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Disrupted balance between pro-
inflammatory lipid mediators and
anti-inflammatory specialized
pro-resolving mediators is linked
to hyperinflammation in patients
with alcoholic hepatitis
Wei Li1*, Ying Xia1, Jing Yang1, Arun J. Sanyal2, Vijay H. Shah3,
Naga P. Chalasani4 and Qigui Yu1*

1Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis,
IN, United States, 2Division of Gastroenterology and Hepatology, Department of Medicine, Virginia
Commonwealth University, Richmond, VA, United States, 3Division of Gastroenterology and
Hepatology, Mayo Clinic, Rochester, MN, United States, 4Division of Gastroenterology and
Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,
United States
Background: Alcoholic hepatitis (AH) is characterized by intense systemic and

liver inflammation, posing significant risks of health complications and mortality.

While inflammation is a crucial defense mechanism against injury and infection,

its timely resolution is essential to prevent tissue damage and restore tissue

homeostasis. The resolution of inflammation is primarily governed by specialized

pro-resolving mediators (SPMs), lipid metabolites derived from w-6 and w-3

poly-unsaturated fatty acids (PUFAs). Currently, the balance between pro-

inflammatory lipid mediators (PLMs) and SPMs in the w-6 and w-3 PUFA

metabolic pathways and the impact of alcohol abstinence on profiles of PLMs

and SPMs in AH patients are not well studied.

Methods: In this study, we used LC-MS/MS and ELISA to quantify levels of lipid

mediators (LMs) and their precursors in the plasma samples from 58 AH patients,

29 heavy drinkers without overt liver diseases (HDCs), and 35 healthy controls

(HCs). Subsequently, we assessed correlations of altered LMs with clinical

parameters and inflammatory mediators. Furthermore, we conducted a

longitudinal study to analyze the effects of alcohol abstinence on LMs over 6-

and 12-month follow-ups.

Results: AH patients exhibited significantly higher plasma levels of w-6 PLMs

(PGD2 and LTB4) and SPM RvE1 compared to HDCs or HCs. Conversely, the SPM

LXA4 was significantly downregulated in AH patients. Some of these altered LMs

were found to correlate with AH disease severity and various inflammatory
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cytokines. Particularly, the LTB4/LXA4 ratio was substantially elevated in AH

patients relative to HDCs and HCs. This altered ratio displayed a positive

correlation with the MELD score. Importantly, the majority of dysregulated

LMs, particularly PLMs, were normalized following alcohol abstinence.
KEYWORDS

alcoholic hepatitis, specialized pro-resolving mediator, lipid mediator, longitudinal
study, alcohol abstinence
Introduction

Long-term heavy alcohol consumption leads to a spectrum of

alcohol-associated liver diseases (ALD), including alcoholic hepatitis

(AH), steatosis, and liver fibrosis/cirrhosis. AH, a critical and

progressive acute-on-chronic liver disorder, is characterized by

heightened hepatic and systemic inflammation, and is associated

with significant morbidity and mortality. Circulating levels of various

inflammatory mediators, such as proinflammatory cytokines (TNF-

a, IL-6, and IL-8), are profoundly elevated in AH patients and

directly correlate with disease severity and mortality rates (1–4).

These inflammatory mediators primarily originate from persistently

hyperactivated immune cells present in both the peripheral blood and

the liver of AH patients (4–6). Alcohol disrupts gap junction integrity

of gut mucosal epithelial cells, leading to increased permeability of the

gastrointestinal (GI) tract and translocation of microbial components

such as lipopolysaccharides (LPS) from the GI tract into the

bloodstream and liver (7–11). Alcohol-induced microbial

translocation (MT) has been recognized as a major driver of

chronic hepatic and systemic inflammation and immune activation

in AH patients (8, 9, 12, 13). Additionally, alcoholic metabolites such

as acetate, reactive oxygen species (ROS), and acetaldehyde can
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directly provoke inflammation (14). These inflammatory responses,

combined with hyperimmune activation, play a central role in the

development of liver fibrosis/cirrhosis, multiple organ failure, and

death in AH patients.

While inflammation is a vital defense mechanism against injury

and infection, its timely resolution is crucial to prevent tissue damage

and restore tissue homeostasis. The inflammatory response comprises

two distinct phases: initiation and resolution. In the initiation phase,

leukocytes are recruited to injured tissue in response to inflammatory

cues, further amplifying the inflammatory response by producing a

plethora of proinflammatory mediators. Resolution of inflammation is

an actively regulated process, largely governed by specialized pro-

resolving mediators (SPMs), including lipoxins (LXs), resolvins (Rvs),

protectins, and maresins (MaRs). These SPMs are synthesized from

long-chain omega-3 (w-3) and w-6 polyunsaturated fatty acids

(PUFAs) that are sourced from dietary elements such as meat, eggs,

and fish oils (15–18), or derived from ingested short-chain w-3 (a-
linolenic acid, ALA) and w-6 (linolenic acid, LA) PUFAs from

vegetables, plant oils, and seeds (19). Notably, the long-chain w-6
PUFA, arachidonic acid (AA), serves as a precursor to several potent

pro-inflammatory lipid mediators (PLMs), including prostaglandins

(PGs), leukotrienes (LTs), and thromboxanes (Txs). AA is converted by

cyclooxygenase (COX)-1 and -COX-2 to PGs (PGD2 and PGE2) and

Txs and by 5-lipoxygenase (5-LOX) to LTs (e.g. LTB4), leading to

initiation of the inflammatory response (15–18). AA can also be

converted by 5-, 12-, and 15-LOX to anti-inflammatory LXs (LXA4

and LXB4). Long-chain w-3 PUFAs such as eicosatetraenoic acid

(EPA) and docosahexaenoic acid (DHA) primarily give rise to anti-

inflammatory SPMs. EPA w-3 PUFAs is converted to the E-series Rvs

(RvE1 and RvE2) by 15-LOX and 5-LOX (15–18), while DHA w-3
PUFA is converted by 15-LOX and 5-LOX to D-series Rvs (RvD1-6)

and protectins (PD1, PDX), and by 12-LOX/15-LOX type 1 to MaRs

(MaR1 and MaR2) (15–18). Importantly, the gene expression, activity,

and intracellular location of these enzymes can be regulated by a variety

of factors such as inflammatory mediators (20–23), leading to different

biosynthetic outcomes of SPMs versus PLMs (17).

SPMs have been detected in both the circulation and tissues of

humans in health and disease (24–32). SPMs actively trigger cardinal

signals for inflammation resolution through (1) counter-regulation of

proinflammatory mediators, (2) promotion of polymorphonuclear

cell/neutrophil (PMN) clearance, (3) promotion of phagocytosis to
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eliminate apoptotic cells and cellular debris, (4) production

enhancement of anti-inflammatory cytokines such as IL-10, (5)

mitigation of oxidative stress (OS), and (6) modulation of immune

cell activation (15, 16, 18, 20, 33–45). However, it remains largely

unexplored whether the biosynthetic balance between PLMs and

SPMs is disrupted in AH patients, potentially contributing to

hyperinflammation, and whether alcohol abstinence restores this

balance, thereby reversing hyperinflammation, as AH is usually

reversible if individuals successfully abstain from alcohol or

undergo medical interventions (46). In this study, we assessed the

profiles of circulating PLMs and SPMs in AH patients, comparing

them with matched heavy drinkers without overt liver diseases

(HDCs) and healthy controls (HCs) (4). Additionally, we

monitored changes over 6- and 12-month follow-up intervals of

alcohol abstinence. Furthermore, we correlated the altered lipid

mediators (LMs) with patients’ clinical parameters, disease severity,

levels of inflammatory mediators, as well as markers of MT such as

LPS, soluble CD14 (sCD14), and soluble CD163 (sCD163), along

with the systemic inflammationmarker (C-reactive protein, CRP). To

gain deeper insights, we performed data mining to analyze the

expression of genes encoding critical enzymes involved in the

biosynthesis of LMs in the peripheral blood and liver tissue of AH

patients and HCs.
Frontiers in Immunology 03
Materials and methods

Study subjects and blood samples

The study included 58 AH patients and 29 HDCs at baseline,

along with 13 and 9 abstinent AH patients at 6- and 12-month

follow-ups, respectively. These subjects were part of a well-

characterized cohort enrolled in the multicenter, prospective

observatory Translational Research and Evolving Alcoholic

Hepatitis Treatment 001 study (TREAT 001, NCT02172898) (47).

Demographic and clinical characteristics, as well as drinking

patterns of the study subjects, are provided in Table 1 and

Supplementary Table 1. Definitions of AH and HDC, along with

the inclusion and exclusion criteria, have been previously described

(47). In brief, AH was defined by hyperbilirubinemia (amended

to >3 mg/dL from >2 mg/dL) and elevated AST levels (>50 IU/L), in

the absence of an alternate cause, in individuals with a history of

heavy alcohol consumption for at least 6 months, and with the last

drink consumed within 6 weeks prior to presentation. In cases

where the diagnosis was uncertain, a liver biopsy was performed for

confirmation. HDCs were age- and gender-matched individuals

with a similar history of alcohol use but without overt clinical liver

disease. They were characterized by AST <50 U/L, ALT <50 U/L,
TABLE 1 Characteristics of the study cohort.

Variables

Participants

p value
HC

(n=35)
AH

(n=58)
HDC
(n=29)

Demographics

Age (years) 42 (26-48) 45 (34-53) 47 (34-53) 0.12

Gender (number and % Male) 18 (51%) 29 (50%) 19 (66%) 0.37

Clinical parameters

Creatinine (mg/dL) 0.86 (0.69-1.06) 0.81 (0.62-1.10) 0.82 (0.68-1.04) 0.86

Total bilirubin (mg/dL) 0.5 (0.3-0.6)### 15.0 (7.8-23.7)*** 0.5 (0.4-0.7) <0.001

ALT (IU/L) 9 (7-16)### 43 (29-60)*** 22 (16-31)$$ <0.001

AST (IU/L) 17 (14-20)### 110 (80-149)*** 25 (17-34) <0.001

Prothrombin time (INR) 1.81 (1.60-2.23)*** 0.97 (0.92-1.03) <0.001

MELD score 25 (21-28)*** 7 (6-8) <0.001

Neutrophils (X103/ml) 8.4 (5.5-15.6)*** 3.7 (2.6-4.6) <0.001

Platelets (X103/ml) 153 (105-227)*** 244 (197-281) <0.001

BMI 27.2 (24.3-32.2)* 31.5 (26.4-35.7) 0.05

Treated with PDN (number and %) 34 (60%)a

30-day mortality (number and %) 4 (6.9%)

6-month mortality 8 (13.8%)

12-month mortality 9 (15.5%)

(Continued)
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and normal total bilirubin levels. All participants were advised to

abstain from alcohol and were followed up at 6 and 12 months or

until death. The minimum age for participation was 21 years.

Exclusion criteria for the TREAT study included serious

medical conditions such as congestive heart failure, chronic

obstructive pulmonary disease (COPD), cancer, uncontrolled

diabetes, and chronic renal failure. Additionally, individuals with

a history of jaundice or signs of end-stage liver disease (e.g., ascites,

hepatic encephalopathy, variceal bleeding), chronic HBV or HCV

infection, any systemic infection within 4 weeks prior to the study,

or recent major surgeries within the past 3 months were

excluded (47). Those with other liver diseases, such as

autoimmune liver disease, hemochromatosis, and Wilson’s

disease, were also excluded.

This study was approved by the Institutional Review Boards

(IRB) at Indiana University School of Medicine, Mayo Clinic, and

Virginia Commonwealth University. All participants provided a

written informed consent form before blood was drawn. Peripheral

blood was collected in heparin-coated tubes (BD Biosciences,

Franklin Lakes, NJ). Plasma was prepared within 2 hours of

blood collection and stored at -80°C until use. Plasma samples

from 35 age- and sex -matched healthy volunteers were included

as HCs.
Liquid chromatography with tandem
mass spectrometry

Plasma samples from 10 AH patients, 10 HDCs, and 10 HCs

were subjected to LC-MS/MS analysis for the quantitative

assessment of PLMs and SPMs. This analytic work was conducted

at the Center for Salivary Diagnostics, the Forsyth Institute,

Harvard School of Dental Medicine (Cambridge, MA) (48).

Briefly, each plasma sample (1 mL) was mixed with internal

labeled standards such as d8-5S-HETE, d4-LTB4, d5-LXA4, d5-

RvD2, and d4-PGE2 in ice-cold methanol to facilitate the

calculation of quantification and sample recovery (48). The

mixtures were subjected to solid phase extraction using C18

cartridges. Extracts were dried using the automated evaporate

system (TurboVap, Charlotte, NC), and immediately used for LC-

MS/MS automated injections. The LC-MS-MS system, a Shimadzu

LC-20AD HPLC and a Shimadzu SIL-20AC autoinjector
Frontiers in Immunology 04
(Shimadzu, Kyoto, Japan), paired with a QTrap 6500 (ABSciex,

Framingham, MA), were employed to process all plasma samples.

PLMs, SPM intermediates, and SPMs were identified in accordance

with published criteria (17, 48, 49), including matching retention

time (RT) and at least six characteristic and diagnostic ions (48).

Quantitation was carried out using linear regression compared with

standard curves from the synthetic and authentic solvents. LC-MS/

MS data analysis was performed on the Sciex software platform,

Analyst version 1.6 (Sciex, Framingham, MA) (50).
Enzyme-linked immunosorbent assay and
multiplex immunoassay

Plasma levels of PGD2, PGE2, LTB4, LXA4, RvE1, RvD2, and

MaR1 were quantified using the Prostaglandin D2 ELISA

Kit (Cayman Chemical, Ann Arbor, MI), Prostaglandin E2 ELISA

Kit (Cayman Chemical, Ann Arbor, MI), LTB4 Parameter Assay Kit

(R&D Systems, Minneapolis, MN), Lipoxin A4 ELISA Kit (Neogen,

Lexington, KY), Human Resolvin E1 ELISA Kit (MBS025958,

MyBioSource, San Diego, CA), Resolvin D2 ELISA Kit (Cayman

Chemical, Ann Arbor, MI), and Maresin 1 ELISA Kit (Cayman

Chemical, Ann Arbor, MI), respectively. Plasma levels of the

systematic inflammation marker CRP and the bacterial

translocation markers, including LPS binding protein (LBP),

soluble CD14 (sCD14), and soluble CD163, were measured using

the Human C-Reactive Protein/CRP DuoSet ELISA Kit, Human

LBP DuoSet ELISA Kit, Human CD14 Quantikine ELISA Kit, and

Human CD163 Quantikine ELISA Kit, respectively. These ELISA

kits were purchased from R&D Systems (Minneapolis, MN).

Plasma levels of 45 inflammatory mediators, including 26

cytokines (GM-CSF, IFN-a, IFN-g, IL-1a, IL-1b, IL-1RA, IL-2,
IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15,

IL-17A, IL-18, IL-21, IL-22, IL-23, IL-27, IL-31, TNF-a, and
TNF-b), 8 chemokines (Eotaxin (CCL11), GRO-a (CXCL1),

IP-10 (CXCL10), MCP-1 (CCL2), MIP-1a (CCL3), MIP-1b
(CCL4), RANTES (CCL5), and SDF-1a), and 11 growth factors

(BDNF, EGF, FGF-2, HGF, LIF, NGF-b, PDGF-BB, PlGF-1, SCF,
VEGF-A, and VEGF-D) were simultaneously quantified using the

Cytokine/Chemokine/Growth Factor 45-Plex Human ProcartaPlex

Panel 1 (EPX450-12171-901, Invitrogen, Waltham, MA), as

previously described (51). The concentrations of these cytokines/
TABLE 1 Continued

Variables

Participants

p value
HC

(n=35)
AH

(n=58)
HDC
(n=29)

Drinking patterns

Total drinking days in 30 days 27 (13-30) 27 (22-30) 0.72

Drinks/day 6 (2-11) 9 (6-14) 0.06
Data are represented as median and interquartile ranges or number and %. HC, healthy controls; AH, patients with alcoholic hepatitis; HDC, heavy drinking controls; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; INR, international normalized ratio; MELD, model for end-stage liver disease; PDN, prednisone; BMI, body mass index. Kruskal-Wallis test
with Dunn’s correction for pairwise comparisons of continuous variables among HCs, AH patients, and HDCs. Mann Whitney test for comparing AH patients versus HDCs. Chi-square test for
analysis of categorical variables. aTreatment status for one participant was not available. ###p < 0.001 for comparison between AH patients and HC; *p < 0.05, ***p < 0.001 for comparison between
AH patients and HDC; $$p < 0.01 for comparison between HDC and HC. p < 0.05 was considered statistically significant (bolded).
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chemokines/growth factors were calculated using the Bio-Plex

Manager v6.1 software (Bio-Rad, Hercules, CA). For statistical

analyses, values below the detection limit of the assay were

replaced with the minimal detectable concentrations for each

analyte as provided by the manufacturer.
Data mining of public RNA-seq datasets of
liver tissue, monocytes, and neutrophils
from AH patients and HCs

Data mining was performed to examine differential expression

of genes involved in production of LMs in liver tissue from AH

patients and HCs. RNA expression levels were pooled from 3 liver

tissue RNA-seq databases GSE143318 (AH, n=5; HC, n=5),

GSE142530 (AH, n=10; HC, n=12), and GSE155907 (AH, n=5;

HC, n=4). RNA expression of genes involved in LM production in

peripheral blood CD14+ monocytes from patients with severe AH

(n=4) and HCs (n=6) was obtained from the RNA-seq dataset

GSE135285. RNA expression levels were also extracted from the

neutrophil RNA-seq database GSE1710809 to assess differential

expression of genes involved in production of LMs in peripheral

blood neutrophils in AH patients (n=3) and HCs (n=3). Data are

presented as transcripts per kilobase million (TPM) normalized

expression values.
Statistical analysis

Chi-square test was used for comparison between groups for

categorical variables. Mann-Whitney test and Kruskal-Wallis test

with Dunn’s corrections were used to calculate differences in

continuous variables between 2 groups and among 3 groups in

cross-sectional analysis, respectively. A two-tailed t-test was used to

calculate differences in the expression of genes involved in the

production of LMs between AH patients and HC. An ordinary one-

way ANOVA with Holm-Sidak’s multiple comparisons test was

used to compare differences in the expression of these genes

involved in production of LMs among subsets of neutrophils

from AH patients and HC. The linear relationship between LMs

and clinical parameters or inflammatory mediators was analyzed

using the Spearman correlation test or multivariate linear

regression. Wilcoxon matched-pairs signed rank test was used to

calculate the differences in longitudinal analysis. p <0.05 was

considered statistically significant.
Results

Characteristics of the study cohort

This study cohort included 58 AH patients, 29 HDCs, and 35

HCs at baseline, as well as 13 and 9 alcohol abstinent AH patients at

6- and 12-month follow-ups, respectively. The demographic and

clinical characteristics of these participants at baseline are listed in

Table 1. There were no significant differences in age, gender
Frontiers in Immunology 05
distributions, or creatine levels among AH patients, HDCs, and

HCs. Compared to HDCs and HCs, AH patients had elevated levels

of total bilirubin, alanine transaminase (ALT), and aspartate

aminotransferase (AST). HDCs and HCs had comparable levels

of total bilirubin and AST, but HDCs had higher levels of ALT than

HCs. AH patients had longer prothrombin time and higher Model

for End-Stage Liver Disease (MELD) score than HDCs. AH patients

had more peripheral blood neutrophils but fewer platelets than

HDC. AH patients also had significantly lower body mass index

(BMI) than HDC. Approximately 60% AH patients were treated

with prednisone at enrollment. Among the 58 AH patients at

baseline, a total of 9 died within 12 months after enrollment. The

30-day mortality, 6-month, and 12-month mortality were 6.9%

(n=4), 13.8% (n=8), and 15.5% (n=9), respectively. AH patients and

HDCs reported similar drinking patterns (total drinking days and

average number of drinks per day) over the preceding 30 days.

Characteristics of the AH patients who achieved complete alcohol

abstinence for 6-month or 12-month intervals as compared to HCs

are shown in Supplementary Table S1. There were no differences in

age, gender distribution, and creatinine levels between HCs and AH

patients at baseline or follow-ups. Compared to HCs, AH patients at

baseline and 6-month follow-up had increased levels of total

bilirubin, ALT, and AST. At 12-month follow-up, most of those

liver biochemistries in the AH subjects were normalized, except for

ALT level, which still exhibited a trending increase (p = 0.065). For

the AH subjects, both the prothrombin time and MELD score

showed significant improvement at either the 6- or 12-follow-up in

comparison to the baseline values. Due to the limited neutrophil

data available for the follow-up samples, we were unable to evaluate

their longitudinal changes. However, the follow-up platelet counts

were consistent with the baseline values.
AH patients had impaired biosynthetic
switch from PLMs to SPMs

To elucidate the distinctions in the profiles of circulating PLMs

and SPMs between AH patients and HDCs as well as HCs, we first

performed LC-MS/MS to quantify plasma levels of LMs and their

precursors. LC-MS/MS offers several analytical advantages,

including an extended linear dynamic range, the capability to

simultaneously quantify multiple metabolic analytes, high

accuracy and precision due to the use of internal standards, and

the avoidance of the necessity for immunological reagents (52). In

our study, LC-MS/MS detected 18 LM species, including w-3 PUFA
metabolites (14-HDHA, 17-HDHA, and 18-HEPE), arachidonic

acid (AA) metabolites such as leukotrienes (LTB4) and

prostaglandins (PGD2 and PGE2), and SPMs such as lipoxins

(LXA4 and LXB4), maresins (Mar1 and Mar2), protectins (PD1

and PDX), and resolvins (RvD1, RvD2, RvD3, RvD4, RvD5, and

RvE1) (Supplementary Table S2). Notably, only 8 LMs were

consistently detected in all 30 plasma samples, including LTB4,

PGD2, PGE2, the RvE precursor 18-HEPE, RvD1/RvD2 and their

precursor 17-HDHA, and MaR precursor 14-HDHA. The

remaining 10 LMs were detected in only a small subset of the 30

samples, ranging from 0-10. Those 10 LMs were not further
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analyzed. We also quantified levels of 3 PLMs (LTB4, PGD2, and

PGE2) and 4 SPMs (LXA4, RvE1, RvD2, and MaR1) in a larger set

of plasma samples using ELISAs. We grouped the comparisons of

the LM levels among the AH patients, HDCs, and HCs according to

the AA, EPA, and DHA metabolic pathways.

In the w-6 AA pathway (Figure 1A), the LC-MS/MS results

revealed that AH patients had markedly higher plasma levels of the

proinflammatory LTB4 (Figure 1B), which was corroborated by the

ELISA results (Figure 1C). LC-MS/MS, but not ELISA, detected a

higher LTB4 level in HDCs when compared with HCs (Figures 1B,

C). The PLM PGD2 levels were notably elevated in AH patients

when compared to HCs and HDCs by ELISA, whereas HDCs had

similar levels of PGD2 to HCs (Figure 1D). By LC-MS/MS, PGD2

levels in AH patients trended higher compared to HDC (p = 0.08;

Supplementary Figure S1A) The levels of the PGE2 were not

significantly different among AH patients, HDCs, and HCs by

LC-MS/MS or ELISA (Supplementary Figures S1B, S1C).
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Two SPMs (LXA4 and LXB4) in the AA pathway were detected

in only a subset of plasma samples by LC-MS/MS (2 for LXA4 and 8

for LXB4) (Supplementary Table S2). However, ELISA consistently

detected LXA4 in all plasma samples tested, revealing that LXA4

levels were significantly reduced in AH patients compared to either

HCs or HDCs (Figure 1E). As the proinflammatory LTB4 and the

anti-inflammatory LXA4 are derived from a common precursor

LTA4, we also compared the LTB4/LXA4 ratio among AH patients,

HDCs, and HCs. In line with a higher level of LTB4 and a reduced

level of LXA4 in AH patients, the LTB4/LXA4 ratio was highly

elevated in AH patients relative to HDCs and HCs (Figure 1F). No

difference in LXA4 or LTB4/LXA4 ratio was found between HDCs

and HCs (Figures 1E, F).

The w-3 SPMs, including Rvs, protectins, andMaRs, are derived

from w-3 PUFAs such as EPA and DHA through a series of

enzymatic reactions involving 5-/12-/15-LOX. In the w-3 EPA

pathway (Figure 2A), plasma levels of the RvE intermediate 18-
FIGURE 1

Dysregulated lipid mediators from the AA pathway in AH patients. (A) Simplified schematic representation of the AA metabolic pathway. Key biosynthetic
enzymes are shown next to arrows, lipid intermediators in box, and proinflammatory lipid mediators in red and anti-inflammatory lipid in blue. (B–F)
Scatter plots showing plasma levels of LTB4 (B, C), PGD2 (D), LXA4 (E), and LTB4/LXA4 ratio (F) in healthy controls (HC), patients with alcoholic hepatitis
(AH), and heavy drinking controls (HDC). Concentrations were measured by LC-MS/MS (B; open symbols) or ELISA (C-E; filled symbols). Kruskal-Wallis
test with Dunn’s correction for pairwise comparison among AH, HDC, and HC. *p < 0.05, **p < 0.01, ***p < 0.001. ns, not significant.
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HEPE were significantly lower in AH patients compared to HCs as

detected by LC-MS/MS (Figure 2B). RvE1 was barely detectable by

LC-MS/MS (Supplementary Table S2). However, ELISA was able to

detect RvE1 in all plasma samples, showing that AH patients had

significantly higher levels than HCs or HDCs (Figure 2C). In the w-
3 DHA pathway (Figure 3A), LC-MS/MS was able to detect the

precursors to RvD, protectins, and MaRs (17-HDHA and 14-

HDHA). Both precursors were significantly decreased in AH

patients compared to HCs (Figures 3B, C). In addition, HDCs
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also had lower levels of 17-HDHA levels than HCs (Figure 3B). LC-

MS/MS was able to detect RvD1 and RvD2 in all samples

(Supplementary Table S2). There were no significant differences

in the levels of RvD1 and RvD2 among AH patients, HDCs, and

HCs (Figure 3D, Supplementary Figures S1D, S1E). Of note, RvD1

levels in AH patients displayed a trend towards lower values

compared to HCs (p = 0.066). MaR1 and MaR2 were not

detected in most samples by LC-MS/MS. MaR1 was detectable by

ELISA, but no discernible changes were observed in AH patients
FIGURE 2

Dysregulated RVE1 and its precursor 18-HEPE from the EPA pathway in AH patients. (A) Simplified schematic representation of the EPA metabolic
pathway. Key biosynthetic enzymes are shown next to arrows, lipid intermediator in box, and anti-inflammatory SPMs in blue. (B, C) Scatter plots
showing plasma levels of 18-HEPE (B) and RVE1 (C) in healthy controls (HC), patients with alcoholic hepatitis (AH), and heavy drinking controls
(HDC). Concentrations were measured by LC-MS/MS (B; open symbols) or ELISA (C; filled symbols). Kruskal-Wallis test with Dunn’s correction for
pairwise comparison among AH, HDC, and HC. **p < 0.01, ***p < 0.001. ns, not significant.
FIGURE 3

Dysregulated precursors of RvD/PD and MaR from the DHA pathway in AH patients. (A) Simplified schematic representation of the DHA metabolic
pathway. Key biosynthetic enzymes are shown next to arrows, lipid intermediator in box, and anti-inflammatory SPMs in blue. (B–D) Scatter plots
showing LS-MS/MS quantification of plasma levels of RvD/PD precursor 17-HDHA (B), MaR precursor 14-HDHA (C), and RvD1 (D) in healthy controls
(HC), patients with alcoholic hepatitis (AH), and heavy drinking controls (HDC) (open symbols). Kruskal-Wallis test with Dunn’s correction for pairwise
comparison among AH, HDC, and HC. *p < 0.05, ***p < 0.001. ns, not significant.
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compared to HDCs and HCs (Supplementary Figure S1F). Taken

together, the results from our LC-MS/MS and ELISA analyses

collectively suggest a pronounced imbalance in LM production in

AH patients. This imbalance appears to skew towards elevated

levels of PLMs and reduced levels of anti-inflammatory SPMs and

their precursors when compared to HDCs and HCs.

Given that women appear to have an increased risk of

developing severe AH, we examined gender differences in plasma

levels of several key PLMs (LTB4, PGD2, and PGE2) and SPMs

(LXA4, MaR1, RvD2, and RvE1) in AH patients. As shown in

Supplementary Table S3, no significant differences were observed

between males and females for any of the LMs tested. Additionally,

the levels of these PLMs and SPMs did not differ significantly

between AH patients treated with corticosteroids (Supplementary

Table S4). Furthermore, there were no significant differences in

these LM levels between AH patients who survived 12 months post-

enrollment and those who deceased (Supplementary Table S5).
Alcohol abstinence reversed dysregulated
production of LMs

Next, we conducted a longitudinal assessment to evaluate

changes in three highly dysregulated LMs (PGD2, LTB4, LXA4)

and the LTB4/LXA4 ratio in AH patients who achieved complete

abstinence at 6-month (n=13) and 12-month (n=9) follow-ups,

with 5 AH patients providing paired samples. Compared to baseline

values, PGD2 and LTB4 levels, as well as the LTB4/LXA4 ratio, were

significantly reduced (Figures 4A–D, G, H), while LXA4 levels
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remained relatively stable with no significant changes observed at

either follow-up (Figures 4E, F). Additionally, we assessed whether

these lipid mediator levels normalized during follow-up. At follow-

ups, elevated baseline levels of PGD2, LTB4, and the LTB4/LXA4

ratio had regressed to levels comparable to those in HCs, while the

initially reduced levels of LXA4 increased to levels analogous to

those in HCs (Supplementary Figure S2). Thus, the levels of PGD2,

LTB4, LXA4, and the LTB4/LXA4 ratio were normalized in

abstinent AH patients over the course of the 6- and 12-month

follow-ups.
Data mining for gene expression of critical
enzymes involved in LM production in
AH patients

To unravel the underlying mechanisms contributing to the

dysregulated production of LMs in AH patients, we conducted a

comprehensive analysis of three publicly available RNA-seq

databases (GSE143318, GSE142530, GSE155907). Our objective

was to assess the differential expression of genes that encode

several critical enzymes involved in LM production within liver

tissue from AH patients and HCs serving as liver donors. The

combined dataset encompassed RNA sequences from 20 AH

patients and 21 HCs. We observed that the expression of COX-1

or COX-2, which converts the w-6 AA PUFA to the precursor of

PGE2 and PGD2 (PGH2), was not different between AH patients

and HCs (Supplementary Figures S3A, S3B). However, expression

of the downstream PGD2 synthetase (PTGDS) and PGE2
FIGURE 4

Longitudinal changes in plasma levels of PGD2, LTB4, and LXA4 in AH patients at 6-month or 12-month follow-ups. Scatter plots comparing levels
of PGD2 (A, B), LTB4 (C, D), LXA4 (E, F), and LTB4/LXA4 ratio (G, H) at 6-month (D180) or 12-month (D360) follow-ups with baseline values (D0) in
patients with alcoholic hepatitis (AH) who were abstinent during the follow ups. Wilcoxon matched pairs signed rank test was used to compare the
differences between D0 and D180 (n=13) or D360 (n=9). *p < 0.05, **p < 0.01. ns, not significant. AH, alcoholic hepatitis.
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synthetase (PTGES) were significantly upregulated in the liver

tissue from AH patients (Supplementary Figures S3C, S3D). In

addition, the gene encoding the enzyme LTA4 dehydrogenase

(LTA4H), responsible for converting LTA4 into LTB4 was also

elevated in AH patients (Supplementary Figure S3E). The genes

encoding for 5-LOX, an enzyme involved in the production of both

PLMs (LTB4) and SPMs in the AA (LXA4 and LXB4) and the w-3
pathways, were highly upregulated in the liver tissue from the AH

patients (Supplementary Figure S3F). The gene encoding for 12-

LOX that is essential for generating SPMs from both w-6 and w-3
pathways were also significantly enhanced in the liver tissue of AH

patients (Supplementary Figure S3G). On the other hand,

expression of 15-LOX, encoding for another critical LOX

involved in SPM production, exhibited a trend towards higher in

AH patients compared to HCs (p = 0.07). Together, liver tissue from

AH patients exhibits a distinct gene expression profile indicative of

heightened production of LMs, especially PLMs.

Monocytes/macrophages and neutrophils play central roles in

inflammation initiation and resolution by producing a plethora of

proinflammatory and anti-inflammatory mediators, as well as

phagocytosing cellular debris and injured cells (53–55). We analyzed

RNA expression of genes involved in LM production in peripheral

blood monocytes (GSE135285) and neutrophils from AH patients

(GSE171809). CD14+ monocytes from patients with severe AH (n=4)

and HCs (n=6) had comparable expression levels of COX-1, COX-2,

PTGES, LTA4H, 5-LOX, 12-LOX, and 15-LOX (Supplementary

Figures S4A, S4B, S4D–H), with exception of PTGDS, which showed

a higher expression trend in the monocytes from AH patients

(p=0.055, Supplementary Figure S4C). A recent study identified a

unique and functionally exhausted subpopulation of neutrophils,

referred to as low-density neutrophils (LDN), in the AH subjects

that are different from the conventional high-density neutrophils

(HDN) (56). Interestingly, LDN from AH patients expressed notably

higher levels of COX-1, COX-2, and PTGDS thanHDN inAH subjects

and HCs. In contrast, the expression of these genes in HDN form AH

subjects and HCs were comparable (Supplementary Figures S5A–C).

LTA4H levels were also higher in LDN than HDN (Supplementary

Figure S5E), whereas levels of PTGES (Supplementary Figure S5D) and

15-LOX PTGES (Supplementary Figure S5H) were not different

between the two subpopulations of neutrophils. Both 5-LOX and 12-

LOX in LDN were downregulated in AH subjects compared to that

from HCs. In addition, 12-LOX expression in HDN from AH subjects

was also lower than those from HCs. However, 5-LOX levels in HDN

were higher than both LDN and neutrophils from HCs

(Supplementary Figures S5F, S5G). These data suggest that

peripheral LDNs in AH patients possess the potential to produce

higher levels of PLMs while generating lower levels of SPMs.
Correlation of plasma levels of LMs with
disease severity and inflammatory
mediators in AH patients

To examine whether LMs might be linked to the pathogenesis of

AH, we performed Spearman correlation analyses to assess their

associations with age, AH disease severity markers, including
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creatinine, liver-related biochemical measurements (total

bilirubin, AST, and ALT), prothrombin time, and MELD score,

neutrophil and platelet counts, and BMI in AH patients. Plasma

levels of PGD2, PDE2, LTB4, LXA4, MaR1, and RvE1 as

determined by ELISA were used for these analyses. We also

analyzed their correlations with the LTB4/LXA4 ratio. The results

of these correlations are summarized in Table 2. Age was not

associated with plasma levels of these LMs except having a positive

correlation with LTB4. BMI also did not correlate with any of the

LMs tested. Upregulated PGD2 positively correlated with total

bilirubin. MaR1 exhibited a negative correlation with ALT and a

positive correlation with platelets. LTB4 and LXA4, as well as PGE2

and RvE1, did not significantly correlate with any of these markers

of disease severity. Notably, the elevated LTB4/LXA4 ratio

displayed a positive correlation with both the total bilirubin levels

and the MELD score (Table 2), suggesting this specific ratio may

hold potential as an indicator of disease severity in AH patients.

Next, we performed multivariable linear regression analysis,

adjusting for age due to its association with LTB4. We selected

three lipid mediators, PGD2, LTB4/LXA4, and MaR1 that showed

significant correlations with clinical parameters in the Spearman

correlation analysis, for the multivariate analysis. The model included

13 samples with complete data for these lipid mediators, age, and 8

clinical parameters. Given the limited number of observations, we

used several separate multiple regressions rather than a single

multivariate multiple regression. As shown in Table 3, elevated

PGD2 was positively correlated with several clinical parameters,

including creatinine, AST, MELD score, and total bilirubin. The

LTB4/LXA4 ratio was negatively correlated with creatinine and AST,

while MaR1 was negatively correlated with creatinine.

AH patients are in a hyperinflammatory state, primarily driven

by alcohol-induced MT (8, 9, 12, 13). Inflammation and MT play

pivotal roles in the development and progression of AH and also

regulate the biosynthesis of LMs (57–59). We first analyzed the

associations of the 6 LMs (PGD2, PGE2, LTB4, LXA4, MaR1, and

RvE1) and the LTB4/LXA4 ratio with upregulated markers of

systemic inflammation (CRP) and MT (LPS, LBP, sCD14, and

sCD163) (10, 11) (Supplementary Table S5). The correlations were

summarized in Table 2. PGD2 had a significant positive correlation

with plasma levels of CRP, which were highly elevated in AH patients

as compared to both HDC and HC (Supplementary Table S5),

whereas LXA4 correlated negatively with LBP and sCD14. None of

the 6 LMs correlated with circulatory levels of LPS or sCD163

(Table 2). Furthermore, we performed a correlation analysis

between plasma levels of these LMs and inflammatory cytokines,

chemokines, and growth factors as quantified through a 45-plex

immunoassay. Upregulated PGD2 levels positively correlated with 3

chemokines (IP10, MIP-1b, and RANTES) and the growth factor

VEGF and had a clear trend to correlate with another chemokine

MIP-1a (p = 0.051). PGE2 showed positive correlations with the

proinflammatory cytokines IFN-a and TNF-a. Downregulated
LXA4 negatively correlated with the anti-inflammatory cytokine IL-

10 and the growth factor HGF (hepatocyte growth factor), but

positively correlated with the growth factor FGF-2. The elevated

LTB4/LXA4 ratio positively correlated with IL-1RA and IL-8. Of

note, plasma levels of all those associated inflammatory cytokines,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1377236
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1377236
chemokines, and growth factors except FGF-2, were highly

upregulated in AH patients compared to HC and/or HDC

(Supplementary Table S6). These results suggest that dysregulated

production of LMs is intricately linked with dysregulated production

of inflammatory cytokines, chemokines, and growth factors, and

potentially contributing to the pathogenesis of AH.
Discussion

AH is a severe and progressive liver and systemic inflammatory

disease. Our recent investigations, consisting of cross-sectional and

longitudinal studies within a comprehensive multicenter project
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(TREAT, U01AA021840), have unveiled crucial insights into the

inflammatory responses, microbial translocation, the activation of

immune cells and endothelial cells (ECs), and intestinal epithelium

damage (4, 10, 11, 51). Our results reveal that even after 12 months

of abstinence from alcohol, AH patients continue to exhibit

significantly elevated levels of inflammatory mediators, such as the

proinflammatory cytokines IL-8, TNF-a, IL-18, and IL-234. These

results strongly imply that alcohol not only triggers inflammation but

also impairs the resolution of inflammation. However, little research

has been conducted to study the biological events that regulate the

resolution of inflammation in ALD such as AH. In this study, we used

LS-MS/MS and ELISA to profile various LMs in the peripheral blood,

encompassing both PLMs and SPMs, in AH patients, HDCs, and HCs.
TABLE 2 Correlations of altered lipid mediators with clinical parameters and inflammatory markers in patients with alcoholic hepatitis.

Categories Variables PGD2 PGE2 LTB4 LXA4 LTB4/LXA4 RvE1 MaR1

Demo-graphics Age 0.17 -0.22 0.33* 0.21 0.08 0.28 -0.07

Clinical parameters

Creatinine 0.27 -0.11 0.05 -0.10 0.16 0.24 -0.23

Total Bilirubin 0.42** 0.10 0.14 -0.22 0.32* 0.16 0.04

ALT 0.08 -0.25 0.06 -0.20 0.11 -0.01 -0.36*

AST 0.25 -0.19 0.05 -0.13 -0.10 0.06 -0.16

INR -0.17 -0.37 0.10 0.18 0.09 0.07 -0.26

MELD 0.25 0.02 0.13 -0.19 0.31* 0.16 -0.14

Neutrophils 0.17 -0.16 0.19 -0.22 0.24 -0.03 -0.21

Platelets 0.28 0.35 -0.10 -0.14 -0.07 -0.33 0.46**

BMI 0.02 -0.20 0.05 -0.01 0.12 0.21 0.13

Inflammation markers

CRP 0.55* 0.47 0.25 -0.13 0.37 -0.32 0.57

LPS 0.16 0.14 0.08 0.22 -0.07 -0.19 0.12

LBP 0.13 0.14 -0.06 -0.43** 0.16 -0.33 -0.04

sCD14 0.06 -0.11 0.04 -0.50** 0.28 0.29 0.28

sCD163 0.15 0.07 0.02 -0.14 0.24 0.38 0.23

Cytokines

IFN-a 0.23 0.78* 0.02 -0.05 0.07 N/A N/A

IL-1RA 0.35 0.27 0.38 -0.38 0.55** N/A N/A

IL-8 0.15 -0.62 0.31 -0.34 0.47* N/A N/A

IL-10 -0.11 0.29 -0.16 -0.45* 0.07 N/A N/A

IL-13 0.30 0.25 0.36 0.18 0.17 N/A N/A

TNF-a 0.11 0.72* -0.02 -0.20 -0.01 N/A N/A

Chemokines

IP10 0.48* 0.62 -0.10 -0.13 -0.13 N/A N/A

MIP-1a 0.45 0.38 0.31 0.06 0.19 N/A N/A

MIP-1b 0.57* 0.33 0.23 0.02 0.13 N/A N/A

RANTES 0.56* 0.57 0.15 0.14 0.10 N/A N/A

Growth factors

FGF-2 -0.01 0.55 0.13 0.46* -0.06 N/A N/A

HGF 0.34 0.07 -0.15 -0.59** 0.38 N/A N/A

VEGF 0.52* 0.41 0.06 -0.24 0.17 N/A N/A
PGD2, prostaglandin D2; PGE2, prostaglandin E2; LTB4, leukotriene B4; LXA4, lipoxin A4; MaR1, maresin 1; ALT, alanine aminotransferase; AST, aspartate aminotransferase; INR,
international normalized ratio; MELD, model for end-stage liver disease; BMI, body mass index; CRP, C-reactive protein; LPS, lipopolysaccharides; LBP, lipopolysaccharides binding protein;
sCD14, soluble CD14; sCD163, soluble CD163; N/A, not analyzed due to insufficient data points. The numbers represent Spearman’s coefficients, *p < 0.05, **p < 0.01 (bolded).
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Th primary objective was to understand the biological processes

orchestrating the resolution of inflammation and the restoration of

normal metabolism and tissue homeostasis in AH patients. We found

that AH patients had higher circulating levels of two PLMs (PGD2 and

LTB4) and the SPMRvE1 compared to HDCs and/or HCs. In contrast,

the SPMs LXA4, along with the precursors to RvEs (18-HEPE), RvDs

(17-HDHA), and MaRs (14-HDHA) within the w-3 pathway, were

significantly reduced in AH subjects. Notably, the plasma LM profile in

HDCs remained largely unaffected when compared to HC, except for

higher levels of LTB4 and lower levels of 17-HDHA detected using LC-

MS/MS. Intriguingly, some PLMs and SPMs correlated AH disease

severity, clinical parameters, and several inflammatory cytokines

positively and negatively, respectively. The dysregulation in LMs was

reversed with alcohol abstinence at 6- and 12-month follow-ups,

coincident with the normalization of clinical parameters of the

longitudinal subjects.

The biosynthesis of PLMs and SPMs is tightly regulated in a

spatiotemporal manner during inflammation. A failure to transition

from PLM production to SPM synthesis can lead to impaired

resolution of inflammation, contributing to the progression of

chronic inflammatory and vascular disorders (60, 61). In

individuals with alcohol use disorder (AUD) or AH, serum

profiles of bioactive lipid metabolites derived from the oxidation

of w-6 and w-3 PUFAs are profoundly altered, as determined by

LC-MS/MS analysis (62). This study demonstrated that serum

levels of LTB4, a key PLM in the w-6 pathway, were significantly

elevated and positively correlated with MELD score (62). Our study

corroborates these findings, showing a markedly skewed production

of PLMs and SPMs in the w-6 AA pathway, with significantly

elevated plasma levels of LTB4 in AH patients. Additionally, PGD2,

another PLM in the w-6 pathway, was significantly elevated in these

patients. LTB4 is enzymatically generated from AA through the

actions of 5-LOX and LTA4H, while PGD2 is biosynthesized from

AA via COX-1 and COX-2 and the terminal synthase PTGDS.

Consistent with the elevated plasma levels of PGD2 and LTB4

observed in AH patients, an analysis of three publicly available

RNA-seq databases of liver tissue from AH subjects revealed

significant upregulation of PTGDS and LTA4H gene expression.
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Plasma levels of LXA4, a SPM in the w-6 AA pathway, were

markedly decreased in AH patients. Reduced circulatory levels of LXA4

are observed in various inflammatory diseases, such as cardiometabolic,

neurological, and autoimmune conditions (63–65). LXs are produced

through transcellular biosynthesis, which involves interactions between

neutrophils and the epithelium or endothelium, or through neutrophil-

platelet aggregation at sites of inflammation (63, 66). For instance,

mucosal epithelial cells generate LM intermediates via 15-LOX, which

are subsequently converted to LXA4 and LXB4 by neutrophil 5-LOX.

Within the vascular lumen, neutrophils produce the LXA4

intermediate LTA4 via 5-LOX and then transfer it to platelets, which

metabolize it into LXA4 and LXB4 via 12-LOX. The reduced

circulating levels of LXA4 in AH patients were not consistent with

the higher gene expression of both 5-LOX and 12-LOX observed in

liver tissue from these patients. This discrepancy could be attributed to

several factors, such as the high hepatic infiltration of LOX-expressing

inflammatory leukocytes, low translation efficiency, post-translational

modifications, reduced enzyme activity, subcellular localization of the

enzymes, or the involvement of regulatory factors affecting LOX

activity. Additionally, contributions from tissues or cells outside the

liver could influence LXA4 production in circulation (67).

Furthermore, data mining revealed that a subset of peripheral blood

neutrophils, known as LDNs, expressed lower levels of 5-LOX and 12-

LOX compared to conventional HDNs in AH patients, suggesting that

these unconventional neutrophils may contribute to the reduced

production of LXA4 in AH patients.

w-3 SPMs, encompassing DHA-derived MaRs, protectins, and

D-series Rvs, as well as EPA-derived E-series Rvs, play a pivotal role

in regulating inflammation and restoring homeostasis. The levels of

these w-3 SPMs in circulation are frequently altered in chronic

inflammatory diseases (68), underscoring their significance in

determining disease outcomes. Our LS-MS/MS results revealed a

significant decrease in the levels of precursors for Rvs, protectins,

and MaRs of SPMS (18-HEPE, 17-HDHA, and 14-HDHA) in AH

patients compared to HCs or HDCs. Notably, these SPM

intermediates, 17-HDHA and 18-HEPE, have been used as

markers for the activation levels of the MaR-, protectin-, and Rv-

producing pathways, respectively (69–71). This reduction suggests a
TABLE 3 Multivariate linear regression analysis of lipid mediators with clinical parameters in patients with alcoholic hepatitis.

Variables
Prostaglandin D2 Leukotriene B4/lipoxin A4 ratio Maresin 1

Beta 95% CI p Beta 95% CI p Beta 95% CI p

Creatinine 0.002 0.002, 0.003 <0.001 -1.394 -2.009, -0.780 0.001 -0.014 -0.021, -0.008 0.001

Total
Bilirubin

0.013 0.0034, 0.022 0.014 0.795 -7.989, 9.579 0.840 -0.026 -0.122, 0.071 0.556

ALT 0.002 -0.026, 0.030 0.882 14.990 -11.417, 41.397 0.227 0.051 -0.239, 0.341 0.694

AST 0.078 0.018, 0.138 0.017 -60.339 -116.763, -3.9147 0.039 -0.132 -0.752, 0.487 0.635

INR -0.0002 -0.001, 0.0004 0.454 0.043 -0.570, 0.654 0.875 0.0001 -0.007, 0.007 0.961

MELD 0.007 0.001, 0.014 0.048 -3.184 -0.977, 3.406 0.298 -0.045 -0.117, 0.028 0.191

Neutrophils -0.002 -0.008, 0.004 0.441 3.02 -2.831, 8.870 0.584 -0.016 -0.080, 0.048 0.268

Platelets 0.031 -0.044, 0.105 0.369 -6.495 -76.533, 63.543 0.836 0.276 -0.493, 1.045 0.432
fron
CI, confidence interval; ALT, alanine aminotransferase; AST, aspartate aminotransferase; INR, international normalized ratio; MELD, model for end-stage liver disease. Multivariate linear
regression analyses were performed with age as a cofounding factor. The numbers represent correlation coefficients (Beta), 95% CI, and p value (p). p < 0.05 (bolded) was considered significant.
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potential defect in SPM biosynthesis pathways in AH patients,

which may contribute to impaired resolution of inflammation and

disease progression.

RvE1 levels were upregulated in patients with AH despite a

decrease in its precursor 18-HEPE. RvE1 is produced via transcellular

biosynthesis through interactions between neutrophils and vascular

endothelial cells. The RvE1 precursor 18-HEPE is secreted by the

endothelial cells and then converted to RvE1 in neutrophils by 5-LOX

(72). AH is associated with increased neutrophils in circulation and

the liver (73). From RNA-seq data mining, we found that both the

conventional peripheral blood neutrophils and the liver tissue from

patients with AH expressed higher levels of 5-LOX. It is possible that

18-HEPE was more efficiently converted to RvE1 by the elevated

levels of neutrophil 5-LOX in AH patients, leading to lower levels of

18-HEPE and higher levels of RvE1. Elevated circulating levels of

SPMs along with proinflammatory mediators have been observed in

several diseases (74), which might represent a failed attempt of the

immune system to restore homeostasis. Further studies are warranted

to dissect the mechanisms of the discorded production of 18-HEPE

and RvE1 in AH and the role of RvE in immunopathogenesis of AH.

Inflammation plays a major role in driving development and

disease progression of AH, with non-resolving inflammation

associated with severe disease (75). Our study revealed an intricate

link of the skewed profile of circulatory LMs with not only the

dysregulated production of inflammatory cytokines, chemokines, and

growth factors, but also importantly with disease severity of AH. A

previous study showed that dysregulation of serum LMs in a group of

13 AH patients is associated with a range of liver histology and

clinical scores, including a positive correlation between the elevated

PLM LTB4 and MELD score (62). Although we did not observe a

correlation between upregulated LTB4 and MELD score in the AH

subjects, we did find that the LTB4/LXA4 ratio was positively

correlated with MELD score. Additionally, the highly elevated

plasma levels of PGD2 correlated with total bilirubin levels, an

indicator of AH disease severity. PGD2 has both proinflammatory

and anti-inflammatory properties depending on the tissue and

context (76). PGD2 is mainly produced by mast cells, which can

induce allergic inflammation (77). Mast cells are enriched in ALD

liver and regulate liver disease progression (78). Therefore, it is

possible that mast cells-released PGD2 could contribute to hepatic

inflammation in AH. Liver resident macrophages Kupfer cells and

liver sinusoidal endothelial cells can also produce PGD2, the major

prostanoid formed in the liver (79). Activation of PGD2 receptor DP1

on hepatic stellate cells by DP1 agonism was shown to suppress the

acute hepatic inflammatory response in ConA-induced hepatitis in

mice (80). It remained to be determined whether PGD2 enhances or

ameliorates pathogenesis of AH.

BMI plays a significant role in the pathophysiology of alcoholic

hepatitis by influencing the degree of inflammation and immune

activation (81). Overweight, defined as BMI ≥ 25 in women and ≥ 27

in men, is a recognized risk factor for more severe histological liver

damage and the progression of alcoholic liver disease (82, 83). A

higher BMI is linked to increased adipose tissue, which secretes pro-

inflammatory cytokines like TNF-a and IL-6, thereby exacerbating

systemic inflammation (81, 84). This heightened inflammation, when

combined with alcohol’s toxic effects, drives excessive immune
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activation, leading to more severe liver damage in AH patients.

Additionally, elevated BMI is associated with increased gut

permeability and microbial translocation (85), further intensifying

systemic inflammation and worsening liver injury. However, our

analysis revealed that BMI did not significantly influence or correlate

with the levels of lipid mediators in AH patients. Thus, while BMI is

recognized as a contributor to inflammation and liver damage in AH,

our findings suggest that its impact on lipid mediator levels may be

minimal in this context.

Currently, there are no effective medical interventions available

for ALD such as AH. Alcohol abstinence remains a cornerstone of

treatment for ALD, which significantly improves the disease

outcomes. However, it is important to note that alcohol abstinence

typically does not lead to complete recovery for most ALD patients,

consistent with our clinical observations. As previously reported, our

investigations demonstrated that alcohol abstinent AH patients

exhibited substantial improvements in clinical scores and liver

function, although these improvements were not absolute (51).

Despite alcohol abstinence, our previous studies involving this

cohort of AH patients revealed the persistence of numerous up-

regulated inflammatory factors, including proinflammatory cytokines

(IL-8, IL-18, IL-23, and TNF-a), endothelial cell activation markers

(sCD146, sICAM, and sVCAM), soluble immune checkpoints

(sCD27, sCD40, sHVEM, and sTIM3), and the intestinal

epithelium damage markers (REG3a and TFF3) (4, 10, 51, 86).

None of these factors was completely normalized (4, 10, 51, 86). In

our current study, we found that three highly dysregulated LMs

(PGD2, LTB4, and LXA4) were mostly normalized in AH subjects

who abstained from alcohol. While it remains unknown whether

other LMs, especially SPMs, experience a similar restoration, our data

strongly suggest that LMs may exhibit a more pronounced

responsiveness to the cessation of alcohol consumption.

In this study, we used both LC-MS/MS and ELISAs to quantify

plasma levels of multiple LMs (both PLMs and SPMs) in AH

patients, HDC, and HC. LC-MS/MS offers greater accuracy and

the ability to quantify multiple analytes simultaneously, while

ELISA assays are more affordable and allow for the quantification

of larger number of samples. However, both assays have limitations.

Specifically, LC-MS/MS is expensive and only limited number of

samples could be assayed. A few ELISAs including those for LXA4,

PGE2, RvD2 are suggested to run with extracted samples to reduce

possible interferences from complex matrix in plasma samples.

However, due to the limited amount of plasma samples, all the LM

ELISAs were performed with unextracted samples. The PGD2 and

MaR1 ELISA kits are validated for quantification of those LMs in

cell lysates and urine samples. Furthermore, PGD2 is unstable,

readily metabolized in plasma. Thus, measure plasma levels of

PGD2 without converting it to a more stable methoxamine

derivative likely underestimated the amounts of PGD2 in the

plasma samples. Additionally, 3 LM ELISAs, including those for

PDG2, PGE2, and LXA4, have cross-reactivities with related LMs.

For example, PGD2 ELISA has 94.2% and 21.6% cross-reactivities

with PGF2a and PGJ2, respectively, while PGE2 ELISA has 43% and

18.7% cross-reactivities with PGE3 and PGE1, respectively. The

LXA4 ELISA has 24.0% cross-reactivities with the aspirin-induced

15-EPI-LXA4. Lastly, our sample size is relatively small, especially
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the longitudinal samples and those used in the multivariate linear

regression analysis. Despite those limitations, our study revealed an

imbalance in the production of PLMs and SPMs in AH patients

compared to HDC and HC.

In conclusion, our investigation unveils a substantial dysregulation

of peripheral blood LMs, encompassing a broad spectrum of PLMs,

SPMs, and their precursors in AH patients. Although HDCs had no

overt clinical symptoms, they still exhibited some alterations in

circulating levels of PLMs and SPMs. These abnormalities were

largely reversed in AH subjects who underwent alcohol abstinence.

Moreover, our study revealed correlations between altered LM levels

and key clinical indicators of disease severity, as well as inflammatory

factors in AH patients. Currently, there is no specific medical treatment

available for AH (87). Corticosteroids remain the mainstay of

treatment for severe AH, but they cause serious side effects,

including immunosuppression (87). Thus, there is an urgent need to

identify safer and more effective therapeutics. A promising approach

involves harnessing the body’s natural resolution process of

inflammation for therapeutic purposes. SPMs actively exert potent

dual anti-inflammatory and pro-resolving effects without causing

immunosuppression (42, 45, 59). Furthermore, SPMs contribute to

the restoration of tissue metabolism and homeostasis. Therefore, SPMs

emerge as a valuable and innovative tool for preventing, ameliorating,

and treating AH and other forms of ALD. In a mouse model of AH,

12-/15-LOX deficiency exacerbated hepatic and systematic

inflammation and increased liver disease severity (88). Remarkably,

this pathological state could be effectively mitigated through the

exogenous supplementation of LXA4 (88). Our study, demonstrating

the skewed production of PLMs and SPMs in AH patients, adds further

support to the development of inflammation resolution-based

strategies for the prevention, amelioration, and treatment of AH.
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