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1Laboratory of Functional Genomics, Institute of Genetics, HUN-REN Biological Research Centre,
Szeged, Hungary, 2Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary,
3Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Gyorgyi Health
Centre, University of Szeged, Szeged, Hungary, 4Department of Internal Medicine, Hematology
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Introduction: Systemic autoimmune diseases (SADs) are a significant burden on

the healthcare system. Understanding the complexity of the peripheral

immunophenotype in SADs may facilitate the differential diagnosis and

identification of potential therapeutic targets.

Methods: Single-cell mass cytometric immunophenotyping was performed on

peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) and

therapy-naive patients with rheumatoid arthritis (RA), progressive systemic

sclerosis (SSc), and systemic lupus erythematosus (SLE). Immunophenotyping

was performed on 15,387,165 CD45+ live single cells from 52 participants

(13 cases/group), using an antibody panel to detect 34 markers.

Results: Using the t-SNE (t-distributed stochastic neighbor embedding)

algorithm, the following 17 main immune cell types were determined: CD4+/

CD57– T cells, CD4+/CD57+ T cells, CD8+/CD161– T cells, CD8+/CD161+/CD28+

T cells, CD8dim T cells, CD3+/CD4–/CD8– T cells, TCRg/d T cells, CD4+ NKT cells,

CD8+ NKT cells, classic NK cells, CD56dim/CD98dim cells, B cells, plasmablasts,

monocytes, CD11cdim/CD172dim cells, myeloid dendritic cells (mDCs), and

plasmacytoid dendritic cells (pDCs). Seven of the 17 main cell types exhibited

statistically significant frequencies in the investigated groups. The expression

levels of the 34 markers in the main populations were compared between HCs

and SADs. In summary, 59 scatter plots showed significant differences in the

expression intensities between at least two groups. Next, each immune cell

population was divided into subpopulations (metaclusters) using the FlowSOM

(self-organizing map) algorithm. Finally, 121 metaclusters (MCs) of the 10 main
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immune cell populations were found to have significant differences to classify

diseases. The single-cell T-cell heterogeneity represented 64MCs based on the

expression of 34 markers, and the frequency of 23 MCs differed significantly

between at least twoconditions. The CD3– non-T-cell compartment contained

57 MCs with 17 MCs differentiating at least two investigated groups. In summary,

we are the first to demonstrate the complexity of the immunophenotype

of 34 markers over 15 million single cells in HCs vs. therapy-naive patients

with RA, SSc, and SLE. Disease specific population frequencies or expression

patterns of peripheral immune cells provide a single-cell data resource to the

scientific community.
KEYWORDS

rheumatoid arthritis, progressive systemic sclerosis, systemic lupus erythematosus,
mass cytometry, autoimmunity
1 Introduction

Inflammatory, rheumatic, and systemic autoimmune diseases

collectively contribute to a significant burden on healthcare

systems. Treatments are only partially effective, and disease

severity and therapeutic responses in individual patients are

unpredictable. The complexity of systemic autoimmune disease

(SAD) etiology, an incomplete list of causative agents,

environmental factors, and polygenetic predispositions make both

the diagnosis and clinical management of these pathologies difficult

(1). The known fundamentals of the pathological mechanisms of

these SADs are beyond the scope of our study; however, the latest

findings have been reviewed elsewhere for rheumatoid arthritis

(RA) (2), systemic sclerosis (SSc) (3), and systemic lupus

erythematosus (SLE) (4). The differential diagnosis of spectrum

disorders, such as SADs with similar signs and symptoms, including

RA, SSc, and SLE, remains a major challenge for clinicians. The

progression of these diseases is unpredictable, and if any damage is

fatal or chronic, it can lead to a substantial combined impact on

premature mortality (5, 6). Therefore, early diagnosis of SADs is

highly important before irreversible damage to several organs, such

as the joints, kidneys, and lungs, which are frequently involved in

autoimmune attacks, develops. The introduction of disease-

modifying antirheumatic drugs (DMARDs) with the high

importance of biological DMARDs (bDMARDs) and the advent

of targeted inhibitors have reached a breakthrough, leading to

disease stabilization and improved quality of life (7–9). However,

a lack of treatment response occurs in severe cases or therapeutic

resistance can develop (10–12). Therefore, stratifying patients with

clinically heterogeneous diseases, such as SADs, has become a novel

approach to understanding the complexity of imbalances in

immune homeostasis, molecular profiling, and the integration of

multi-omics data. Analyzing the immunophenotype in early,
02
untreated SADs may provide information for precision medicine

approaches and may suggest diverse underlying pathology leading

to similar phenotype. Mass cytometry has been used earlier

studying a wide list of human spectrum diseases with deep insight

into the heterogeneity of the immunophenotype (13, 14).

In line with this assumption, the complex immunophenotyping of

SADs can facilitate the prediction of the severity of the disease and

therapeutic response, in addition to suggestions for future precision

medicine. Mulhearn et al. reviewed the potential of peripheral blood

immunophenotyping to predict therapeutic outcomes in response

to biologics in RA (15). Papadimitriou et al. summarized the link

between the innate and adaptive arms of the immune system in the

pathological mechanisms of SSc in the context of the currently

available treatment regimen (16). Nagafuchi et al. and Nakayamada

et al. recently reviewed the influence of immunophenotyping on

therapeutic strategy planning for SLE (17, 18).

The multiparametric immunophenotyping of peripheral

immunity may assist in better understanding the pathobiology of

SADs because the heterogeneity of inherent and external factors can

influence the pathological mechanism and therapeutic response (19).

An earlier immunophenotyping study published by Nagafuchi et al.

reported a link between the HLA-DRB1 genotype and a higher

frequency of peripheral memory CXCR4+CD4+ T cells in patients

with RA (20). Furthermore, a multidimensional analysis of the

peripheral immunophenotype of 311 patients with RA revealed

that the expansion of effector memory follicular helper T cells

(Tfh) correlated with disease activity (21). Bader et al. analyzed the

peripheral blood of 20 therapy-naive RA patients using a 23-marker

mass cytometry (CyTOF) antibody panel and reported the following

markers: p-p38, IkBa, p-cJun, p-NFkB, and CD86 in the cells of both

the myeloid innate and adaptive branches (memory CD4+ T cells) of

the immune system as potential markers for discriminating patients

with RA from healthy donors (22). Koppejan et al. used a 36-marker
frontiersin.org
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CyTOF panel for the immunophenotyping of treatment-naive

patients with early ACPA+ (anti-citrullinated protein antibodies)

and ACPA-RA and found a reduced frequency of CD62L+

basophils in patients with ACPA-RA (23).

Immunophenotyping of 20 systemic sclerosis cases using a 36-

marker CyTOF panel revealed 18 significant alterations in

peripheral blood mononuclear cells (PBMCs), highlighting the

involvement of CD4+, CD8+, mucosal-associated invariant T cells,

and B-cell subsets in pathogenic chronic inflammation (24).

In a mass cytometric study by Kroef et al., hierarchical clustering

of PBMCs from 88 patients with SSc was performed using a 34-

marker antibody panel. They found altered cell populations in four

clusters: cluster 1 (n = 16) with high CD16+ monocytes and low

memory B-cell subsets, cluster 2 (n = 25) with increased classical

monocytes, cluster 3 (n = 8) with higher memory B-cell counts, and

cluster 4 (n = 37) with lower circulating classical monocyte counts

(25). Multiparametric flow cytometric investigation of 88 patients

with early SSc showed a decrease in CD8+ T cells and an expansion

of CD28− and CD319+ within the CD4+ subset in the SSc group

compared with HCs (26). Agarbati et al. analyzed 46 patients with

SSc using an eight-color FACS panel and showed a higher ratio of

CD38+ T cells and CD4+CD25+FOXP3+ regulatory T cells in

patients with SSc (27). Agarbati et al. also investigated the

humoral arm of the adaptive immune system in SSc and found a

higher frequency of CD24highCD19+CD38high regulatory B cells,

more circulating CD38highCD27+ plasmablasts, and peripheral

CD138+CD38high plasma cells than in HCs (27).

An early immunophenotyping study revealed reduced

expression of CD3+ and CD4+ T-cell markers and increased

expression of CD8+ cytotoxic T-cell and CD20+ B-cell markers in

SLE based on traditional flow cytometry of 21 SLE patients vs. HCs

(28). Later, Perry et al. showed a higher ratio of CD38+HLA-DR+ T

cells in SLE in a flow cytometric study analyzing samples from 35

patients with SLE compared with samples from HCs (29). Lee et al.

also used traditional flow cytometry to compare the peripheral

immune signatures of 13 patients with SLE and nine HCs. They

found 29 immune subsets discriminating SLE from HCs, with the

emphasis on lower DC and NK cell ratios in SLE, but elevated CD8+

NK Treg cells in lupus (30). Recently, Sasaki et al. published the

most comprehensive immunophenotyping of lupus in nine early

and 15 established SLE patients compared with controls using two

CyTOF panels measuring 38–39 parameters. Their key findings

were an increased frequency of ICOS+Ki-67+CD8+ T cells, Ki-67+

regulatory T cells, CD19intermediateKi-67high plasmablasts, and

PU.1highKi-67high monocytes in patients with early SLE (31).

In this study, single-cell mass cytometric immunophenotyping

of over 15 million single cells was performed on PBMC samples of

healthy controls (HCs, n = 13) and therapy-naive patients with RA

(n = 13), SSc (n = 13), and SLE (n = 13) using an antibody panel

detecting 34 markers. DMARDs can influence the peripheral

immunophenotype. Therefore, we enrolled therapy-naive patients,

which makes this study unique in the field of clinical rheumatology.

Our aim was to decipher the complex alterations in the peripheral

immunity in SADs and to reveal disturbances in immune

homeostasis that may contribute to our understanding of the

specific pathobiology of RA, SSc, or SLE.
Frontiers in Immunology 03
2 Materials and methods

2.1 Human participants

Patients were recruited during visits to the Department of

Rheumatology and Immunology at the University of Szeged.

Healthy controls were voluntary staff members of the BRC or the

University of Szeged. The participants were informed of the

research by a physician. Written informed consent was obtained

from all the participants, and the study was reviewed and approved

by the independent ethics committee of the university. Details

regarding the study design and handling of biological materials

were submitted to the Human Investigation Review Board of the

University of Szeged under the 149/2019-SZTE Project

Identification code. Laboratory studies and interpretations were

performed on coded samples with personal and diagnostic

identifiers removed. The study adhered to the principles of the

most recent revision of the Declaration of Helsinki.
2.2 Study design

Multiplex protein analysis of 52 drug-naive patients with SADs

[RA (n = 13; median: 57 years; range: 29–73 years; Supplementary

Table 1), SSc (n = 13; median age: 63 years; range: 29–75 years;

Supplementary Table 2), and SLE (n = 13; median: 50 years; range: 20–

72 years; Supplementary Table 3) patients and age- and sex-matched

healthy controls (n = 13; median: 54 years; range: 22–77 years) was

performed. We enrolled newly diagnosed drug-naive patients with RA,

SSc, and SLE who had not received antirheumatic treatment, including

non-steroidal anti-inflammatory drugs (NSAIDs), DMARDs, or

glucocorticoids, until the time of blood sampling. Patients with RA

were diagnosed according to the latest American College of

Rheumatology/European League Against Rheumatism criteria (32)

(Supplementary Table 1). Thirteen newly diagnosed patients who

fulfilled the criteria proposed by the 2013 American College of

Rheumatology/European League Against Rheumatism classification

criteria for SSc were enrolled (33). Four out of 13 patients were

further classified as having limited cutaneous SSc, and nine out of 13

were classified as having diffuse cutaneous scleroderma according to

LeRoy et al. (34) (Supplementary Table 2). Patients with SLE who met

the 2012 Systemic Lupus Collaborating Clinics (SLICC) criteria and

had active, newly diagnosed SLE were considered eligible (35). Several

clinical and immunological parameters were assessed at the time of SLE

diagnosis (Supplementary Table 3). Healthy controls were age- and

sex-matched to patients and had a negative history of rheumatic

symptoms and negative status upon detailed physical and laboratory

examinations. No comorbidities were detected in the patients or

controls that could have influenced our investigation, nor did they

take any medication that could have interfered with the measurements.
2.3 PBMC isolation

PBMCs were isolated as previously described (36). Briefly, after

the collection of 20 ml of blood in an EDTA vacutainer (Becton
frontiersin.org
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Dickinson, Franklin Lakes, New Jersey, USA), PBMCs were purified

using Leucosep tubes (Greiner Bio-One, Austria) according to the

manufacturer’s instructions. If the pellet was light red, 2 ml of ACK

Lysing Buffer (ACK) was added at room temperature (RT, 20°C) for

2 min. Samples were washed twice with 10 ml of PBS, and cell count

and viability were checked using Trypan Blue. PBMCs were

cryopreserved in stocks of 4 × 106 cells in 1 ml of FCS

(Euroclone, Milano, Italy) supplemented with 1:10 DMSO

(Merck, Darmstadt, Germany) [v/v] in liquid nitrogen.

2.4 Cell preparation

Cells were processed for CyTOF as described previously by our

groupwithminormodifications (37). Briefly, cryotubes were thawed in a

37°C water bath for 2 min, and cells were transferred into 14 ml of

cRPMI at 37°C and centrifuged at 350g for 6 min at room temperature

(RT). PBMCs were washed once more with 10 ml of cRPMI, cells were

counted, and viability was determined by Trypan Blue exclusion.

PBMCs including up to 2–3 × 106 cells/sample were plated onto a 96-

well repellent plate separately in 200 µl of cRPMI and rested overnight in

an incubator with 5% CO2 at 37°C. The rested cells were collected and

washed twice with Maxpar Cell Staining Buffer (MCSB; Fluidigm, now

Standard BioTools, South San Francisco, California, USA).
2.5 Barcoding and antibody staining

Mass cytometry was performed as previously described by our

group with minor modifications (38, 39). Briefly, cells were

resuspended in 50 µl of MCSB supplemented with 1:20 v/v Human

TruStain FcX Fc Receptor Blocking Solution (BioLegend, San Diego,

California, USA) and incubated at RT for 10 min. Anti-CD45

antibody-based live cell barcoding was performed as described

previously by Fish et al. (40). Without the washing step, 50 µl of

different metal-tagged (89Y, 106Cd, 114Cd, 116Cd) CD45 antibodies

(clone: HI30; Fluidigm) at a final concentration of 1:100 [v/v] per

antibody were added separately and incubated at 4°C for 30 min.

PBMCs were washed twice with MCSB and 1 × 106 cells from all four

samples were pooled into 100 µl of MCSB. Cells were stained with

1:100 [v/v] offive markers, CD32, CD47, CD98, CD172a, and CD335

(Fluidigm), and incubated at RT for 20 min in MCSB. PBMCs were

diluted by 200 µl of MCSB and transferred into a single tube of

Maxpar Direct Immune Profiling Assay (Fluidigm) and incubated at

RT for 30 min. The panel of antibodies used is listed in

Supplementary Table 4. Cells were washed twice with MCSB,

prefixed with 1 ml of Pierce™ 16% formaldehyde (w/v) (Thermo

Fisher Scientific, Waltham, Massachusetts, USA) solution diluted in

PBS to 1.6%, and incubated at RT for 10 min. Stained and prefixed

cells were centrifuged at 800g at RT for 6 min and resuspended in 800

µl of Fix & Perm solution (Fluidigm) supplemented with 1:1,000 [v/v]
191Ir-193Ir DNA intercalator (Fluidigm) for overnight incubation.
2.6 CyTOF data acquisition

CyTOF samples were acquired as described previously by our

group with minor modifications (36, 41). Samples were washed
Frontiers in Immunology 04
three times with MCSB and filtered through a 30-mm CellTrics

gravity filter (Sysmex, Görlitz, Germany), and the cell concentration

was adjusted to 7 × 105/ml in CAS (cell acquisition solution) for the

WB injector. Finally, EQ four-element calibration beads (Fluidigm)

were added at a 1:10 ratio [v/v] and acquired using a properly tuned

Helios mass cytometer (Fluidigm). From the pooled samples, 1.2 ×

106 events (3 × 105/individual PBMC) were collected to identify

rare cell subsets. The generated flow cytometry standard (FCS)

files were randomized and normalized with the default settings

of the internal FCS-processing unit of the CyTOF software

(Fluidigm, version:7.0.8493).
2.7 Data processing

The randomized and normalized FCS files were uploaded to the

Cytobank Premium analysis platform (Beckman Coulter). Exclusion

of normalized beads, dead cells, debris, and doublets and manual

debarcoding were performed as described in Supplementary

Figures 1, 2. No significant differences in the cell counts

between the examined groups were observed. FCS files with CD45-

positive living singlets were exported and further analyzed in

R. Compensation methodology, FlowSOM clustering, and

dimensionality reduction were adapted from Crowell et al. (42).

FlowSOM was chosen following the publication of Weber et al.

about the unsupervised analysis of CyTOF data (43). Data analysis

was performed as described by Nowicka et al. (44). Using the

BioConductor CATALYST and FlowCore R packages, the FCS files

were integrated, compensated, and transformed. After signal spillover

compensation, the CyTOF marker intensities were inverse-

hyperbolic sine-transformed (arcsinh) with cofactor 5. For the

main population definition, we performed self-organizing map-

based method metaclustering on the compensated and transformed

files. We identified 17 main different metaclusters as different cell

types that were separately subclustered in another round of

FlowSOM. High-dimensional reduction and visualization were

performed using the (t-SNE) algorithm/method. In total, 300,000

cells and 34 markers were used to create a t-SNE map of the human

peripheral immune system. The event numbers in the identified main

immune cell populations and in the immune cell-related metaclusters

are listed in Supplementary Table 5 for each human subject. The

minimum criteria for the cell number for the 17 main immune cell

populations was at least 150 cells in each of the 10 subjects from the

13 participants meeting at least one of the conditions (HCs, RA, SSc,

or SLE). The minimum criteria for the cell number for the

metaclusters to move forward with the analysis was at least 50 cells

in each of the 10 subjects from the 13 participants meeting at least one

of the conditions (HCs, RA, SSc, or SLE).
2.8 Statistical analysis

Median signal intensities, cell frequencies, and subpopulation

frequencies were analyzed using GraphPad Prism 8.0.1. The

normality of distributions was tested using the D’Agostino and

Pearson test and passed if all the groups’ alpha values were <0.05.
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Normally distributed datasets were compared using ordinary one-

way ANOVA or Brown–Forsythe ANOVA when standard

deviations were not equal. For non-parametric analysis, the

Kruskal–Wallis test was used. All significance tests were corrected

for multiple comparisons by controlling the false discovery rate

(FDR) using the two-stage Benjamini, Krieger, and Yekutieli

approach, with an FDR cutoff of 10%. Differences were

considered significant at p <0.05.
3 Results

3.1 Enrollment of therapy-naive SAD
patients and the workflow of single-
cell immunophenotyping

Our aim was to perform single-cell immunophenotyping of

SADs, namely, RA, SSc, SLE, and HCs. For better clarity, a

schematic cartoon of the project workflow is summarized in
Frontiers in Immunology 05
Figure 1. The enrollment of therapy-naive SAD patients allowed

unprecedented insight into the early stage of disease development

without the masking effect of disease-modifying antirheumatic

drugs following therapy.
3.2 Determination and characterization
of the 17 main immune populations
in HCs and therapy-naive patients
with RA, SSC, and SLE

The 34-marker antibody panel for the single-cell mass

cytometric investigation and the subsequent FlowSOM analysis

identified 17 immune cell types among the 15,387,165 cells from

the 52 participants. Visualization of single-cell data delineated the

17 main immune cell populations in the viSNE plots (Figure 2A).

The following seven T-cell types were identified: CD4+/CD57− T

cells, CD4+/CD57+ T cells, CD8+/CD161− T cells, CD8+/CD161+/
FIGURE 1

Schematic cartoon of the workflow of the study. Thirteen subjects were enrolled per group, namely, therapy-naive RA, SSc, and SLE patients and
HCs. The PBMCs were purified from the peripheral blood by Ficoll-density gradient centrifugation. Immunophenotyping was performed using a 34-
membered antibody panel optimized for single-cell mass cytometry. The PBMCs of four subjects were labeled separately with anti-CD45 antibodies
conjugated with different metal tags. Subsequently, the cells of the four barcoded subjects were stained simultaneously in one tube. The CyTOF was
performed by the Helios system. Data analysis was carried out using Cytobank Premium and Catalyst package in R software as described in the
Materials and methods section.
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CD28+ T cells, CD8dim T cells, CD3+/CD4−/CD8− (DN = double

negative) T cells, and TCRg/d T cells. The following four NK cell

types were characterized: CD4+ NKT cells, CD8+ NKT cells, NK

cells (classic NK), and CD56dim/CD98dim cells. The following two

B-cell types were analyzed: cells and plasmablasts. Three myeloid

cell types were studied: monocytes, CD11cdim/CD172dim cells, and

myeloid dendritic cells (mDCs). Finally, innate lymphoid

plasmacytoid dendritic cells (pDCs) were also involved in patient

immunophenotyping. The expression profiles of the 17 immune cell

populations for the 34 investigated markers are shown on a

heatmap (Figure 2B), where data were aggregated from 52 FCS

files (13 participants/group). This expression analysis supplemented

the viSNE plot for the discrimination of the 17 immune cell
Frontiers in Immunology 06
populations, highlighting both common and cell-type-specific

marker expression.

Next, we examined the distribution of the identified peripheral

immune cell types among the HC, RA, SSc, and SLE groups.

Significant differences in the population percentages are shown in

Figure 3. Seven populations showed significantly different

frequencies: CD4+/CD57+ T cells, CD8+/CD161+/CD28+ T cells,

DN T cells, CD4+ NKT cells, CD56dim/CD98dim cells, plasmablasts,

and CD11cdim/CD172adim cells. CD4+/CD57+ aging T cells showed

the lowest frequency in the SLE group (0.402% in SLE vs. 3.089% in

SSc or 2.819% in HCs). CD8+/CD161+/CD28+ mucosal-associated

invariant T cells (MAIT) were at the highest frequency in healthy

controls (1.351% in HCs vs. 0.405% in RA, 0.323% in SSc, and 0.286%
A

B

FIGURE 2

Single-cell immunophenotyping of leukocytes using 34 antibodies. (A) Representative viSNE diagram of the distribution of 17 main immune subsets
with a single-cell resolution. Each dot represents one cell, and the size of one cloud is proportional to the size of that population. For visualization,
the algorithm chose 3,000 cells randomly from each of the 52 samples. (B) The heatmap of the 17 main immune subsets showing their marker
expression profile. Coloration indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to
low expression.
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in SLE). DN T cells showed the highest incidence in SLE (0.867% in

SLE vs. 0.279% in HCs, 0.421% in RA, or 0.307% in SSc). CD4+ NKT

cells were significantly decreased in SLE (0.432% in SLE vs. 1.083% in

HCs or 0.968% in SSc). CD56dim/CD98dim NK cells were reduced in

RA (0.657% in RA vs. 2.133% in HCs or 1.967% in SLE). The

percentage of plasmablasts was significantly higher in SLE (0.686% in

SLE vs. 0.053% in HCs, 0.101% in RA, or 0.097% in SSc).
Frontiers in Immunology 07
CD11cdim/CD172dim monocytes (with low expression of CD32,

CD47, CD98, and HLA-DR) were also more prevalent in SLE

(2.008% in SLE vs. 1.187% in HCs, 0.682% in RA, and 1.178%

in SSc). The remaining 10 of the 17 main populations did not

show differential distributions among the investigational

groups. The distribution of these 10 populations is shown in

Supplementary Figure 3.
FIGURE 3

The percentage of the main immune subsets within the matured living peripheral CD45+ leukocytes. Only significant changes are shown here, and non-
significant differences are illustrated in Supplementary Figure 3. The groups were compared using the Kruskal–Wallis (KW) test, and the results are shown
on the top of each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05,
**p < 0.01, ***p < 0.001. The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart =
lower quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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A

B

FIGURE 4

The subpopulations of CD4+/CD57− helper T cells. (A) Marker expression heatmap of the CD4+/CD57− helper T cells divided into 20 MCs by the FlowSOM
algorithm. Coloration indicates the intensity of the cell surface marker density. Dark red refers to the highest expression; dark blue refers to the lowest
expression. Red arrows highlight the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different
frequencies among the studied groups. The differences between groups were evaluated using the Kruskal–Wallis (KW) test, and the results are shown on the
top of each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001. The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart =
lower quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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3.3 Disease-specific expression intensities
of single-cell mass cytometry data
comparing peripheral immune cells
in HCs, RA, SSc, and SLE

Characterization of the 34-marker expression of the 17 main

populations is shown in the viSNE plots in Supplementary Figure 4.

The areas of the t-SNE plots correspond to the main 17 immune

subsets, as shown in Figure 2A. Next, the individual expression data

(only significant changes among the four groups) were plotted on

the scatter plots as follows: CD4+/CD57− T cells, CD4+/CD57+ T

cells, CD8+/CD161− T cells (Supplementary Figure 5); CD8+/

CD161+/CD28+ T cells, CD8dim T cells (Supplementary Figure 6);

DN T cells (Supplementary Figure 7); TCR g/d T cells, CD4+ NKT

cells, CD8+ NKT cells (Supplementary Figure 8); NK cells,

CD56dim/CD98dim cells (Supplementary Figure 9); B cells and

plasmablasts (Supplementary Figure 10); monocytes, CD11cdim/

CD172adim cells (Supplementary Figure 11); and mDCs and pDCs

(Supplementary Figure 12).

Here, we highlight the primary differences. Except for helper T

cells, CD38 expression in all cell types was higher in at least one

autoimmune disease than in HCs. In the case of DN T cells

(Supplementary Figure 7), TCRg/d+ T cells, CD8a+ NKT cells

(Supplementary Figure 8), NK cells (Supplementary Figure 9), and

monocytes (Supplementary Figure 11), all three patient groups had

significantly higher CD38 expression compared with HCs (in the case

of NK cells, there was no significant difference between RA vs. HCs, p

= 0.0681). The results were similar for the CD8adim/CD47dim

population, with the addition of the SLE group showing

significantly higher CD38 expression than the other two patient

groups (Supplementary Figure 6). In the case of CD8a+/CD161−

cytotoxic T cells, the SLE group expressed significantly higher levels

of CD38 compared with all the three other groups (Supplementary

Figure 5), whereas in the case of mDCs, the difference between HCs

and SLE was significant (Supplementary Figure 12). In patients with

SLE, in contrast to CD38, CD45RA had the lowest expression in

immune cells. We observed a significantly lower expression of

CD45RA compared with the HC, RA, and SSc groups in the

following cell types: CD4+/CD57+ T cells (Supplementary Figure 5),

CD8adim/CD47dim T cells (Supplementary Figure 6), CD56dim/

CD98dim cells (Supplementary Figure 9), and B cells

(Supplementary Figure 10). Comparing HCs vs. SLE, we detected

significantly lower expression of CD45RA in CD8a+ NKT cells

(Supplementary Figure 10), NK cells (Supplementary Figure 9), and

pDCs (Supplementary Figure 12) in the SLE group. There was only

one exception: CD45RA expression was higher in SLE and the other

two autoimmune patient groups than in HCs in DN T cells

(Supplementary Figure 7). In patients with SSc, the expression of

the two markers was significantly higher than that in the other three

groups: CD57 expression in CD4+/CD57+ T cells (Supplementary

Figure 5) and CD16 expression in NK cells (Supplementary Figure 9).

Patients with RA were also differentiated from the other conditions

by significantly different expressions as follows: in CD11cdim/

CD172adim cells, the expression of CD32 and CD98 was

significantly higher than in the other three groups (Supplementary

Figure 11). CD98 expression in CD56dim/CD98dim cells was higher in
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the RA group than in the other three groups (Supplementary

Figure 9). CD47 expression in CD11cdim/CD172adim cells was

significantly higher (Supplementary Figure 11), whereas in CD8a+/

CD161+/CD28+ T cells, it was significantly lower in patients with RA

than in the HC, SSc, and SLE groups (Supplementary Figure 6). The

expression of HLA-DR in TCRg/d+ T cells (Supplementary Figure 8),

B cells (Supplementary Figure 10), and mDCs (Supplementary

Figure 12) was also significantly lower in the RA group compared

with the other three groups.

Taken together, 59 scatter plots demonstrated significant marker

expression differences in the 17 main immune populations

differentiating therapy-naive patients with RA, SLE, and SSc from

HCs and between the SADs (Supplementary Figures 5–12). However,

a detailed explanation of these data is beyond the scope of our

research paper; rather, these Supplementary Data provide a resource

and repository for the scientific community. Next, the authors

preferred to thoroughly analyze and explain the unsupervised

FlowSOM data of the subsequent analysis of the cell-type

heterogeneity of the 17 main populations, the distribution of

metaclusters (subpopulations), and significant differences in their

marker expressions.
3.4 Characterization of the specific RA,
SSc, and SLE differences in the single-cell
immunophenotype of the subpopulations
of the 17 main immune cell types of
peripheral blood

Analysis of FlowSOM metaclusters of mass cytometry data

revealed intracell-type heterogeneity of each main immune cell type

in therapy-naive cases of RA, SSc, and SLE vs. HCs. First, the CD4+/

CD57− T cells were divided into 20 subpopulations (MCs =

metaclusters), and the heatmap of the marker expression profile of

the MCs is shown in Figure 4A. Visualization and a viSNEmap of the

MCs of CD4+/CD57− T cells are shown in Supplementary

Figure 13A. The size of the MCs in the viSNE plot is proportional

to the number of cells within anMC, and the proximity of the MCs is

proportional to the common marker expression profile

(Supplementary Figure 13A). The cell density plots highlighted HC

and disease-specific MC distribution (Supplementary Figure 13A).

Seven MCs (red arrows) showed significant differences within CD4+/

CD57− T cells (Figures 4A, B, Supplementary Figure 13A). One Treg

subpopulation (CD4+/CD25+/CD45RA−/CD127−) and MC03

(CD25+CD38−CD127−CD194+) were the lowest in HCs (HCs:

1.554%; RA: 2.520%; SSc: 2.520%; SLE: 2.675%). One effector

memory (TEM) T-cell (CD45RA−/CD197−) subpopulation, MC08

(CD4+/CD27+/CD28+/CD38−/CD127−/CD197−), was the lowest in

HCs and the highest in SLE (HCs: 1.797%; RA: 3.156%; SSc: 3.320%;

SLE: 5.396%). TheMC10 (CD27+CD28+CD38+CD127−CD197+) and

CD4+ central memory (TCM) T-cell (CD45RA−CD197−)

subpopulations were the highest in SLE (HCs: 0.648%; RA: 1.040%;

SSc: 1.049%; SLE: 1.634%). The other TEM subpopulation, MC11

(CD27−CD28+CD38+CD127−CD197−), was also the highest in SLE,

highlighting the discrimination from RA and SSc, not only from HCs

(HCs: 0.624%; RA: 0.593%; SSc: 0.716%; SLE: 2.675%). MC17
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(CD27−CD28+CD38−CD127+CD161+CD183+CD197−) was elevated

in HCs (HCs: 5.793%; RA: 2.523%; SSc: 2.747%; SLE: 2.605%). Two

populations (MC18 and MC19) were significantly lower in RA

patients with a common lack of CD98, CD28, and CD27, and

MC18 (CD27−CD28dimCD98dimCD127−CD197−) was the lowest in

RA patients (HCs: 2.718%; RA: 0.749%; SSc: 1.278%; SLE: 2.514%).

MC19 differed from MC18 in the expression of the CCR7 receptor

(CD27−CD28dimCD98dimCD127−CD197+), which was significantly

decreased in RA (HCs: 1.223%; RA: 0.277%; SSc: 0.570%;

SLE: 1.227%).

CD8+/CD161− cells were divided into 16 MCs, and six MCs

differed significantly from the other three groups (Figure 5A and

Supplementary Figure 13B). The expression pattern of CD8+/
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CD161− MCs is summarized on the heatmap (Figure 5A). The

MC01 (CD27−CD28−CD38+CD57+CD127−HLA-DR+) was the

highest in SLE (HCs: 0.408%; RA: 1.004%; SSc: 1.300%; SLE:

5.383%). MC05 (CD27−CD28−CD38−CD57+CD127+HLA-DR−),

which differed in CD38− and CD127+ from MC01, was the lowest

in SLE (HCs: 3.803%; RA: 2.407%; SSc: 4.731%; SLE: 1.289%)

(Figure 5B). The MC05 is a subpopulation within CD8+ TEMRA:

CD45RA+CD197− (terminally differentiated effector memory cells

re-expressing CD45RA). MC06 (CD27+CD28+CD38−CD57+

CD127−HLA-DR−) differed from MC01 and MC05 in terms of

CD27+CD28+ and CD38−CD127− and showed the highest

prevalence in HCs (HCs: 2.492%; RA: 1.083%; SSc: 0.921%; SLE:

0.910%) (Figure 5B; Supplementary Figure 13B). Similar to MC01,
A

B

FIGURE 5

The subpopulations of CD8+/CD161− cytotoxic T cells. (A) Marker expression heatmap of the CD8+/CD161− helper T cells divided into 16 MCs by the
FlowSOM algorithm. Coloration indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low
expression. Red arrows highlight the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly
different frequencies among the studied groups. The differences between groups were evaluated using the Kruskal–Wallis (KW) test, Welch-ANOVA
(WA), or one-way ANOVA (ANOVA), and the results are shown on the top of each column bar. Significance was determined when the q-value of the
false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001. The values shown on the column bar from the bottom to
the top: lower bar = minimum value, bottom line of the chart = lower quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3),
upper bar = maximum value.
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MC13 (CD27+CD28+CD38+CD57−CD127−HLA-DR+) was the

highest in SLE (HCs: 0.866%; RA: 1.075%; SSc: 0.991%; SLE:

1 . 809%) : CD27+CD28+ and CD57− . MC14 (CD27+

CD28+CD45RO+CD127+CD183+CD197+) (HCs: 15.719%; RA:

8.301%; SSc: 7.556%; SLE: 5.911%) and MC15 (CD27+CD28+

CD45RA+CD127+CD183+CD197+) were the highest in HCs

(HCs: 7.087%; RA: 4.167%; SSc: 3.941%; SLE: 5.065%).

CD8adim/CD47dim T cells represented 10 MCs, in which four

MCs differentiated into HCs and therapy-naive RA, SSC, and SLE.

A heatmap of the expression intensities of the 34 markers in

CD8adim/CD47dim T cells is shown in Figure 6A. The viSNE

diagram and cell density plots of CD8adim/CD47dim T cells are

shown in Supplementary Figure 13C. MC02 (CD45RA+CD57+)
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cells in patients with SLE were min. half (or less) than those in the

other three groups (HCs: 32.482%; RA: 39.018%; SSc: 38.138%; SLE:

14.912%) (Figure 6B). The other three MCs that dominated in SLE

were MC07 (CD38+CD197−HLA-DR+) (HCs: 5.081%; RA: 7.228%;

SSc: 5.179%; SLE: 13.378%), MC08 (CD38+CD57−CD197−HLA-

DR−) (HCs: 3.209%; RA: 3.461%; SSc: 5.072%; SLE: 12.104%), and

MC10 (CD38+CD197+) (HCs: 1.963%; RA: 2.981%; SSc: 2.501%;

SLE: 6.404%) (Figure 6B).

CD3+/CD4−/CD8− (DN) T cells were divided into six

subpopulations (Figure 7; Supplementary Figure 14A). Red

arrows on the expression heatmap indicate MCs that

differentiated SADs from each other (Figure 7A). MCs were also

observed in the viSNE and cell density plots (Supplementary
A

B

FIGURE 6

The subpopulations of CD8adim/CD47dim cytotoxic T cells. (A) Marker expression heatmap of the CD8adim/CD47dim helper T cells divided into 10
MCs by the FlowSOM algorithm. Coloration indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue
refers to low expression. Red arrows highlight the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with
significantly different frequencies among the studied groups. The differences between the groups were evaluated using the Kruskal–Wallis test (KW)
or one-way ANOVA (ANOVA), and the results are shown on the top of each column bar. Significance was determined when the q-value of the false
discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. The values shown on the column bar from the
bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile (Q1), middle line = median, top line of the chart = upper
quartile (Q3), upper bar = maximum value.
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Figure 14A). MC02 (CD27+CD28+CD38+CD57−CD161−), similar

to CD38+CD8 T cells, was the lowest in HCs (HCs: 5.868%; RA:

16.456%; SSc: 12.705%; SLE: 12.568%) (Figure 7B). The CD38−

MC03 (CD27+CD28+CD38−CD57−CD161−), similar to MC02, was

also the lowest in HCs (HCs: 29.748%; RA: 52.147%; SSc: 48.745%;

SLE: 54.712%). In contrast to MC02 and MC03, MC06

(CD38−CD127+CD161+) was the highest in HCs (HCs: 50.881%;

RA: 12.540%; SSc: 13.452%; SLE: 8.154%) (Figure 7B).

The FlowSOM algorithm revealed 12 MCs in the TCRg/d T-cell
compartment. The heatmap of the expression of 34 markers in the

TCR g/d T-cell population is shown in Figure 8A. The viSNE and

cell density plots of the frequency of MCs are shown in

Supplementary Figure 14B. One populat ion of naive

(CD27+CD45RA+) TCRg/d T cells, the MC01 (CD27+CD197+),

was the highest in SLE (HCs: 7.254%; RA: 6.665%; SSc: 10.563%;

SLE:19.745%) (Figure 8B). One effector memory TCRg/d T-cell

population was the lowest in HCs (HCs: 3.024%; RA: 8.301%; SSc:

7 .405%; SLE: 12.351%). In contrast to MC01, MC12

(CD45RA+CD56+CD57+) was significantly lower in SLE patients

(HCs: 11.691%; RA: 12.172%; SSc: 10.995%; SLE: 4.929%).

Classical CD3−/CD56+ NK cells represented 14 MCs. Clustering

of MCs based on the expression patterns of 34 markers is shown in

Figure 9A. The viSNE and cell density plots of the MCs are shown

in Supplementary Figure 14C. MC03 (CD38−CD57−CD161−) was

almost two times higher in HCs than in RA and SSc and three times

higher in HCs than in SLE (HCs: 5.624%; RA: 3.384%; SSc: 2.131%;
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SLE: 1.379%). MC05 (CD56brightCD45RA−) cells were more than

double in the PBMCs of SLE patients compared to those in the other

three groups (HCs: 4.559%; RA: 5.354%; SSc: 6.066%; SLE:

12.501%) (Figure 9B). MC07 (CD16+CD38+CD57+CD161+)

showed double the frequency in SSc compared with HCs, RA, or

SLE (HCs: 11.864%; RA: 11.810%; SSc: 19.294%; SLE: 11.811%). In

contrast to MC05, MC10 (CD8a+CD38+CD57+) was the lowest in

patients with SLE (HCs: 10.642%; RA: 12.004%; SSc: 13.058%;

SLE: 8.152%).

CD56dim/CD98dim NK cells were divided into seven MCs. The

expression profiles of the 34 markers are shown in Figure 10A. The

viSNE plots of the seven MCs and cell density plots are shown in

Supplementary Figure 15A. Only one MC, MC05 (CD16+/CD57+/

CD183−), showed a significant difference, and the percentage of

cells in MC05 was almost half of that in the HC, RA, and SSc groups

(HCs: 4.921%; RA: 4.077%; SSc: 5.249%; SLE: 2.049%).

CD19+ B cells showed high heterogeneity, with 19 identified

MCs. Seven MCs differentiated patients with SADs from each other

or from HCs. The expression of 34 markers among the 19 MCs is

shown in Figure 11A. The viSNE and cell density plots of 19 MCs of

conventional peripheral B cells are shown in Supplementary

Figure 15B. Two MCs were the lowest in RA, MC02 (CD98dim/

CD185+/IgD+) (HCs: 4.320%; RA: 1.871%; SSc: 3.223%; SLE:

5.761%) and MC03 (CD38−/CD98dim/CD185−/IgD−) (HCs:

2.606%; RA: 0.490%; SSc: 0.975%; SLE: 1.662%). The number of

MC07 (CD38+/CD196+/IgD−) B cells was significantly higher in the
A

B

FIGURE 7

The subpopulations of CD8a−/CD4− cytotoxic T cells. (A) Marker expression heatmap of the CD8a−/CD4− helper T cells divided into six MCs by the
FlowSOM algorithm. Coloration is proportional to the intensity of the cell surface marker density. Dark red refers to the highest expression; dark blue
refers to no expression. Red arrows highlight the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with
significantly different frequencies among the studied groups. The differences between groups were evaluated using the Kruskal–Wallis test (KW), and
the results are shown on the top of each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1
and p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. The values shown on the column bar from the bottom to the top: lower bar =
minimum value, bottom line of the chart = lower quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar =
maximum value.
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SLE group (HCs: 0.914%; RA: 0.802%; SSc: 0.988%; SLE: 2.638%)

(Figure 11B). The number of MC08 (CD25+/IgD+) B cells was

double in HCs than in RA or SSC and three times higher in HCs

than in SLE (HCs: 16.239%; RA: 9.337%; SSc: 8.581%; SLE: 5.493%).

The two CD11c+ B-cell populations were significantly higher in the

SLE group than in the other three groups: MC09 (CD11c+/CD38−/

CD185−) (HCs: 0.562%; RA: 0.785%; SSc: 0.571%; SLE: 2.312%) and

MC16 (CD11c+/CD183+) (HCs: 0.337%; RA: 0.356%; SSc: 0.364%;

SLE: 0.838%). The CD20−/CD25+ MC19 B cells were the highest in

HCs (HCs: 2.772%; RA: 0.998%; SSc: 0.897%; SLE: 0.949%).

The plasmablasts in the peripheral blood represented two MCs

depending on their expression (MC02) or lack of CD27 (MC01)

(Figure 12A). The viSNE and cell density plots of plasmablasts are

shown in Supplementary Figure 15C. The MC01 (CD27−) was the

highest in SLE (HCs: 33.527%; RA: 20.424%; SSc: 26.482%; SLE:

48.871%). In contrast, MC02 (CD27+) was significantly lower in

patients with SLE (HCs: 66.472%; RA: 79.575%; SSc: 73.517%; SLE:

51.128%) (Figure 12B).

The monocytes were classified into 15 types of MCs using the

FlowSOM algorithm (Figure 13A). A heatmap of the expression

profiles is shown in Figure 13A. The distribution of MCs in the

viSNE and cell density plots is shown in Supplementary Figure 16.

One group of classical monocytes (CD14++/CD16−) and MC10

(CD16−CD25+CD127−HLA-DR−) were higher in RA, SSc, and SLE

than in HCs (HCs: 3.977%; RA: 8.902%; SSc: 9.207%; SLE: 9.176%)
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(Figure 13B). Two transitional monocyte populations (CD14++/

CD16+) showed a higher percentage of SSc with double frequency

than the other three groups: MC11 (CD16+CD25+CD197−) (HCs:

1.369%; RA: 1.101%; SSc: 2.457%; SLE: 0.994%) and MC12

(CD16+CD25+CD197+) (HCs: 1.081%; RA: 0.844%; SSc: 1.786%;

SLE: 0.845%).
4 Discussion

To the best of our knowledge, this is the first study to

characterize the detailed immunophenotypes of patients with

three different newly diagnosed SADs at the same time.

Additionally, all patients were investigated before starting

immunosuppressive therapy; therefore, we can rule out the

potential immuno-modifying effects.

First, the distribution of the main populations within the CD45+

living cells was determined and compared among the investigated

groups. The seven main cell types showed significant differences

(Figure 3). Among the main immune populations, CD4−/CD8−

double-negative (DN) T cells, plasmablasts, and CD11cdim/

CD172adim cells showed a significantly higher average population

percentage in patients with SLE than in all the other groups. No

publications are available on the CD11cdim/CD172adim in the

context of SLE. In contrast, CD4+/CD57+ T cells and CD4+ NKT
A

B

FIGURE 8

The subpopulations of TCRgd T cells. (A) Marker expression heatmap of the TCRgd T cells divided into 12 MCs by the FlowSOM algorithm. Coloration
indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low expression. Red arrows highlight the
MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different frequencies among the studied
groups. The differences were evaluated using the Kruskal–Wallis (KW) test or one-way ANOVA (ANOVA), and the results are shown on the top of each
column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01. The
values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile (Q1), middle line =
median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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cells were present in significantly lower numbers in patients with

SLE than in healthy controls and the SSc group. The average

population of CD8+/CD161+/CD28+ cytotoxic T cells was

significantly higher in healthy individuals than in patients with

SADs. Two populations were identified, CD8adim/CD47dim and

CD56dim/CD98dim, with the mean population percentages within

CD45+ single cells being the lowest in the RA group. In the case of

the CD56dim/CD98dim population, the difference was significant

compared with the SLE and HC groups. This observation is also

considered novel.

Second, the expression levels of the 34 markers in the main

populations were compared between the groups. In summary, 59

scatter plots showed significant differences between at least two
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groups (Supplementary Figures 4–12). The most potent marker is

cyclic ADP-ribose hydrolase (CD38). It was highly expressed in a

variety of immune cells in all three therapy-naive patient groups

compared with HCs: DN T cells, TCRg/d+ T cells, CD8a+ NKT cells,

NK cells, and monocytes. Similarly, the CD8adim/CD47dim

population in the SLE group showed significantly higher CD38

expression than those in the RA and SSc groups. CD38 expression

was also significantly higher in CD8a+/CD161− cytotoxic T cells in

the SLE group than in the other groups. CD38 as a targeted therapy

(daratumumab) has been approved for multiple myeloma, but it has

also been suggested for SADs, particularly SLE, where plasma cells

do not express CD20, leading to rituximab resistance; however, they

highly express the CD38 (Figure 12A) (45–47).
A

B

FIGURE 9

The subpopulations of NK cells. (A) Marker expression heatmap of the NK cells divided into 14 MCs by the FlowSOM algorithm. Coloration indicates
the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low expression. Red arrows highlight the MCs
with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different frequencies among the studied
groups. The differences between groups were evaluated using the Kruskal–Wallis (KW) test, and the results are shown on the top of each column
bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001.
The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile (Q1), middle
line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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Third, each immune cell population was divided into

subpopulations (MCs) using the FlowSOM algorithm (Figures 4–

13; Supplementary Figures 13–16). Subpopulation percentages were

compared among the populations in different groups. We identified

121 MCs from 10 major immune cell populations. In addition, T

cells were classified into 64 MCs based on the expression of 34

markers. Twenty-three T-cell subpopulations were found with

significantly different percentages between at least two groups

(Figures 4–8). Tregs are known to be present at lower frequencies

in HCs than in the SSc group (48, 49), and we identified a

subpopulation of Tregs (MC03: CD25+CD38−CD127−CD194+)

within CD4+CD57− T cells with a decreased ratio in HCs. Burnst

et al. reported elevated expression of CD38 in effector memory

CD4+ T cells (50). We identified two CD4+ TEM which were present

in higher percentages in SLE: CD38 negative (MC08:

CD45RA−CD4+CD27+CD28+CD38−CD127−CD197−) and CD38

pos i t i v e (MC11 : CD45RA−CD4+CD27−CD28+CD38+

CD127−CD197−), differentiating SLE from therapy-naive RA and

SSc. Lima et al. reported that CD38+HLA-DR+ cytotoxic T cells

were elevated in patients with SLE (51). We demonstrated that the

MC01 (CD27−CD28−CD38+CD57+CD127−HLA-DR+) population

in CD8+CD161− T cells was the best in differentiating SLE from RA

and SSc. Comte et al. did not observe differences in the ratio of

CD8+ TEMRA (CD45RA+CD197−) between HCs and patients with

SLE (52). In contrast, we demonstrated that one subpopulation of

CD8+ TEMRA, the MC05 (CD27−CD28−CD38−CD57+CD127+), was
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the lowest in SLE compared with HCs, RA, and SSc. Yuan et al.

showed a higher percentage of naive CD8+ T cells in HCs vs. SLE

(53). In addition, the highest percentage of naive CD8+ T-cell

subpopu l a t i on wa s f ound in HCs , whe r e a s MC15

(CD27+CD28+CD45RA+CD45RO−CD127+CD183+CD197+) was

higher in HCs than in SADs. Cho et al. reported that DN MAIT

cells were more prevalent in HCs than in patients with RA and SLE

(54). Our results also confirmed a lower ratio of MC06 DN T cells

(CD38−CD127+CD161+) in patients with SLE. The unequivocal

role of TCRg/d T cells in the pathogenesis of SADs has been

described recently (55, 56). We identified three subpopulations of

TCRg/d T cells differentiating SLE from HCs, RA, and SSc. Two of

these were significantly higher in SLE (MC01: CD27+CD197)

(MC04: CD45ROdimCD45RAdimCD57−) , and one was

significantly lower in SLE (MC12: CD45RA+CD56+CD57+).

Subsequently, 57 subpopulations (MCs) of non-T-cell

compartments were demonstrated in CD3− cells; among these, 17

populations showed significantly different subpopulation

percentages between at least two investigated groups (Figures 9–

13). A lower proportion of CD56+ NK cells has been reported in

patients with RA and SLE (57, 58). In line with this, we identified

one subpopulation of NK cells, MC03 (CD38−CD57−CD161−), with

the highest percentage in HCs. Schepis et al. reported an increased

frequency of CD56brightCD16− NK cells in patients with SLE

compared to HCs (59). Based on our study, the number of MC05

(CD56brightCD45RA−CD16low) cells was the highest in SLE. In
A

B

FIGURE 10

The subpopulations of CD56dim/CD98dim cells. (A) Marker expression heatmap of the CD56dim/CD98dim cells divided into seven MCs by the
FlowSOM algorithm. Coloration indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low
expression. Red arrows highlight the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly
different frequencies among the studied groups. The differences between the groups were evaluated using the Kruskal–Wallis (KW) test, and the
results are shown on the top of each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and
p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001. The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom
line of the chart = lower quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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contrast to MC05, the MC10 (CD8a+CD38+CD57+) NK cell

population was the lowest in patients with SLE. A lower ratio of

CD56+CD57+ NK cells in SLE compared to HCs was reported

previously by Lu et al. (60); however, our data also included
Frontiers in Immunology 16
comparisons with RA and SSc. We identified a subpopulation of

CD56dim/CD98dim MC05 (CD16+/CD57+/CD183−) cells with a

significant decrease in SLE, but there is a lack of data on these

cells in the context of SADs. Amu et al. showed that
A

B

FIGURE 11

The subpopulations of B cells. (A) Marker expression heatmap of the B cells divided into 19 MCs by the FlowSOM algorithm. Coloration indicates the
intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low expression. Red arrows highlight the MCs with
significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different frequencies among the studied groups.
The differences among the groups were evaluated using the Kruskal–Wallis (KW) test, and the results are shown on the top of each column bar.
Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, **p < 0.01, ***p < 0.001. The
values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile (Q1), middle line
= median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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CD25+CD20+CD27+ B cells were the lowest in patients with SLE

compared with HCs (61). Our results also supported the lowest

percentage of MC08 (CD25+CD20+CD27+IgD+) B cells in SLE

compared with that in HCs, RA, and SSc. Rincon-Arevalo et al.

reported an increased proportion of CD11c+ B cells in patients with

SLE (62). Additionally, we differentiated two CD11c subsets of B

cells with the highest frequency in SLE: MC09 (CD11c+

CD38−CD185−) and MC16 (CD11c+CD183+). B cells expressing

CD11c and lacking CD21 expression (age-associated B cells =

ABCs) are reported as an increasing population in SLE (63).

Indeed, our MC16 population expresses CD11c, but we

highlighted the co-expression of CD183 (or panel missed CD21),

which differentiates it from the ABCs. The M16 B-cell population

(IgD−CD27+) is different also from the double-negative

IGD−CD27− population that was described by Wang et al. in SLE

(64). The peripheral composition of plasmablasts was shared with

CD27− and CD27+ MCs with the highest and lowest frequencies in

SLE, respectively. Toapanta et al. reported the induction of CD27

plasmablasts after Shigella LPS treatment, with a correlation

between IgA and IgG production (65). However, limited data are

available on CD27− plasmablasts in SLE. Lesco et al. showed that

CD14brightCD16− classic monocytes were increased in SSc patients

compared with HCs (66). A subpopulation of classic monocytes was

identified by our research group, MC10 (CD16−CD25+

CD127−HLA-DR−), with elevated levels in all investigated SADs

compared with HCs. Additionally, we found two intermediate

(CD14b r i g h t /CD16+ ) monocy t e popu l a t i on s , MC11
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(CD16+CD25+CD183−) and MC12 (CD16+CD25+CD183+),

which were higher in SSc than in HCs, RA, and SLE.

In summary, we highlight seven metaclusters, each

differentiating one group from the other three. In HCs, compared

with patients with SADs, the following subpopulations showed

significantly lower subpopulation percentages: MC08 (CD27+/

CD28+/CD38−CD127−/CD197dim) in CD4+/CD57− T cells, and

the SLE group also differed from the other two SAD groups. The

subpopulations MC04 (CD45ROdim/CD45RAdim/CD57−) of TCRg/
d+ T cells and MC10 (CD16−/CD25+/CD127−/HLA-DR−) of

monocytes had the lowest percentage in HCs. In contrast, the

following subpopulation percentages were significantly higher in

HCs than in SADs: MC06 (CD27+/CD28+/CD38−CD57+/CD127−)

in CD8a+/CD161− T cells and MC03 (CD38−/CD57−/CD161) in

NK cells. In patients with SLE, we detected a significantly higher

subpopulation percentages of MC07 (CD38+/CD196−/IgD−) in B

cells and MC01 (CD27−) in plasmablasts compared with the other

three groups. The findings of our study showed that the peripheral

immune landscape demonstrated circulating immune cell attributes

that discriminated the three SADs, therapy-naive RA, SSc, and SLE,

from each other, as well as from HCs.

This study is based on several years of patient sample

collection. For all inflammatory rheumatic diseases, the time

between the initial symptoms and the actual diagnosis can be

years. In addition, patients are almost invariably admitted to

specialist care centers following a certain form of anti-

inflammatory or immunosuppressive treatment. Both the
A

B

FIGURE 12

The subpopulations of plasmablasts. (A) Marker expression heatmap of the plasmablasts divided into two MCs by the FlowSOM algorithm. Coloration
indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low expression. Red arrows highlight
the MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different frequencies among the
studied groups. The differences between the groups were evaluated using the Welch-ANOVA test (WA), and the results are shown on the top of
each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05, ***p < 0.001,
****p < 0.0001. The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile
(Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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prolonged duration of illness and the treatments used can

significantly alter the patient’s immunophenotype. Mapping the

immunophenotype of early and untreated patients can be of

importance in several ways. In the early stages of the disease,

there can be a lot of overlap between different syndromes. In many

cases, they are identified as an undifferentiated autoimmune

syndrome. Early mapping of the immunophenotype can help in

early diagnosis. Knowledge of the immunophenotype prior to

therapy can also be a prognostic marker for subsequent response

to therapy. Changes in disease activity can be used to identify

markers of disease severity. This may provide the basis for further

prospective analysis following the current study. Identifying

difficult-to-treat patient groups is another major clinical

challenge. Furthermore, the results of our present study may

help to map this patient group, including various possible

organ-specific immunological processes. Our results, including

significant differences in several main cell populations, marker

expression intensities, and metaclusters, may contribute to clarify

the prior described, challenging autoimmune diseases.

Additionally, our dataset about early, untreated patients may
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show overt disease pathology related to the etiology of the

disease unveiling potential therapeutic targets that could

contribute to the development of novel therapies.
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FIGURE 13

The subpopulations of monocytes. (A) Marker expression heatmap of the monocytes divided into 15 MCs by the FlowSOM algorithm. Coloration
indicates the intensity of the cell surface marker density. Dark red refers to high expression; dark blue refers to low expression. Red arrows highlight the
MCs with significant differences among the studied groups. (B) Chart diagrams of the MCs with significantly different frequencies among the studied
groups. The differences between the groups were evaluated using the Kruskal–Wallis (KW) test or one-way ANOVA (ANOVA), and the results are shown
on the top of each column bar. Significance was determined when the q-value of the false discovery rate (FDR) was below 0.1 and p < 0.05; *p < 0.05,
**p < 0.01. The values shown on the column bar from the bottom to the top: lower bar = minimum value, bottom line of the chart = lower quartile
(Q1), middle line = median, top line of the chart = upper quartile (Q3), upper bar = maximum value.
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SUPPLEMENTARY FIGURE 1

Determination of live single cells and debarcoding of the CyTOF FCS files.

Cells were gated first negative for 140Ce and 142Ce calibration bead specific

metal tags (upper row on the left). Singlets were gated based on 191Ir DNA
labeling (upper row in the middle). Live cells were gated based on negativity

for 103Rh cationic nucleic acid intercalator Live/Dead reagent (Fluidigm)
(upper row on the right). Debarcoding of the patients was carried out using

the gating on CD45+ positive cells such as the following: HC: 116Cd CD45+,
RA: 89Y CD45+, SSc: 114Cd CD45+, SLE: 106Cd CD45+.

SUPPLEMENTARY FIGURE 2

Data clarification of CyTOF FCS files based on manual gating excluding cell

doublets. Double negative cells were processed further during the data
analysis for CD56-/CD294-, CD3-/CD14-, CD19-/CD14-, CD19-/CD3-,

CD56-/CD19-, CD20-/CD16-.

SUPPLEMENTARY FIGURE 3

The percentage of the main immune subsets within the matured living

peripheral CD45+ leukocytes. The non-significant differences are

demonstrated here, significant differences are demonstrated in Figures 2.
The values shown on the column bar are from the bottom to the top: lower

bar = minimum value, bottom line of the chart = lower quartile (Q1), middle
line = median, top line of the chart = upper quartile (Q3), upper bar =

maximum value.

SUPPLEMENTARY FIGURE 4

The tSNE plots of the expression profile of 34 markers. The areas of the tSNE
plots corresponds to the main 17 immune subset described in Figures 1A. The

red coloration is proportional with the higher, the blue coloration is
proportional with the lower expression levels within the 17 immune

subsets. Aggregated data of the 52 cases.

SUPPLEMENTARY FIGURE 5

The significant differences in the marker expression profile (median metal
intensity) of CD4+/CD57- T-cells (upper row) and the CD8a+/CD161- T-cells

(lower row). The statistical method (WA = Welch-ANOVA, or ANOVA = one
way ANOVA) is shown on the top of each column bar. Significance was

accepted when the q value of the false discovery rate (FDR) was below 0.1 and
*p<0.05, **p<0.01. The values shown on the column bar are from the bottom

to the top: lower bar = minimum value, bottom line of the chart = lower

quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3),
upper bar = maximum value.

SUPPLEMENTARY FIGURE 6

The significant differences in the marker expression profile (median metal
intensity) of CD8+/CD161+/CD28+ T-cells (upper row) and the CD8a+dim

T-cells (lower row). The statistical method (KW= Kruskal Wallis test; WA =

Welch-ANOVA, or ANOVA = one way ANOVA) is shown on the top of each
column bar. Significance was accepted when the q value of the false

discovery rate (FDR) was below 0.1 and *p<0.05, **p<0.01, ***p<0.001,
****p<0.0001. The values shown on the column bar are from the bottom

to the top: lower bar = minimum value, bottom line of the chart = lower
quartile (Q1), middle line = median, top line of the chart = upper quartile (Q3),

upper bar = maximum value.

SUPPLEMENTARY FIGURE 7

The significant differences in the marker expression profile (median metal
intensity) of CD3+/CD4-/CD8a-T-cells. The statistical method (KW= Kruskal

Wallis test; WA = Welch-ANOVA, or ANOVA = one way ANOVA) is shown on
the top of each column bar. Significance was accepted when the q value of

the false discovery rate (FDR) was below 0.1 and *p<0.05, **p<0.01,

***p<0.001, ****p<0.0001. The values shown on the column bar are from
the bottom to the top: lower bar = minimum value, bottom line of the chart =

lower quartile (Q1), middle line =median, top line of the chart = upper quartile
(Q3), upper bar = maximum value.
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SUPPLEMENTARY FIGURE 8

The significant differences in the marker expression profile (median metal
intensity) of TCRgd+ T-cells (upper row), CD4+ NKT, or CD8a+ NKT cells

(lower row). The statistical method (KW= Kruskal Wallis test; WA = Welch-

ANOVA, or ANOVA = one way ANOVA) is shown on the top of each column
bar. Significance was accepted when the q value of the false discovery rate

(FDR) was below 0.1 and *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. The
values shown on the column bar are from the bottom to the top: lower bar =

minimum value, bottom line of the chart = lower quartile (Q1), middle line =
median, top line of the chart = upper quartile (Q3), upper bar =

maximum value.

SUPPLEMENTARY FIGURE 9

The significant differences in the marker expression profile (median metal
intensity) of NK cells (upper row), CD56dim/CD98 dim cells (lower row). The

statistical method (KW= Kruskal Wallis test; WA =Welch-ANOVA, or ANOVA =
one way ANOVA) is shown on the top of each column bar. Significance was

accepted when the q value of the false discovery rate (FDR) was below 0.1 and

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. The values shown on the
column bar are from the bottom to the top: lower bar = minimum value,

bottom line of the chart = lower quartile (Q1), middle line = median, top line
of the chart = upper quartile (Q3), upper bar = maximum value.

SUPPLEMENTARY FIGURE 10

The significant differences in the marker expression profile (median metal

intensity) of B-cells (upper and middle rows), plasmablasts (lower row). The
statistical method (KW= Kruskal Wallis test; ANOVA = one way ANOVA) is

shown on the top of each column bar. Significance was accepted when the q
value of the false discovery rate (FDR) was below 0.1 and *p<0.05, **p<0.01,

***p<0.001, ****p<0.0001. The values shown on the column bar are from the
bottom to the top: lower bar = minimum value, bottom line of the chart =

lower quartile (Q1), middle line =median, top line of the chart = upper quartile

(Q3), upper bar = maximum value.

SUPPLEMENTARY FIGURE 11

he significant differences in the marker expression profile (median metal

intensity) of Monocytes (upper row), CD11cdim/ CD172adim cells (middle and
lower rows). The statistical method (KW= Kruskal Wallis test; WA = Welch-

ANOVA, or ANOVA = one way ANOVA) is shown on the top of each column

bar. Significance was accepted when the q value of the false discovery rate
(FDR) was below 0.1 and *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. The

values shown on the column bar are from the bottom to the top: lower bar =
minimum value, bottom line of the chart = lower quartile (Q1), middle line =

median, top line of the chart = upper quartile (Q3), upper bar =
maximum value.

SUPPLEMENTARY FIGURE 12

The significant differences in the marker expression profile (median metal

intensity) of mDCs cells (upper row), pDCs cells (lower row). The statistical
method (KW= Kruskal Wallis test; WA = Welch-ANOVA, or ANOVA = one way

ANOVA) is shown on the top of each column bar. Significance was accepted
when the q value of the false discovery rate (FDR) was below 0.1 and *p<0.05,

**p<0.01, ***p<0.001. The values shown on the column bar are from the

bottom to the top: lower bar = minimum value, bottom line of the chart =
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lower quartile (Q1), middle line =median, top line of the chart = upper quartile
(Q3), upper bar = maximum value.

SUPPLEMENTARY FIGURE 13

Visualizations, tSNE maps of the subpopulations (metaclusters, MCs) defined

by the FlowSOM analysis. (A) The 2–dimensional viSNE plots of the 20 MCs of
CD4+/CD57- T-cells (left). (B) The 2–dimensional viSNE plots of the 16 MCs

of CD8+/CD161- T-cells (left). (C) The 2–dimensional viSNE plots of the 10
MCs of CD8adim/CD47dim T-cells (left). One dot corresponds to one cell

(left). The different colors represent the different MCs (left). The red arrows

highlight the significant differences in the distribution of MCs among the
studied groups. The cell density plots demonstrate the number of cells in the

MCs within the studied groups (right). Red color is proportional with high,
blue color is proportional with low cell density (right). Red boxes and Arabic

numbers demonstrate the distribution of MCs with significant differences
among the studied groups.

SUPPLEMENTARY FIGURE 14

Visualisations, viSNE maps of the subpopulations (metaclusters, MCs) defined

by the FlowSOM analysis. (A) The 2–dimensional viSNE plots of the 6 MCs of
CD4-/CD8- T-cells (left). (B) The 2–dimensional viSNE plots of the 12 MCs of

TCRgd+T-cells (left). (C) The 2–dimensional viSNE plots of the 14 MCs of NK
cells (left). One dot corresponds to one cell (left). The different colors

represent the different MCs (left). The red arrows highlight the significant
differences in the distribution of MCs among the studied groups. The cell

density plots demonstrate the number of cells in the MCs within the studied

groups (right). Red color is proportional with high, blue color is proportional
with low cell density (right). Red boxes and Arabic numbers demonstrate the

distribution of MCs with significant differences among the studied groups.

SUPPLEMENTARY FIGURE 15

Visualisations, viSNE maps of the subpopulations (metaclusters, MCs) defined

by the FlowSOM analysis. (A) The 2–dimensional viSNE plots of the 7 MCs of

CD56dim/CD98dim cells (left). (B) The 2–dimensional viSNE plots of the 19
MCs of B-cells (left). (C) The 2–dimensional viSNE plots of the 2 MCs of

plasmablasts (left). One dot corresponds to one cell (left). The different colors
represent the different MCs (left). The red arrows highlight the significant

differences in the distribution of MCs among the studied groups. The cell
density plots demonstrate the number of cells in the MCs within the studied

groups (right). Red color is proportional with high, blue color is proportional

with low cell density (right). Red boxes and Arabic numbers demonstrate the
distribution of MCs with significant differences among the studied groups.

SUPPLEMENTARY FIGURE 16

Visualisations, viSNE maps of the subpopulations (metaclusters, MCs) defined

by the FlowSOM analysis. The 2–dimensional viSNE plots of the 15 MCs of
Monocytes (left). One dot corresponds to one cell (left). The different colors

represent the different MCs (left). The red arrows highlight the significant

differences in the distribution of MCs among the studied groups. The cell
density plots demonstrate the number of cells in the MCs within the studied

groups (right). Red color is proportional with high, blue color is proportional
with low cell density (right). Red boxes and Arabic numbers demonstrate the

distribution of MCs with significant differences among the studied groups.
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