEGs (FDR < 0.05 and |log2FC| > 1) and DAMs (VIP > 1 and P

< 0.05) were integrated for the pairwise comparisons listed above. A

pathway model, a Pearson model, and an O2PLS model were

established to analyze the association between the transcriptome

and metabolome. All DEGs and DAMs were mapped to the KEGG

pathway database to obtain their associations with metabolic

pathways. Pearson correlation coefficient (PCC) and the relevant

P-values of the Pearson model were used to evaluate the correlation

between the DEGs and DAMs. Those with |PCC| >0.80 and P <0.05

were considered to be significant.

O2PLS models were calculated using the OmicsPLS package for

R. This method decomposed the variation present in the two data

matrices into three parts: the joint variation between the two

datasets, the orthogonal variation unique to each dataset, and

noise (39). In this model, joint loading plots of the transcriptome

and metabolome were constructed to represent the correlation

between metabolites and genes. In the loading plots, a higher

absolute value represented a better correlation between genes and

metabolites, meaning that the genes (metabolites) far from the

origin were more highly associated with metabolites (genes) (39).
2.7 Validation of transcriptomic data

Total RNA from the 0-, 24-, and 96-hpi groups was used for

quantitative real-time PCR (qRT-PCR) validation. The RNA for

qRT-PCR validation was the same as that employed in constructing

the RNA-seq library.

Before the formal qRT-PCR experiment, we utilized a no-RT

negative control (cDNA reverse-transcribed from the reactions

without reverse transcriptase) for each cDNA sample to exclude

the interference of the genomic DNA in the qRT-PCR. The qRT-

PCR was carried out in the ABI StepOnePlus System (Applied

Biosystems, Foster, USA) using iTaq™ Universal SYBR® Green

Supermix (TaKaRa, Dalian, China). The 20-mL reaction mix in each

well contained 2 mL of diluted cDNA (~1 mg), 10 mL of 2× SYBR

Green Master Mix, 4 mM of each primer, 0.4 mL of ROX reference

dye, and RNase-free water to a final volume of 20 mL. All reactions
were run using the following program: 95°C for 5 min, followed by

40 cycles of 95°C for 5 s and 60°C for 30 s. Dissociation curve

analysis was performed with the temperature gradually increasing

from 63°C to 95°C to ensure the specificity of the target genes. A

total of 15 DEGs were randomly selected to verify the sequencing

results. The specific qRT-PCR primers designed by Primer Premier

5 software are shown in Supplementary Table 1. All samples were

run in duplicate. The relative expression levels of the target genes

were normalized with the housekeeping gene elof1 and were
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calculated according to the Pfaffl method (40). Finally, the qRT-

PCR results were shown as fold changes relative to the expression

level of genes in the 0-hpi group.
2.8 Statistical analysis

All data from plasma biochemical parameter analyses were

represented as the mean ± standard error (SE). Group

comparisons were performed by one-way analysis of variance

(ANOVA) followed by Duncan’s post-hoc test. A value of P <0.05

was considered statistically significant. To compare fold changes

between qRT-PCR and DEG results, the Pearson R2 values were

calculated and plotted with GraphPad Prism 9.0 software.
2.9 Ethics statement

All infection and sample procedures in the experiments were

performed following the Guidelines for the Care and Use of

Laboratory Animals in China and were approved by the Ethics

Committee of the Pearl River Fisheries Research Institute, Chinese

Academy of Fishery Sciences (LAEC-PRFRI-2023-03-15).
3 Results

3.1 Changes in plasma biochemical
parameters during infection

The stress response of Chinese soft-shelled turtles to the A.

hydrophila challenge was investigated using six plasma indices: two

aminotransferases (GOT and GPT), two oxidative stress markers

(CAT and MDA), one antimicrobial enzyme (AKP), and glucose

(Figure 1). The plasma GOT and GPT activities were significantly

increased to the highest levels at 24 hpi (P < 0.05). Plasma GOT

activity at 48 hpi and 96 hpi and GPT activity at 96 hpi were higher

than those at 0 hpi (P < 0.05). The plasma glucose levels were

elevated at 24, 48, and 96 hpi compared with those at 0 hpi (P <

0.05) and reached the highest levels at 24 hpi. The plasma AKP

activities at 12, 24, and 48 hpi were higher than those at 0 hpi (P <

0.05). There was no difference in AKP activity between 0 hpi and 96

hpi (P > 0.05). The plasma CAT activity and MDA content reached

the highest levels at 24 hpi (P < 0.05), while there were no significant

differences at other time points (P > 0.05).
3.2 The hepatic DEGs at different time
points after infection

Transcriptomic sequencing of CG, IG24, and IG96 was

performed with five biological replicates in each group, generating

15 RNA-seq libraries. A total of 50,274,586, 44,530,277, and

47,898,948 clean reads were obtained for the CG, IG24, and IG96
Frontiers in Immunology 05
groups, respectively. Genes were mapped to the Chinese soft-shelled

turtle’s genome, and the average mapping ratios for the CG, IG24,

and IG96 groups were 89.35%, 88.59%, and 89.14%, respectively.

The average Q20 and Q30 values in all groups were greater than

97% and 93%, respectively, indicating that the data quality was

sufficient for subsequent analysis (Supplementary Table 2).

A hepatic RNA-seq analysis of Chinese soft-shelled turtles at 0,

24, and 96 hpi was conducted to reveal the changes in gene

expression at different stages of infection (Supplementary Table 3,

Supplementary Figure 1). A heatmap showed that the biological

replicates in each group exhibited high repeatability, with

correlation coefficients greater than 0.9 (Supplementary Figure

1A). PCA represented that the three groups could be separated by

the first principal component (PC1) (Supplementary Figure 1B).

PC1 and PC2, respectively, explaining 50.8% and 19.5% of the total

variation, were the dominant components in discriminating the

three groups. A Venn diagram exhibited 4,236 DEGs from three

pairwise comparisons (Supplementary Figure 1C). Sixty common

DEGs were detected among the three comparisons; moreover, 172

common DEGs were detected in the comparison groups of CG vs.

IG24 and CG vs. IG96. For DEGs between the two groups, there

were 3,121 DEGs in the comparison groups CG vs. IG24, with 1,617

being upregulated and 1,504 being downregulated, while there were

274 DEGs in the comparison groups CG vs IG96, comprising 198

upregulated and 76 downregulated DEGs (Supplementary Figure

1D). Moreover, there were 3,042 DEGs in the comparison groups

IG24 vs. IG96, including 1,508 upregulated and 1,534

downregulated DEGs.

The functional classification of DEGs was carried out by GO and

KEGG enrichment analyses (Supplementary Table 3, Figure 2). All

DEGs were enriched in the three main GO categories (biological

process, cellular component, and molecular function) (Figure 2A).

For the CG vs. IG24 and IG24 vs. IG96 comparisons, the main

subcategories in the biological process included cellular process

(GO:0009987), single organism (GO:0044699), biological regulation

(GO:0065007), and metabolic process (GO:0008152). Meanwhile, cell

part (GO:0044464), cell (GO:0005623), organelle (GO:0043226),

membrane (GO:0016020), and organelle part (GO:0044422) were

the top 5 subcategories of cellular component. Binding (GO:0005488)

and catalytic activity (GO:0003824) were the dominant subcategories

in the molecular function category of the three comparisons. The

KEGG pathways represented the DEG-regulated signaling pathways

responding to A. hydrophila infection at different time points

(Figure 2B). In the comparison groups CG vs. IG24 and IG24 vs.

IG96, the DEGs were significantly enriched in cytokine-cytokine

receptor interaction (ko04060), viral protein interaction with

cytokine and cytokine receptor (ko04061), C-type lectin receptor

signaling pathway (ko04625), tumor necrosis factor (TNF) signaling

pathway (ko04668), JAK-STAT signaling pathway (ko04630), and

Toll-like receptor signaling pathway (ko04620). However, the KEGG

pathways in the comparison groups CG vs. IG96, different from the

other pairwise comparisons, were enriched in the phagosome

(ko04145), Vibrio cholerae infection (ko05110), leukocyte

transendothelial migration (ko04670), leishmaniasis (ko05140), and

the complement and coagulation cascades (ko04610).
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3.3 Hepatic metabolic profiles at different
time points after infection

To investigate the metabolic changes in the liver of Chinese

soft-shelled turtles during A. hydrophila challenge, the widely

targeted LC–MS metabolome was performed at 0, 24, and 96 hpi

(Supplementary Table 4). Correlation analysis demonstrated the

high similarity of the metabolic composition of five replicates in

each group (r > 0.93) (Supplementary Figure 2A). Multivariate

statistical analyses, including PCA, PLS-DA, and OPLS-DA, were

applied to analyze the difference in metabolic profiles among the

groups. PCA (Supplementary Figure 2B) and PLS-DA

(Supplementary Figures 2C-E) indicated significant separation of

the metabolic profiles among the groups. To identify the pairwise

discrimination criteria between groups, an OPLS-DA model was
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established and verified using cross-validation and permutation

tests (Figures 3A-F). The two parameters of cross-validation,

namely, R2Y >0.96 and Q2 >0.50, indicated the goodness of fit

and high predictability of the OPLS-DA model (Figures 3A-C). The

Y-intercept of Q2 <0 from the permutation test indicated the

reliability of the model (Figures 3D-F). Therefore, this OPLS-DA

model was used to identify pairwise differences between the groups

for subsequent analysis. Then, 1,408 metabolites from three time

points, categorized by similar variation trends, were clustered into

eight profiles (Figures 3G, H). Profiles 2 and 5, respectively,

contained 275 and 283 metabolites, showing a significant change

at 24 hpi. Profiles 1 and 6, respectively, with 186 and 110

metabolites had a similar variation at 24 hpi and 96 hpi

(Figure 3G). Of these profiles, profiles 2 and 7 had significantly

more than expected (P < 0.05) (Figure 3H).
A B

C D

E F

FIGURE 1

Changes of plasma GOT (A), GPT (B), CAT (C), MDA (D), glucose (E), and AKP (F) in Chinese soft-shelled turtles at 0, 12, 24, 48, and 96 h after
Aeromonas hydrophila infection. All data are represented as mean ± SE (n = 6). Different superscript letters mean significant difference (P < 0.05).
GOT, glutamic oxalacetic transaminase; GPT, glutamate pyruvate transaminase; CAT, catalase; MDA, malonaldehyde; AKP, alkaline phosphatase.
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The DAMs between pairwise comparisons were identified in the

positive and negative ion models and evaluated by the criteria of

VIP ≥1 and P <0.05 in the OPLS-DA. As shown in Supplementary

Table 5, there were 74 (33 up- and 41 downregulated), 91 (47 up-

and 44 downregulated), and 87 (56 up- and 31 downregulated)

DAMs in both ion models that were screened in the

comparison groups CG vs. IG24, CG vs. IG96, and IG24 vs. IG96,

respectively. For the top DAMs in different comparisons, orotate,

picrotin, N-acetylgalactosamine 6-sulfate, and glaucarubin were

upregulated, while L-tryptophan, 3-indoleacrylic acid, adenosine

monophosphate, and ornithine were downregulated in the

comparison groups CG vs. IG24 (Supplementary Figure 3A).

Compared with the CG, citric acid, PC (18:1(11Z)/14:0), and

methylsuccinic acid were highly increased, while nicotinamide,

eicosapentaenoic acid, and docosahexaenoic acid were decreased

in the IG96 group (Supplementary Figure 3B). In the comparison

groups IG24 vs. IG96, L-lysine, ornithine, symmetric

dimethylarginine, L-glutamine, and 3-methylxanthine were

enhanced, while pyruvic acid, picrotin, salviaflaside methyl ester,

and L-lactic acid were inhibited (Supplementary Figure 3C).
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3.4 Functional enrichment of DAMs

The KEGG pathway enrichment of DAMs in both positive and

negative ion modes was analyzed to identify the metabolic pathways

involved in the response to the A. hydrophila challenge (Figure 4).

The results indicated that most DAMs were enriched in aminoacyl-

tRNA biosynthesis (Ko00970), protein digestion and absorption

(Ko04974), and metabolic pathways (Ko01100) for the comparison

groups CG vs. IG24 (Figure 4A) as well as in the biosynthesis of

amino acids (Ko01230), biosynthesis of plant secondary metabolites

(Ko01060), and biosynthesis of unsaturated fatty acids (Ko01040)

for the comparison groups CG vs. IG96 (Figure 4B). In addition, the

top pathways in the comparison groups IG24 vs. IG96 comprised

pyrimidine metabolism (Ko00240), microbial metabolism in

diverse environments (Ko01120), and biosynthesis of plant

secondary metabolites (Ko01060) (Figure 4C). Furthermore, the

interactions between different pathways enriched by DAMs were

used to construct a network illustrating the predominant pathways

(Figures 4D-F). The core pathways of DAMs were metabolic

pathways (Ko01100), glutathione metabolism (Ko00480), and
frontiersin.or
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FIGURE 2

GO (A) and KEGG (B) enrichment results of differentially expressed genes (DEGs) in the liver of Chinese soft-shelled turtles at 0, 24, and 96 h after
infection by Aeromonas hydrophila. “CG” indicates the control group, and “IG24” and “IG96” indicate the infected groups at 24 and 96 h after A
hydrophila infection.
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ascorbate and aldarate metabolism (Ko00053) separately in the

comparison groups CG vs. IG24 (Figure 4D), CG vs. IG96

(Figure 4E), and IG24 vs. IG96 (Figure 4F).
3.5 Integrative analysis of DEGs and DAMs

To identify potential metabolic biomarkers or pathways

involved in the response to A. hydrophila infect ion,

transcriptomic and metabolomic data were jointly analyzed using

three models: an orthogonal partial least squares (O2PLS) model, a

functional pathway model, and correlation analysis.

The O2PLS model was used to explain the total variation

between pairwise comparisons. In this model, joint loading plots

of transcriptome and metabolome data were constructed to

represent the correlations between metabolites and genes

(Figures 5A-F). The metabolites highly associated with genes

were detected in different comparisons. In the comparison

groups CG vs. IG24, the genes Mogat2, Sfr1, Ripply, harbi1,

Tmed10, and Selp were highly correlated with the corresponding
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metabolites, while the metabolites picrotin, lamotrigine, L-

lysine, uridine diphosphate glucose, and L-selenocysteine were

highly correlated with the corresponding genes (Figures 5A-C).

In the comparison groups CG vs. IG96, the genes Yrk, Slc2a6,

Zap70 , Vil1, and Postn were highly correlated with the

corresponding metabolites, while the metabolites acetic acid,

dihydrostreptomycin 3′a, 6-bisphosphate, O-phospho-L-serine,

5-thymidylic acid, 3-lodo-L-tyrosine, and cytarabine were

closely associated with the related genes (Figures 5D-F). In the

comparison groups IG24 vs. IG96, the genes Bysl, Apoa1, Smc4,

Cenpe, and Foxm1 were highly correlated with the corresponding

metabolites, while cytarabine, orotate, furcelleran, lysine, and

methylsuccinic acid were closely related to the corresponding

genes (Supplementary Figure 4).

A correlation model was employed to examine the relationships

between DEGs and DAMs (Figure 6). The correlation matrix for the

heatmap shown in the figure represents the positive (red) and

negative (blue) associations between the top DEGs and top DAMs

that were detected in different pairwise comparisons and evaluated

using Pearson correlation coefficients.
A B C

D E F

G H

FIGURE 3

Time-course metabolomic analysis in Aeromonas hydrophila-infected liver. Orthogonal projection to latent structures-discriminant analysis (OPLS-
DA) with corresponding cross-validation of metabolite profiles in CG vs. IG24 (A), CG vs. IG96 (B), and IG24 vs. IG96 (C). The permutation test
results of OPLS-DA in CG vs. IG24 (D), CG vs. IG96 (E), and IG24 vs. IG96 (F). (G) Metabolite variation tendencies in eight cluster profiles. X-axis:
time; Y-axis: log2(contents of metabolites in the IGs relative to CG). (H) The statistical significance of clustered profiles evaluated by P-value <0.05.
The number in the square indicates the P-value. The two-colored profiles with P-value <0.05 mean the significantly clustered profiles. “CG” indicates
the control group, and “IG24” and “IG96” indicate the infected groups at 24 and 96 h after A hydrophila infection.
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A B C

D E F

FIGURE 5

Joint loading plots of DEGs (A, D) and DAMs (B, E) in different comparisons. The loading plots were analyzed based on the O2PLS model
constructed by integrative analysis of DEGs and DAMs. (A–C) The transcript loading plots (A), metabolite loading plots (B), and their joint loading
plots (C) in CG vs. IG24. (D–F) The transcript loading plots (D), metabolite loading plots (E), and their joint loading plots (F) in CG vs. IG96. DEGs
indicate differentially expressed genes. DAMs indicate differentially abundant metabolites. O2PLS indicates orthogonal 2 partial least squares. “CG”
indicates the control group, and “IG24” and “IG96” indicate the infected groups at 24 and 96 h after Aeromonas hydrophila infection.
A B C

D E F

FIGURE 4

KEGG functional analysis of differential abundance metabolites (DAMs). The top 20 enriched KEGG pathways of DAMs in CG vs. IG24 (A), CG vs.
IG96 (B), and IG24 vs. IG96 (C). The numbers beside the column and in the bracket show the number of DAMs and –log10(Q value), respectively.
Interaction network diagram of the KEGG pathway enriched by DAMs in CG vs. IG24 (D), CG vs. IG96 (E), and IG24 vs. IG96 (F). “CG” indicates the
control group, and “IG24” and “IG96” indicate the infected groups at 24 and 96 h after Aeromonas hydrophila infection.
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The DEGs and DAMs were further integrated and mapped to

the pathway models to search for the crucial signaling pathways of

the liver response to the A. hydrophila challenge (Supplementary

Table 6, Figure 7). The top pathways at 24 hpi (Supplementary
Frontiers in Immunology 10
Table 7, Figure 7B) were involved in the metabolism category,

including “tryptophan metabolism,” “retinol metabolism,”

nicotinate and nicotinamide metabolism,” “biosynthesis of

amino acids,” “starch and sucrose metabolism,” “nitrogen
A

B

FIGURE 7

(A, B) The summary of core DEGs, DAMs, and enriched pathways in CG vs. IG24 and CG vs. IG96. DEGs indicate differentially expressed genes.
DAMs indicate differentially abundant metabolites. “CG” indicates the control group, and “IG24” and “IG96” indicate the infected groups at 24 and 96
h after Aeromonas hydrophila infection.
A

B

C

FIGURE 6

The heat maps of the correlations between DEGs (columns) and DAMs (rows) in CG vs. IG24 (A), CG vs. IG96 (B), and IG24 vs. IG96 (C). The red and
blue colors indicate positive and negative correlations between DEGs and DAMs. DEGs indicate differentially expressed genes. DAMs indicate
differentially abundant metabolites. “CG” indicates the control group, and “IG24” and “IG96” indicate the infected groups at 24 and 96 h after
Aeromonas hydrophila infection.
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metabolism,” “prolactin signaling pathway,” “ABC transporters,”

and “cAMP signaling pathway.” The primary pathways at 96 hpi

(Supplementary Table 7, Figure 7) were “tyrosine metabolism,”

“pyrimidine metabolism,” “alanine, aspartate, and glutamate

me t abo l i sm , ” “ a r g in i n e and p ro l i n e me t abo l i sm , ”

“glycerophospholipid metabolism,” and “histidine metabolism,” as

well as other functional pathways, including “thyroid hormone”

and “FoxO signaling pathway.” The differential pathways between

24 hpi and 96 hpi were related to metabolism, signal transduction,

and the endocrine system (Supplementary Table 7).
3.6 Validation of RNA-seq results

Fourteen genes involved in immunity and metabolism were

randomly chosen to validate the transcriptomic data (Supplementary

Table 1, Supplementary Figure 5). These genes included Tlr3 (toll-like

receptor 3), Tlr4 (toll-like receptor 4), Tlr5 (toll-like receptor 5), Tlr8

(toll-like receptor 8), Ccl3 (C-C motif chemokine 3-like), Mapk11

(mitogen-activated protein kinase 11), Ap-1 (Fos proto-oncogene, AP-

1 transcription factor subunit), Tph1 (tryptophan hydroxylase 1), Tdo2

(tryptophan 2,3-dioxygenase), Kmo (kynurenine 3-monooxygenase),

Anapc5 (anaphase-promoting complex subunit 5), Dck (deoxycytidine

kinase), Tyms (thymidylate synthetase), and Cmpk2 (cytidine/uridine

monophosphate kinase 2). The fold change of RT-PCR results was

different from the RNA-seq results. However, the R2 values of Pearson

correlation coefficients between the RT-PCR and transcriptomic results

were 0.94 and 0.86, respectively, in the comparison groups CG vs. IG24

and CG vs. IG96, indicating that the mRNA levels of these genes were

in agreement with the transcriptomic results. These results confirmed

the accuracy and reliability of the transcriptomic data.
4 Discussion

In the intensive culture environment, Chinese soft-shelled

turtles are susceptible to A. hydrophila infection. Previous papers

have studied the immune mechanism of Chinese soft-shelled turtles

in resisting A. hydrophila challenge at the mRNA expression level

(6). There is little research exploring the metabolic pattern of

Chinese soft-shelled turtles during A. hydrophila infection. In the

current study, we combined the transcriptome and metabolome to

find the key metabolites and the signaling pathways of Chinese soft-

shelled turtle’s liver in dealing with A. hydrophila infection at

different infective stages.
4.1 Plasma biochemical indices changed
after infection

The detection of GPT, GOT, and AKP activities is a common

way to diagnose damage to the liver (41). GPT and GOT, as

aminotransferases, can catalyze the redistribution of nitrogen

between amino acids and corresponding oxoacids, thereby

regulating protein metabolism and gluconeogenesis (20). In our

study, plasma GPT and GOT activities were significantly increased
Frontiers in Immunology 11
to the highest levels at 24 h after A. hydrophila infection and

decreased gradually at the later infective stages, indicating that A.

hydrophila infection led to severe hepatic damage at the initial stage

of infection. Similarly, GPT and GOT activities were elevated in

Japanese flounder in response to heat stress (20) and in crucian carp

after A. veronii challenge (21).

The plasma AKP activities were increased from 12 hpi to 48 hpi

and then decreased to the initial levels at 96 hpi compared with the

control group. The observed AKP activity may indicate that the

Chinese soft-shelled turtles exhibited a stronger immune response

at the earlier stages from 12 h to 48 h after A. hydrophila infection,

while the indicators returned to their initial levels at 96 hpi.

Previous studies have found that aquatic animal AKP activities

can be improved in response to either nutritive or environmental

stress (42). Plasma AKP activity in the Chinese mitten crab was

enhanced after A. hydrophila infection (21). Furthermore, A. veronii

challenge increased plasma AKP activity in loaches (43).

The liver is the major organ responsible for endogenous glucose

production, especially via gluconeogenesis and glycogenolysis.

Glucose is metabolized into pyruvate through glycolysis in the

cytoplasm, and pyruvate is completely oxidized to generate ATP

through the TCA cycle and oxidative phosphorylation in the

mitochondria. In the fed state, glycolytic products are used to

synthesize fatty acids through de-novo lipogenesis (44). Blood

glucose, involved in energy regulation, is a sensitive indicator of

various stressors in aquatic animals (45). In this study, plasma

glucose concentrations of the Chinese soft-shelled turtle reached the

highest levels at 24 hpi and returned to relatively high levels from 48

hpi to 96 hpi compared with the control group. The increased

plasma glucose after A. hydrophila infection could be attributed to

glycogen mobilization into glucose to resist the bacterial challenge

via enhanced glycogenolysis and the diminished glycolytic

pathway (45).

In the current research, plasma CAT activity and MDA content

were remarkably elevated at 24 hpi compared with the control

group and then declined to their initial levels. Similarly, CAT

activities were increased in Nile tilapia injected with a ghost

vaccine Streptococcus agalactiae (46), and MDA was elevated in

crucian carp following A. hydrophila infection (47). Our findings

indicated that Chinese soft-shelled turtles may improve CAT

activity to eliminate ROS at 24 hpi. However, the accumulated

ROS at 24 hpi could be beyond the threshold of CAT, leading to an

increase in MDA content induced by ROS reacting with

membrane lipids.
4.2 Key genes responding to Aeromonas
hydrophila infection

The innate immune system is the first line of defense against

pathogens. The system rapidly detects and destroys pathogens

compared with acquired immunity. The synthesis of cytokines

and chemokines elicits diverse inflammatory responses that

recruit macrophages and neutrophils to the site of inflammation

(48). In this study, TNF signaling pathways showed higher mRNA

expression at 24 hpi, as shown by the levels of Tnf, Tnfr1, Traf2,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1376860
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ji et al. 10.3389/fimmu.2024.1376860
Traf3, Traf5, Tnfr1, Ciap1/2, Rip1, and Rip3. Abundant genes of the

CC subfamily, such as the Ccl3, Ccl3l1, Ccl4, Ccl4l1, Ccl4l2, Ccl5,

Ccl17, Ccl20, Ccl22, Ccr5, and Ccr11, as well as the CXC subfamily,

comprising Cxcl1, Cxcl2, Cxcl3, Cxcl10, Cxcl11, Cxcl13, Cxcl14, and

Cxcr2, were upregulated at 24 hpi. Moreover, Ccl4, Ccl4l1, Ccl4l2,

Ccr5, Ccl20, and Cxcl13 were upregulated at 96 hpi. These results

indicated that innate immunity, including TNF signaling pathways

inducing inflammation and chemokines triggering the migration of

immune cells, may be the predominant mechanisms employed to

clear A. hydrophila at the early stages of infection in Chinese soft-

shelled turtles. Similar research demonstrated that ccl34a.4

expression was increased 24 h after bacterial infection in

zebrafish (49).

After pathogen recognition, activated T-cell receptors in

cooperation with signaling pathways can trigger adaptive

immunity by driving the differentiation of activated T cells to

specific T-cell subtypes (50). Our research found that the DEGs

associated with the T-cell receptor were specifically upregulated at

96 hpi, including Cd45, Cd4/8, Cd3d, Cd3z, Tcra, Tcrb, and Zap70.

The DEGs at different infective stages implied that the liver resisted

the A. hydrophila infection via innate immunity by improving

cytokine mRNA expression at the early infective stages (24 hpi),

and the response switched to adaptive immunity by triggering T-

cell receptors at the later infective stages (96 hpi).
4.3 Key metabolites responding to
Aeromonas hydrophila infection

In the current research, 74 and 91 DAMs were detected at 24

and 96 hpi, respectively, compared with the control group. Orotate,

picrotin, N-acetylgalactosamine 6-sulfate, and glaucarubin were

upregulated, while L-tryptophan, 3-indoleacrylic acid, adenosine

monophosphate, and ornithine were downregulated metabolites 24

h after A. hydrophila infection. Orotate is a precursor in the

biosynthesis of pyrimidines, compounds that play important

roles in cellular apoptosis inhibition, antioxidation, and

anti-inflammatory activity (51). Tryptophan, acting as a

neurotransmitter and inhibiting the activities of inflammatory

cytokines, can maintain immune homeostasis by regulating T-

lymphocyte-mediated immunity (52). Ornithine, catalyzed by

ornithine decarboxylase and S-adenosylmethionine decarboxylase,

is converted to polyamines in M2 macrophages and has important

functions in infection- or injury-induced tissue healing.

Similarly, L-tryptophan and adenosine monophosphate were

decreased in mud crabs infected by Vibrio parahaemolyticus (53).

Supplementation of ornithine in rainbow trout can alter the mRNA

expression of hepatic immune genes following Aeromonas

salmonicida infection (54). Our results indicated that the

metabolic processes of Chinese soft-shelled turtles were

significantly affected 24 h after A. hydrophila infection.

Multiple organic acids were significantly altered at 96 hpi in this

research. For example, citric acid and methylsuccinic acid were

increased, while eicosapentaenoic acid and docosahexaenoic acid

were decreased. Citric acid, as the key substance in the TCA cycle, is

an intermediate connecting the metabolism of carbohydrates and
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fatty acids, processes that can further facilitate the proliferation and

differentiation of immune cells, such as B cells (55). A previous

study found that 2%–3% dietary citric acid could improve the

immunity of Japanese quail (56). Nicotinamide, also known as

vitamin B3, is synthesized from tryptophan and is converted into

nicotinamide adenine dinucleotide (NAD+) (57). It has been

demonstrated that nicotinamide can enhance innate immunity at

dosages up to 1,000-fold of the normal level, thus having potential

application in the resistance against pathogens. For example,

nicotinamide can protect the mud crab against Staphylococcus

aureus infections (53). Nicotinic acid supplementation can reduce

inflammation in monocytes of atherosclerosis models (58). Here,

nicotinamide was significantly reduced at 96 hpi, indicating that the

nicotinamide-mediated immunomodulatory functions might be

inhibited at the later stages of the A. hydrophila challenge. Similar

results in Nibea albiflora showed that nicotinamide was

downregulated at 24 h and upregulated at 72 h after Cryptocaryon

irritans infection (27). Moreover, the amounts of DAMs varied

between 24 and 96 hpi in this research, implying that different

hepatic metabolites were involved in defending against A.

hydrophila challenge in a time-dependent manner in Chinese

soft-shelled turtles.
4.4 Crucial signaling pathways involved in
resisting Aeromonas hydrophila infection

An integrative analysis of DEGs from the transcriptome and

DAMs from the metabolome was performed to investigate the

hepatic signaling pathways involved in the response against A.

hydrophila challenge in Chinese soft-shelled turtles. The main

pathways against bacterial infection were classified into amino

acid metabolism, nucleotide metabolism, metabolism of cofactors

and vitamins, and energy metabolism.

Amino acid metabolism has crucial functions in diverse

metabolic processes, including protein synthesis, ATP generation,

and nucleotide synthesis. Amino acid metabolism has a profound

influence on the functions of immune cells (59). For example,

tryptophan is an essential component of immune cell metabolism

and T-cell proliferation (59). Glutamine is considered the “fuel for

the immune system”, as it can promote lymphocyte proliferation,

cytokine production, and neutrophil bacterial killing (60). In our

results, L-glutamic acid was decreased at 24 hpi but increased at 96

hpi. The change in L-glutamic acid triggered nitrogen metabolism

and central carbon metabolism in cancer at 24 hpi. Afterward,

alanine, aspartate, and glutamate metabolism; arginine and proline

metabolism; and histidine metabolism were activated at 96 hpi.

These results suggested that amino acid metabolism played a vital

function in Chinese soft-shelled turtles’ resistance to bacterial

infection. Similarly, histidine metabolism is involved in dealing

with acute nitrite stress in Chinese soft-shelled turtles (61). The

amino acid metabolism in the liver is a pivotal pathway for Yangtze

sturgeon to resist heat stress (30).

Previous studies have found that nicotinate and nicotinamide

metabolism (62) as well as pyrimidine metabolism (63) exerts anti-

inflammatory effects. Nicotinamide, as the core component of
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nicotinate and nicotinamide metabolism, can reduce oxidative

stress and inflammation by regulating the energy metabolism of

cells (57). Pyrimidine nucleotides are precursors for activated

carbohydrates and lipids. Abnormality of purine metabolism

results in a deficiency of immune function (64). In the current

study, nicotinate and nicotinamide metabolism at 24 hpi and

pyrimidine metabolism at 96 hpi were enriched in the liver,

indicating that hepatic DNA synthesis was affected in Chinese

soft-shelled turtles after A. hydrophila challenge. A previous study

showed that some metabolites involved in pyrimidine metabolism

were influenced in the mud cab after V. parahaemolyticus infection

(53); nicotinate and nicotinamide metabolism was modulated in N.

albiflora challenged by C. irritans (27).

Energy metabolism is a crucial biological process for organism

survival. Sucrose metabolism plays a crucial part in development

and stress response. A range of sugars can be used as fuel to

promote growth and synthesize essential compounds (including

proteins, cellulose, and starch). Sugars also can be considered

signals to regulate the expression of functional genes associated

with hormonal, oxidative, and defense signaling (65). Nitrogen

metabolism has important functions in clearing excess nitrogen

from the body when amino acids are converted to energy (66). Our

research found that starch and sucrose metabolism as well as

nitrogen metabolism was enriched at 24 h after A. hydrophila

infection, indicating that starch and sucrose metabolism could be

employed to produce energy at the early stages of A. hydrophila

infection in Chinese soft-shelled turtles. Similarly, starch and

sucrose metabolism and nitrogen metabolism are regulated in

Pelteobagrus fulvidraco after A. veronii infection (29).

Lipid metabolism can regulate the immune response of aquatic

animals to adverse stimuli by providing more energy-yielding

nutrients (67). Glycerophospholipids are one of the most

abundant phospholipids in vertebrates and have been

demonstrated to be involved in both general systemic-immune

and low-grade inflammatory states, indicating a potential role in

immunity modulation (68). The glycerophospholipid metabolism

and linoleic acid metabolism of N. albiflora can respond to C.

irritans infection (29). In this study, hepatic glycerophospholipid

metabolism and linoleic acid were altered at 96 h after A. hydrophila

infection, in contrast to glycometabolism at 24 hpi. These data

indicate that the liver tissue may initially mobilize glycometabolism

to generate energy for resistance against bacteria at the early

infective stages and then switch to lipid metabolism to supply

energy at the later infective stages in Chinese soft-shelled turtles.
5 Conclusions

This study explored the temporal patterns of plasma

biochemical indices and liver metabolic and transcriptomic

variation in Chinese soft-shelled turtles infected with A.

hydrophila to systemically characterize the core molecular

markers and metabolites involved in the response against

infection. The association between the genes and the metabolites
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further focused on the important signaling pathways against

bacterial challenge in a time-dependent manner. The screened

metabolites and signaling pathways may provide valuable

resources for future studies on bacterial disease prevention in

Chinese soft-shelled turtles.
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SUPPLEMENTARY FIGURE 1

Global analysis of differentially expressed genes (DEGs). (A) The correlation

matrix of gene expression among five biological triplicates of different groups
(n = 5). (B) PCA plot showing the variations of gene expression profiles in

three groups. (C) Venn diagram analysis of DEGs in CG vs IG24, CG vs IG96,
Frontiers in Immunology 14
and IG24 vs IG96. (D) Number of DEGs (|log2(FoldChange)| > 1 and adjusted
P-value < 0.05) in CG vs IG24, CG vs IG96, and IG24 vs IG96. Red and blue

indicated up- and down-regulated genes, respectively. “CG” indicated the

control group, “IG24”, and “IG96” respectively indicated the infected groups
at 24 and 96 hours post A. hydrophila infection.

SUPPLEMENTARY FIGURE 2

Global analysis of differential abundance metabolites (DAMs). (A) Correlation
analysis between biological replicates in three groups. (B) Principal

component analysis (PCA) of metabolites at 0, 24, and 96 hours post

infection. PLS-DA score plots and cross-validation results in CG vs IG24 (C),
CG vs IG96 (D), and IG24 vs IG96 (E). “R2Y” indicated the explanatory rate of

the PLS-DA model, “Q2Y” indicated the predictive ability of this model. “CG”
indicated the control group, “IG24”, and “IG96” indicated the infected groups

on 24 and 96 hours post A. hydrophila infection.

SUPPLEMENTARY FIGURE 3

The z-score analysis showed the top 20 differential expressed metabolites in
CG vs IG24 (A), CG vs IG96 (B), and IG24 vs IG96 (C). “CG” indicated the

control group, “IG24”, and “IG96” indicated the infected groups at 24 and 96
hours post A. hydrophila infection.

SUPPLEMENTARY FIGURE 4

The loading plots of DEGs (A), DAMs (B) and their joint loading plots (C) in
IG24 vs IG96. The loading plots were analyzed base on the O2PLS model
constructed by integrative analysis of DEGs and DAMs. DEGs indicated

differential expressed genes. DAMs indicated differential abundance
metabolites. O2PLS indicated orthogonal 2 partial least squares. “CG”

indicated the control group, “IG24”, and “IG96” indicated the infected
groups at 24 and 96 hours post A. hydrophila infection.

SUPPLEMENTARY FIGURE 5

Pearson correlation analysis of hepatic mRNA levels between real-time PCR

and RNA-Seq result in CG vs IG24 (A) and CG vs IG96 (B). “CG” indicated the
control group, “IG24”, and “IG96” indicated the infected groups at 24 and 96

hours post A. hydrophila infection.
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