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signature for prediction of
prognosis and immune
landscape in gastric cancer
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Shuming Chen1, Shibo Wang1, Mengqi Zhang1, Xiangxue Li1,
Yangyang Lu1, Bing Wang2* and Weiwei Qi1*

1Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China, 2Biomedical
Centre, Qingdao University, Qingdao, China
Background: Gastric cancer (GC) poses a global health challenge due to its

widespread prevalence and unfavorable prognosis. Although immunotherapy

has shown promise in clinical settings, its efficacy remains limited to a minority of

GC patients. Manganese, recognized for its role in the body’s anti-tumor immune

response, has the potential to enhance the effectiveness of tumor treatment

when combined with immune checkpoint inhibitors.

Methods: Gene Expression Omnibus (GEO) and The Cancer Genome Atlas

(TCGA) databases was utilized to obtain transcriptome information and clinical

data for GC. Unsupervised clustering was employed to stratify samples into

distinct subtypes. Manganese metabolism- and immune-related genes (MIRGs)

were identified in GC by univariate Cox regression and least absolute shrinkage

and selection operator (LASSO) regression analysis. We conducted gene set

variation analysis, and assessed the immune landscape, drug sensitivity,

immunotherapy efficacy, and somatic mutations. The underlying role of NPR3

in GC was further analyzed in the single-cell RNA sequencing data and

cellular experiments.

Results: GC patients were classified into four subtypes characterized by

significantly different prognoses and tumor microenvironments. Thirteen genes

were identified and established as MIRGs, demonstrating exceptional predictive

effectiveness in GC patients. Distinct enrichment patterns of molecular functions

and pathways were observed among various risk subgroups. Immune infiltration

analysis revealed a significantly greater abundance of macrophages and

monocytes in the high-risk group. Drug sensitivity analysis identified effective

drugs for patients, while patients in the low-risk group could potentially benefit

from immunotherapy. NPR3 expression was significantly downregulated in GC

tissues. Single-cell RNA sequencing analysis indicated that the expression of

NPR3 was distributed in endothelial cells. Cellular experiments demonstrated

that NPR3 facilitated the proliferation of GC cells.
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Conclusion: This is the first study to utilize manganese metabolism- and

immune-related genes to identify the prognostic MIRGs for GC. The MIRGs

not only reliably predicted the clinical outcome of GC patients but also hold the

potential to guide future immunotherapy interventions for these patients.
KEYWORDS
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1 Introduction

Gastric cancer (GC), arising from the stomach’s epithelial cells,

is marked by its complexity and global impact (1). As per Global

Cancer Statistics 2020 (GLOBOCAN 2020), it ranks fifth in

prevalence and fourth in lethality worldwide (1, 2). Early-stage

gastric cancer can be treated with endoscopic techniques or surgery,

but its stealthy early signs often lead to late-stage diagnosis (3).

Advanced cases rely on a comprehensive approach involving

systemic anti-tumor therapies, such as chemotherapy, radiation,

molecular targeted therapy, and combination treatments (4, 5).

However, spatial and temporal heterogeneity in gastric cancer,

along with challenges from the tumor microenvironment, pose

obstacles like drug resistance, limited efficacy, and tumor

recurrence (6).

The immunosuppressive protein programmed death receptor 1

(PD-1) (7), which is abundant in tumor-infiltrating lymphocytes

(TILs), has been shown to prevent autoimmune diseases caused by

excessive immune cell activation (7, 8). The programmed death

receptor-ligand 1 (PD-L1) is abundantly expressed on the cell

membrane of tumor cells, and its interaction with PD-1 leads to

lymphocyte death, suppression of T-cell activation, and reduction

in cytokines production, ultimately enabling tumor cells to evade

immune (9). Immunotherapy, especially through PD-1/PD-L1

inhibitors, exploits this characteristic of malignant cells to revive

immune cells within the tumor microenvironment, reinstating the

killing ability of T cells against cancer cells (10).

In recent years, monoclonal antibodies targeting PD-1/PD-L1

have been employed in clinical therapy, demonstrating effectiveness

across various malignant tumors. These antibodies have notably

exhibited anti-tumor effects and hold promise in extending overall

survival (11–13). Unfortunately, the effectiveness of immune

checkpoint inhibitors (ICIs) is hindered by the insufficient

presence of immune cells within tumor microenvironments. ICIs

rely on abundant immune cells to reactivate immune responses and

induce anti-tumor effects (14, 15). Accordingly, the efficacy of

immunotherapy is restricted to few tumor subtypes (15, 16).

Numerous metals, including potassium, calcium, manganese,

and others, have been identified to modulate the immune system

(17). In organisms, manganese is abundantly distributed, usually as

Mn2+ (18). Manganese, as indispensable components in living
02
organisms (19, 20), have been revealed to regulate cellular

biological behavior, such as gene expression (21, 22) and signal

transduction (23–25). During the immune surveillance process, the

DNA of tumor cells activates antigen-presenting cells, particularly

dendritic cells (26), leading to the synthesis of type I interferons (I-

IFNs) and the presentation of tumor antigens to T cells (27, 28).

This activation triggers cytotoxic T lymphocytes (CTLs) to

eliminate tumor cells (26, 28), with the cGAS-STING pathway

playing a significant role in this process (26, 29–31). Manganese

enhances the activity of cyclic GMP-AMP synthase (cGAS) and its

downstream stimulator of interferon gene (STING), resulting in a

substantial increase in type I interferon production. Manganese is a

potent activator of the cGAS-STING pathway (32–35), leading to

noteworthy anticancer effects. Mice deficient in manganese exhibit a

significant reduction in their anti-tumor potential. Additionally,

combining manganese with immune checkpoint inhibitors or

chemotherapeutic drugs has shown enhanced effectiveness across

various tumor types (36). Consequently, the utilization of

manganese in conjunction with ICIs for therapeutic interventions

in malignancies holds significant promise.

This study sought to establish a prognostic signature for gastric

cancer by combining immune-related genes (IRGs) and manganese

metabolism-related genes (MRGs). We evaluated the significance of

this prognostic model in relation to immunological characteristics,

the efficacy of immunotherapy, somatic mutation, and drug

sensitivity. In summary, our prognostic model holds the potential

to identify new targets and treatments for gastric cancer, thereby

contributing to more precise anti-tumor therapy.
2 Methods

2.1 Datasets

The RNA sequencing profiles and associated clinical data of GC

were retrieved from The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) datasets. The TCGA-STAD dataset

was utilized as a training cohort and was obtained from UCSC

XENA (https://xenabrowser.net/datapages/). The GSE66229 dataset

was used as a validation cohort and was acquired from The Gene

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). We
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employed the “sva” packages to eliminate batch effects in both the

TCGA-STAD dataset and the GSE66229 datasets. To ensure data

integrity and precision, databases employ systematic procedures to

eliminate duplicate samples and samples lacking survival data.

Following the exclusion of patients with incomplete clinical

information, the TCGA and GEO datasets comprised 315 and

298 GC samples, respectively. The clinical features of the samples

involved in our research are displayed in Table 1. In addition, 1399

genes associated with manganese metabolism, referred to as

manganese metabolism-related genes, were retrieved from the

GeneCards database (https://www.genecards.org/) (Supplementary

Table S1). Immune-related genes, comprising 2483 genes associated

with immunity, were retrieved through the ImmPort database
Frontiers in Immunology 03
(https://www.immport.org/) (Supplementary Table S2). The

flowchart depicting the procedures used in the present study is

presented in Figure 1.
2.2 Screening of differentially expressed
manganese metabolism- and immune-
related genes

The raw counts of RNA-sequencing data in TCGA dataset were

analyzed using the “edgeR” R package to identify differentially

expressed genes (DEGs) in GC tumor tissues and normal tissues.

DEGs were selected based on an absolute log2 fold change (|log2FC|) >

1 and a significance threshold of P < 0.05. We performed additional

screening of immune- and manganese metabolism-related DEGs.
2.3 Functional enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

ontology (GO) pathway enrichment analysis were carried out on

immune- and manganese metabolism-related DEGs applying the

“clusterProfiler” package.
2.4 Unsupervised clustering based on
immune- and manganese metabolism-
related DEGs

The process of consistent clustering was carried out on immune-

related and manganese metabolism-related DEGs using the “NMF” R

package. The subtypes were then subjected to a t-distributed stochastic

neighbor embedding (t-SNE) analysis. The analysis of survival

differences among subtypes was conducted utilizing the “survminer”

and “survival” R packages.We investigated the variations in Estimation
TABLE 1 Clinical characteristics of GC patients in the TCGA and
GEO dataset.

Characteristic TCGA cohort GEO cohort

No. of patients 315 298

Status (%)

Alive 186 (59.0%) 146 (49.0%)

Dead 129 (41.0%) 152 (51.0%)

Age (%)

≤60 – 117 (39.3%)

>60 – 181 (60.7%)

Gender (%)

Male 199 (63.2%) 197 (66.1%)

Female 116 (36.8%) 101 (33.9%)

WHO-Stage (%)

I 42 (13.3%) 30 (10.1%)

II 103 (32.7%) 96 (32.2%)

II 136 (43.2%) 95 (31.9%)

IV 34 (10.8%) 77 (25.8%)

AJCC-T stage (%)

T1 15 (4.8%) –

T2 65 (20.6%) 186 (62.4%)

T3 150 (47.6%) 91 (30.5%)

T4 85 (27.0%) 21 (7.1%)

AJCC-N stage (%)

N0 98 (31.1%) 38 (12.8%)

N1 84 (26.7%) 130 (43.6%)

N2 67 (21.3%) 79 (26.5%)

N3 66 (20.9%) 51 (17.1%)

AJCC-M stage (%)

M0 294 (93.3%) 271 (90.9%)

M1 21 (6.7%) 27 (9.1%)
FIGURE 1

The flow chart displaying the entire research.
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of STromal and Immune cells in MAlignant Tumor tissues using

Expression data (ESTIMATE) score and tumor purity among different

subtypes. Additionally, the comparative analysis of immune checkpoint

expression across various subgroups was assessed by Wilcoxon test.

Gene Set Variation Analysis (GSVA) was applied to investigate the

differences in enrichment pathways across various subtypes.
2.5 Construction and verification of MIRGs
based on manganese metabolism and
immune characteristics

Data from TCGA was analyzed using univariate Cox regression

analysis to evaluate the predictive significance of DEGs associated

with manganese metabolism and immune on overall survival (OS),

with a threshold of P < 0.01. A least absolute shrinkage and selection

operator (LASSO) regression analysis was carried out using the R

package “glmnet” to avoid the issue of overfitting and develop a

prognostic manganese metabolism- and immune-related genes

(MIRGs)-based signature. The risk scores for every sample in the

training and validation set were derived via a specific formula: Risk

score = ∑ni coefi * Expression (Xi). The term “Coefi” represented the

coefficient value associated with each gene, and “Expression (Xi)”

represented each gene’s expression value. By employing the median

risk score as the criterion for division, the patients within both the

training and validation datasets were categorized into high-risk and

low-risk cohorts. The prognostic differences across subgroups were

assessed using the log-rank test and Kaplan-Meier survival analysis,

implemented in the “survminer” and “survival” R packages.

To evaluate the prediction accuracy and effectiveness of MIRGs,

the receiver operating characteristic (ROC) curve, and time-

dependent ROC (timeROC) curve were generated using the

“survivalROC” and “timeROC” R packages. The predictive

performance of Manganese metabolism- and immune-related

genes (MIRGs) was assessed using the area under curve (AUC).

To identify independent prognostic features capable of predicting

survival states in gastric cancer patients, univariate and multivariate

Cox regression analyses were conducted using risk scores and

clinical features. Additionally, the predictive performance of

MIRGs was externally validated using the GSE66229 dataset.
2.6 Establishment of a nomogram

“rms” R package to construct a nomogram that integrated

clinical features and risk scores, aiming to predict overall survival

at 1, 2, and 3 years. ROC curves and calibration curves were

generated to evaluate the predictive effectiveness of the nomogram.
2.7 Analysis of tumor microenvironment

Immune cell infiltration data were derived using Cell-type

Identification By Estimating Relative Subsets Of RNA Transcripts
Frontiers in Immunology 04
(CIBERSORT) algorithms (37). Enrichment scores for

immunological functions were computed using the “GSVA” and

“GSEABase” packages, employing single-sample gene set

enrichment analysis (ssGSEA). Subsequently, Wilcoxon test was

carried out to identify differences in immune functions and immune

cell profiles between individuals categorized as low-risk and

high-risk.
2.8 Gene set variation analysis of MIRGs

The “GSVA” package was employed to conduct GSVA analysis,

aiming to investigate the molecular functions and signaling

pathways associated with MIRGs.
2.9 Prediction of drug sensitivity

To provide management recommendations for GC, we

analyzed the half-maximal inhibitory concentration (IC50) of 198

drugs sourced from the Genomics of Drug Sensitivity in Cancer

(GDSC) database. The investigation utilized the “oncoPredict” R

package. Additionally, Wilcoxon test was used to compare the

sensitivity differences of commonly used medications in the

clinical treatment of GC between the low-risk group and high-

risk group. Moreover, Spearman correlation test was performed to

examine the relationship between the IC50 values of commonly used

drugs and risk scores.
2.10 Responses to immunotherapy

Microsatellite instability (MSI) is characterized by a high mutation

rate due to single nucleotide substitutions and frequent variations in

short repetitive DNA sequences (38), resulting from a failure in DNA

mismatch repair (MMR) (38). Subsequently, an examination was

conducted to assess the mutational status of microsatellites in patients

diagnosed with gastric cancer. Additionally, an investigation explored

the correlation between the mutation status of microsatellites and the

corresponding risk scores. The Tumor Immune Dysfunction and

Exclusion (TIDE) score for each sample was obtained using the

“TIDE” method, predicting immunotherapy efficacy, where a lower

TIDE score indicates a more positive immunotherapeutic effectiveness

(39). The immunophenoscore (IPS) of patients from TCGA-STAD

was derived through The Cancer Immunome Atlas (TCIA) website

(https://tcia.at), enabling the prediction of the effect of immune

checkpoint inhibitors such as CTLA4 and PD-1/PD-L1 antagonists

(40). The IPS score underwent normalization, resulting in a scale

ranging from 0 to 10, with a higher IPS score implying an elevated

level of immunological reactivity. Furthermore, an analysis was

performed on the differential expressions of immunological

checkpoints among various risk groups. The Wilcoxon test was

used to determine if there are statistically significant differences

between two groups.
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2.11 Tumor mutation burden analysis

Tumor mutational burden (TMB) quantifies the number of

mutated bases per million bases in each tumor sample,

encompassing various mutation types like missense mutations,

frameshift mutations, and nonsense mutations. The TMB data for

stomach adenocarcinoma were extracted from TCGA and can be

accessed at https://portal.gdc.cancer.gov/. The somatic point

mutations in each gastric cancer sample were visualized by

generating waterfall charts using the “maftools” R package.
2.12 Single-cell RNA-sequencing analysis

The single-cell RNA sequencing (scRNA-seq) dataset

GSE184198 was obtained from GEO for further investigation. The

“Seurat” R program was employed to analyze this dataset, which

includes both gastric cancer and normal tissue samples. To ensure

high-quality scRNA-seq data, an initial filtering process was applied

to retain cells expressing a minimum of 200 genes and genes

exhibiting expression in at least three cells. Additionally, cells

with mitochondrial gene expression exceeding 5% were excluded.

Subsequently, the scRNA-seq data were normalized, and 2000 genes

with significant variability were identified. Principal component

analysis (PCA) was utilized to assess the significance of principal

components between tissues or cells, and the datasets were

visualized using uniform manifold approximation and projection

(UMAP). CellMarker 2.0 was used to annotate cells in each cluster.

Differentially expressed genes for each cluster were identified using

a threshold of |log2FC| > 0.25. Furthermore, the distribution of the

NPR3 gene within the cell clusters was explored.
2.13 Single gene analysis of NPR3

The NPR3 gene, selected from the prognostic model, underwent

additional analysis. The NPR3 expression levels in normal tissues

and gastric cancer were compared using the Wilcoxon test.

Subsequently, ROC curve analysis and Kaplan-Meier survival

analysis were performed to illustrate the prognostic significance of

NPR3. Furthermore, an exploration of the correlation between

different immune cells and NPR3 was conducted.
2.14 Cell and reagents

The following cell lines, antibodies, and chemicals were employed

in this research: GES-1, AGS, MKN7, SGC7901, NCI-N87 (Cell Bank

of Type Culture Collection of the Chinese Academy of Sciences),

anti-NPR3 (Abcam, A19038), anti-GAPDH (Proteintech, Cat No:

10494–1-AP), anti-E-cadherin (Proteintech, Cat No: 60335–1-Ig),

anti-N-cadherin (Proteintech, Cat No: 22018–1-AP), anti-Vimentin

(Proteintech, Cat No: 10366–1-AP), HRP Goat Anti Rabbit IgG (H

+L) (Abclonal, AS014), Crystal violet (Aladdin, C110703), 3-(4,5-

dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT,
Frontiers in Immunology 05
Aladdin: M158055) and BeyoClick ™ EdU-488 Cell Proliferation

Detection Kit (Beyotime, C0071S).
2.15 Establishing stably transfected
cell lines

Jikai Gene (Shanghai, China) supplied the lentivirus (vector:

GV341) used in the study. Initially, AGS and SGC7901 cells were

inoculated in a 6-well plate and allowed to stabilize for 24 hours.

Following this, the lentivirus was added to the culture medium, and

the cells were incubated for an additional 24 hours. Subsequently,

puromycin was applied to the cells for 48 hours, following the

provided instructions, to identify cell lines that stably overexpress

NPR3 (p-NPR3).
2.16 Cell viability determination

AGS (1.5*104/well) and SGC7901 (3*104/well) cells were seeded

into a 24-well plate. Cell viability was assessed on the first, third, and

fifth days. At each time point, cell growth was halted, and a 0.5 mg/

mL MTT solution was introduced to the 24-well plate, followed by

2–4 hours of incubation. Subsequently, the resulting solution was

dissolved in DMSO, and the absorbance was measured at 490 nm

using a full-function microplate detector (BioTek, USA).
2.17 EdU assay

AGS and SGC7901 cells were cultured in a 24-well plate. The

EdU working solution was introduced to the cell culture system

when the cells were in a healthy state and they were allowed to

incubate for 2 hours. Subsequently, in accordance with the provided

instructions, the EDU reaction solution and DAPI were added

separately. The scene was observed and photographed using an

inverted fluorescence microscope (Nikon, Japan).
2.18 Migration assay

AGS and SGC7901 cells were inoculated for growth in a 24-well

plate. Once each well was filled with cells, a wound was created on the

cell surface using a tip. To assess the migratory ability of the cells, the

width of the woundwasmeasured with amicroscope at 0 and 48 hours.
2.19 Colony formation assay

AGS (1000/well) and SGC7901 (1000/well) cells were

inoculated in a 6-well plate, and the culture media were changed

every three days. The cells were fixed with 4% paraformaldehyde,

stained with a 0.1% crystal violet solution, and washed with tap

water until the 12th day. Subsequently, the cell colonies were

examined, and the count was conducted.
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2.20 Western blot

To obtain cell proteins, cells in good growth condition were

collected and lysed on ice for 1 hour in cell lysis buffer for Western

and IP. Cell proteins were quantified using the BCA method, and a

buffer solution was added to achieve 3000mg/ml. The protein was

denatured by boiling in water at 100°C for 10 minutes.

Subsequently, cell proteins were subjected to electrophoresis at

80V and 120V, followed by protein transfer to polyvinylidene

difluoride (PVDF) membranes at 300mA for 120 minutes.

The PVDF membrane was sealed at room temperature for 2

hours, then incubated overnight with anti-NPR3 and anti-GAPDH.

Antibodies were diluted at a ratio of 1:1000 using 5% skim milk.

Following this, HRP Goat Anti-Rabbit IgG (H+L) was left at room

temperature for 2 hours before testing for protein expression.
2.21 Statistical analysis

The statistical analyses were conducted using R software

(version 4.3.0) and GraphPad Prism Software (version 8.0.2). The

independent Student’s t-test was performed to compare normally

distributed continuous data between two groups, while the

Wilcoxon test was used to compare non-normally distributed

continuous variables. Kruskal-Wallis test was used for

comparison of continuous variables between multiple groups. The

Spearman correlation test was used to measure the correlation

between two variables. Experimental data were presented as

means ± standard deviation (SD). P < 0.05 were deemed

statistically significant unless otherwise stated in the text.
3 Results

3.1 Screening of differentially expressed
manganese metabolism- and immune-
related genes

In TCGA-STAD, a total of 4482 genes displayed differential

expression between normal tissues and gastric tumor samples

(Supplementary Table S3). Among these genes, 2133 were

upregulated, while 2349 were downregulated (Figure 2A). Our

analysis involved a comprehensive set of 2909 genes related to

manganese metabolism and immune functions (MRGs and IRGs).

From this pool, 692 genes were identified as DEGs associated with

both manganese metabolism and immune functions (Figure 2B;

Supplementary Table S4).
3.2 The evaluation of functional analysis

The KEGG functional annotation revealed enrichment in

immune activation pathways, including cytokine-cytokine

receptor interaction, IL-17 signaling pathway, viral protein

interaction with cytokine and cytokine receptor, Toll-like receptor
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signaling pathway, chemokine signaling pathway, and neuroactive

ligand-receptor interaction (Figure 2C; Supplementary Table S5).

The bar plot (Figure 2D) displayed the top 8 results in Biological

Process (BP), Molecular Function (MF), and Cellular Component

(CC) (Supplementary Table S6). The GO functional annotation

analysis indicated that the DEGs associated with manganese

metabolism and immune functions primarily play roles in cell

chemotaxis, cytokine receptor binding, granulocyte chemotaxis,

leukocyte migration, and cytokine-mediated signaling pathways.
3.3 Construction of the four subtypes by
unsupervised clustering

Following cluster analysis based on manganese metabolism- and

immune-associated DEGs, the entire cohort was stratified into four

distinct subtypes, denoted as clusters 1, 2, 3, and 4 (Figure 3A). The t-

SNE analysis results are presented in Figure 3B. Furthermore, we

conducted an analysis of prognostic differences among the four

subtypes. As illustrated in Figure 3C, there was a statistically

significant difference in prognosis among the four subgroups (P <

0.001). Cluster 1 exhibited longer overall survival times compared to

the other clusters, predicting a more favorable prognosis for cluster 1.

The variations in the tumor microenvironment among distinct

subtypes were demonstrated in Figures 3D–G. Cluster 2 showed

significantly increased immunological scores and ESTIMATE scores

compared to the other clusters. The tumor purity in cluster 4 was

higher than in the other clusters, potentially explaining its poor

prognosis. Evaluation of immunological checkpoints revealed that

patients in cluster 3 had significantly elevated expression levels for

most immune checkpoints compared to patients in the other

subgroups (Figure 3H). According to the GSVA results (Figure 3I;

Supplementary Table S7), signaling pathways linked to tumor

progression, such as focal adhesion, the transforming growth

factor-b (TGF-b) signaling pathway, and extracellular matrix

(ECM) receptor interaction, were elevated in clusters 2 and 3.

Metabolic pathways, including pyruvate metabolism, tryptophan

metabolism, and fatty acid metabolism, were concentrated in

Clusters 1 and 4.
3.4 Establishment and validation of MIRGs

Univariate Cox regression analysis showed a significant

correlation between 22 genes and OS in GC patients within the

TCGA cohorts (Figure 4A; Supplementary Table S8). Among them,

LGR6 was identified as protective for GC (HR < 1, P < 0.01), while

the remaining genes were considered risk factors (HR > 1, P < 0.01).

LASSO regression analysis identified 13 genes as MIRGs

(Figures 4B, C; Supplementary Table S9). Regression coefficients

were computed for each of the 13 genes. Among the 13 MIRGs, 5

were classified as Manganese Metabolism-Related Genes (CD36,

VCAN, SERPINE1, SLC24A2, RAG2), 3 as Immune-Related Genes

(APOH, LGR6, CER1), and 5 as genes belonging to both MRGs and

IRGs (VTN, NPR3, GRP, RNASE3, EGF). A patient’s risk score was
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determined based on a specific formula: RiskScore = (0.086 ×

CD36) + (0.024 × VCAN) + (0.182 × SERPINE1) + (0.065 ×

VTN) + (0.011 × NPR3) + (0.099 × APOH) + (0.205× GRP) +

(0.027 × SLC24A2) + (-0.108 × LGR6) + (0.304 × RNASE3) +

(0.171 × CER1) + (0.372 × EGF) + (1.075 × RAG2).

The median risk score of the TCGA cohort served as the

threshold value to categorize GC patients in the training set into

high- and low-risk groups. Kaplan-Meier survival analysis exhibited

that the high-risk group of GC patients experienced an increased

mortality rate and a reduced overall survival duration (Figure 4D).

The survival outcome and risk scores of samples in the training

cohort were shown in Figures 4E, F. The variances in expression of

the thirteen genes among subgroups was displayed in Figure 4G.

The efficiency of MIRGs was evaluated using the time-dependent

curve, with area under the curves (AUCs) of 0.671, 0.719, and 0.739

at 1, 2, and 3 years (Figure 4H). The risk score’s AUC was 0.657, the

highest among all other clinical characteristics (Supplementary

Figure S1A). The risk score for every sample in the GSE66229

dataset was determined using the same method as in TCGA. To

validate MIRGs constructed from TCGA dataset, patients in the

GSE66229 datasets were also separated into high- and low-risk

subgroups using the same threshold. Similar outcomes were
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achieved in the validation cohort. Patients in high-risk groups

had a significantly reduced survival duration compared to those

in the low-risk group (P < 0.001) (Figure 4I). The survival status and

risk scores of samples in the validation cohort were presented in

Figures 4J, K. Figure 4L displayed the variances in expression of the

thirteen genes between the high- and low-risk subgroups. Time-

dependent ROC curve indicated favorable levels of sensitivity and

specificity, with AUC values at 1, 2, and 3 years of 0.718, 0.610, and

0.610, respectively (Figure 4M). The risk score AUC was 0.719,

reflecting that MIRGs were highly efficient in predicting the

outcome of individuals with GC (Supplementary Figure S1B).

Furthermore, the univariate and multivariate Cox regression

analysis illustrated that MIRGs were significant predictors for GC

in both the TCGA-STAD dataset (Supplementary Figures S1C, D)

and the GSE66229 dataset (Supplementary Figures S1E, F).
3.5 Development of the risk score-related
prognostic nomogram

Nomograms were developed to enhance the predictive accuracy

and clinical utility for GC patients by incorporating a risk score and
B

C D

A

FIGURE 2

Gene screening and functional enrichment analysis. (A) Volcanic plot of DEGs in TCGA-STAD. (B) Venn diagram showing 692 differentially expressed
MRGs and IRGs. (C, D) Bar chart revealing the outcomes of KEGG pathways enrichment (C) and GO functional enrichment (D) of 692 differentially
expressed MRGs and IRGs.
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other prognostic indicators (Figures 5A, D). The overall score and

the patient survival rates at one, two, and three years showed a

negative connection. Calibration curves demonstrated a close

correspondence between the anticipated 1-, 2-, and 3-year rates of

survival and the real-world survival rates (Figures 5B, E).

Additionally, the AUC of the nomogram ROC curve was 0.725 in

the training set and 0.778 in the validation set (Figures 5C, F). These

values exceeded those for gender, age, risk, and TNM stage,
Frontiers in Immunology 08
indicating that the nomogram exhibited significant promise in

predicting survival rates for GC patients.
3.6 Immunological features of MIRGs

The immune-related scores in TCGA-STAD were computed using

the CIBERSORT algorithm, allowing us to differentiate immune
B C
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FIGURE 3

Molecular subtypes based on differentially expressed MRGs and IRGs. (A) Heatmap of consensus clustering matrix (k=4) showing four clusters
(C1 = 157; C2 = 66; C3 = 81; C4 = 44) for MIRGs. (B) tSNE plot depicting distribution of four clusters. (C) The Kaplan–Meier curves displaying
significant differentiation in overall survival time of patients between different phenotypes (P < 0.001). (D–G) Violin plots showing the ESTIMATE
score (D), tumor purity (E), immune score (F) and stromal score (G) across different phenotypes. (H) The box diagrams displaying the difference of
checkpoints’ expression in four clusters. (I) Heatmap of GSVA demonstrating biological functions and signaling pathways in four subgroups. (*, **,
*** represent P < 0.05, P < 0.01, P < 0.001, respectively.).
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infiltration between risk subgroups. High-risk individuals exhibited a

significant enhancement in many immunological functions, including

APC co-stimulation, circulating chemokine-receptor (CCR), human

leukocyte antigen (HLA), immune checkpoints, Parainflammation,

type-I IFN response, type-II IFN response, and T cell co-inhibition
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(Figure 6A). The analysis of immune infiltration revealed that patients

classified as high-risk exhibited a greater fraction of monocytes andM2

macrophages compared to patients classified as low-risk (Figure 6B).

The immunological characteristics of distinct risk subgroups exhibited

significant variation.
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FIGURE 4

Construction and verification of MIRGs. (A) Forest plot of univariate cox regression analysis screening 22 DEGs linked to survival. (B, C) LASSO
regression generating 13 genes for MIRGs. (D) The Kaplan-Meier curves illustrating significant differentiation in survival of patients between risk
subgroups in the TCGA cohort. (E) Distribution of survival status in the TCGA cohort. (F) Distribution of risk score in the TCGA cohort. (G) Heatmaps
of 13 genes from MIRGs in the TCGA cohort. (H) ROC curves evaluating the predictive accuracy of MIRGs in the TCGA cohort. (I) The Kaplan-Meier
curves illustrating significant differentiation in survival of patients between risk subgroups in the GEO cohort. (J) Distribution of survival status in the
GEO cohort. (K) Distribution of risk score in the GEO cohort. (L) Heatmaps of 13 genes from MIRGs in the GEO cohort. (M) ROC curves evaluating
the predictive accuracy of MIRGs in the GEO cohort.
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3.7 Pathway enrichment analysis of MIRGs

The purpose of conducting GSVA was to investigate the

variations in the enrichment of signaling pathways or biological

processes between risk subgroups (Supplementary Figure S2A).

Patients classified as high-risk showed enrichment in various

processes and pathways associated with the progress and

metastasis of tumor, including focal adhesion, TGF-b signaling
Frontiers in Immunology 10
pathway, Janus kinase/signal transducer and activator of

transcription (JAK/STAT) signaling pathway, and cell adhesion

molecules (CAMs). Patients classified as low-risk exhibited

enrichment in metabolic-related processes, specifically propanoate

metabolism, butanoate metabolism, pyruvate metabolism, and

pyrimidine metabolism. Additionally, gene repair-related

pathways, which includes nucleotide excision repair, base excision

repair, and mismatch repair, were enriched in the low-risk group.
B
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A

FIGURE 5

Development of nomograms based on clinical features and risk scores. (A, D) The nomograms predicting the 1-, 2- and 3-year survival rate of
patients with GC in the TCGA cohort (A) and in the GEO cohort (D). (B, E) Calibration curves for nomograms in the TCGA cohort (B) and in the GEO
cohort (E). (C, F) ROC curves assessing the prognostic accuracy of nomogram and other clinical features in the TCGA cohort (C) and in the GEO
cohort (F).
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3.8 Drug sensitivity analysis

We conducted a sensitivity analysis on 198 drugs sourced from the

GDSC database (Supplementary Table S10). We then examined the IC50

values of clinically relevant medicines between the low-risk and high-risk

groups (Figures 6C–J). Furthermore, the association between IC50 values

of medicines and risk scores was demonstrated (Figures 6K–R). The IC50

values of 5-Fluorouracil, afatinib, osimertinib, and paclitaxel medicines
Frontiers in Immunology 11
exhibited an upward trend when the risk scores increased. Conversely,

the IC50 values of cediranib, dactolisib, dasatinib, and staurosporine

medicines were reduced as the risk scores increased. Drug sensitivity

analysis revealed that individuals classified in the high-risk groups could

potentially derive therapeutic benefits from cediranib, dactolisib,

dasatinib, and staurosporine. Patients categorized as low-risk

demonstrated a greater propensity to benefit from 5-Fluorouracil,

afatinib, osimertinib, and paclitaxel.
B
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FIGURE 6

Immune landscape and drug sensitivity. (A, B) Evaluation of immune cell infiltration (A) and immune function (B) between risk subgroups. (C–J)
Comparison of the IC50 values of 5-Fluorouracil (C), afatinib (D), osimertinib (E), paclitaxel (F), cediranib (G), staurosporine (H), dasatinib (I), and
dactolisib (J) between risk subgroups. (K–R) The correlation between IC50 values of 5-Fluorouracil (K), afatinib (L), osimertinib (M), paclitaxel (N),
cediranib (O), staurosporine (P), dasatinib (Q), dactolisib (R) and risk scores. (*, **, ***, **** represent P < 0.05, P < 0.01, P < 0.001, P <
0.0001, respectively.).
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3.9 Evaluation of immunotherapy efficacy

We next performed an analysis of the distribution of

microsatellite states among patients (Figure 7A). The percentage

of individuals with microsatellite stability (MSS) was greater in both

high-risk and low-risk groups. In addition, the percentage of

individuals with microsatellite instability (MSI) in low-risk
Frontiers in Immunology 12
patients (36%) exceeded that in the high-risk patients (29%).

Individuals with MSI-high (MSI-H) status had a significantly

lower risk score than those with MSS and MSI-low (MSI-L)

status (Figure 7B). This demonstrated that immunotherapy was

more likely to benefit GC patients categorized as low-risk. Patients

who had higher TIDE scores often experienced less sensitivity to

immunotherapy. As depicted in Figure 7C, patients categorized as
B C

D E F G

H I

J K

A

FIGURE 7

Immunotherapy efficacy and Tumor Mutational Burden. (A) The mutation status of microsatellites. (B) The difference of the median risk scores in the
three subtypes. (C) Comparison of the TIDE score between risk subgroups. (D–G) The differences of Immunophenoscores (IPS) (D), IPS-PD1/PD-L1/
PD-L2 (E), IPS-PD1/PD- L1/PD-L2+CTLA4 (F), and IPS-CTLA4 (G) between risk subgroups. (H) Comparison of immune checkpoints expression
between risk subgroups. (I) Correlation analysis of risk scores and TMB. (J, K) The waterfall map demonstrating mutation frequencies in high-risk
group (J) and in low-risk group (K). (*, **, *** represent P < 0.05, P < 0.01, P < 0.001, respectively.).
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low-risk had significantly elevated TIDE scores, suggesting that

immunotherapy might have diminished efficacy. An analysis was

further conducted to assess the IPS scores of GC patients in different

risk subgroups (Figures 7D–G). We found that the IPS-CTLA4

blocker score was significantly higher in the low-risk group

compared to the high-risk group. This suggested that GC patients

categorized as low-risk could potentially benefit from ICIs.

Moreover, the low-risk group’s immune checkpoint expression

levels were lower than those of the high-risk group (Figure 7H).
3.10 Somatic mutation analysis

The TMB of each sample was computed and analyzed. The

findings demonstrated that the risk score and the TMB were

negatively correlated, with the high-risk group exhibiting a

significantly lower TMB in contrast to the low-risk group

(Figure 7I). Waterfall plots were generated to display the top 20

genes exhibiting the highest mutation frequencies in high-risk

patients (Figure 7J) and low-risk patients (Figure 7K).
3.11 Single-cell RNA-sequencing data

The transcriptional profile of 22,240 cells were derived from the

scRNA-seq data of GSE184198. Then, sixteen cell clusters were

visualized by UMAP (Figure 8A). A heatmap was generated to

display the expression of the top 5 marker genes for each cluster

(Figure 8B). We also visualized the distribution of the marker gene

for each cluster in the scatter plot (Figure 8C). The sixteen cell

clusters could be divided into seven distinct categories of cell types:

T cells, dendritic cells, B cells, epithelial cells, fibroblasts, endothelial

cells, and mast cells (Figure 8D). Furthermore, the expression and

distribution of the NPR3 gene were visualized (Figures 8E, F). The

data indicated that NPR3 was only enriched in endothelial cells.
3.12 Single gene analysis of NPR3

The NPR3 gene exhibited significantly decreased expression in

GC tissues (Figure 8G). Individuals with high NPR3 expression had

a worse prognosis compared to those with low NPR3 expression

(Figure 8H). The AUC of the ROC curve was 0.636, indicating that

the NPR3 gene provided accurate prognostic prediction (Figure 8I).

The NPR3 gene is linked to a diverse range of immune cells,

particularly mast cells, macrophages, and NK cells (Figure 8J).
3.13 Function validation of NPR3 in GC

The NPR3 gene has been implicated in the pathogenesis of clear

cell renal carcinoma (41), osteosarcoma (42), colorectal cancer (43),

and hepatocellular carcinoma (44). Nevertheless, the potential role

of NPR3 in GC remains inadequately explored. Hence, we

conducted additional investigations into the effect of NPR3 on

GC through cellular experiments. The western blot indicated a
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decreased expression of NPR3 in GC cell lines (Figure 9A). The p-

NPR3 was transferred into AGS and SGC7901 cell lines, and its

efficiency for transfection was verified through a western blot

(Figures 9B, C). AGS cell viability was not affected by NPR3

overexpression (Figure 9D), while SGC7901 cell viability was

significantly increased (Figure 9E). The colony formation

experiments revealed that elevated levels of NPR3 expression

significantly promoted the formation of colonies in the SGC7901

and AGS cell lines (Figures 9F, G). Furthermore, migration

experiments revealed that the upregulation of NPR3 expression

considerably improved the migratory ability of the SGC7901 and

AGS cell lines (Figures 9H, I). According to the results of EdU

assays, the proliferation of the SGC7901 and AGS cell lines was

enhanced due to NPR3 upregulation (Figures 9J, K). We further

explored the effect of NPR3 on epithelial-mesenchymal transition

(EMT) in gastric cancer cells. The protein level of mesenchymal

markers, such as N-cadherin, vimentin, were considerably increased

while the expression of the epithelial marker E-cadherin was

notably decreased in NPR3 overexpressed cells (Supplementary

Figures S3A, B). TIMER online database was used to analyze the

correlation between NPR3 and EMT-related genes. The findings

demonstrated that NPR3 was negatively correlated with E-cadherin

(Supplementary Figure S3C) and positively correlated with N-

cadherin, vimentin (Supplementary Figures S3D, E).
4 Discussion

GC, characterized by its heterogeneity, is frequently detected at

an advanced stage (1). Although immunotherapy has emerged as a

promising treatment strategy for GC (45, 46), its response rate

remains suboptimal, presenting a substantial challenge in human

health (1). Recent scientific investigations have highlighted the

pivotal role of the cGAS-STING pathway in the body’s immune

response to tumors (26, 29–31). Manganese, as the activator of this

pathway (32–35), enhances the body’s anti-tumor capacity. The

combination of manganese with ICIs has demonstrated improved

antitumor effectiveness (36). These findings indicate that exploring

manganese metabolism and immunity in GC has significant clinical

implications for improving patient prognosis.

The progress achieved in bioinformatics and sequencing

technologies has led to the development of several prognostic

signatures associated with immunity, particularly in assessing the

prognosis of individuals with GC (47–63). However, many

prognostic models focus solely on immune-related genes,

neglecting the impact of biological factors on the efficacy of

immunotherapy. This study takes a novel approach by integrating

research on immune and manganese metabolism, aiming to

enhance the effectiveness of immunotherapy and deepen our

understanding of the immunological characteristics of GC. KEGG

and GO analysis revealed that DEGs associated with manganese

metabolism and immune pathways were enriched in immune

activation-related processes. Utilizing consensus clustering, we

identified four distinct molecular subtypes, each exhibiting

significant differences in survival rates. Further analysis explored

the variations in tumor microenvironments, immune checkpoints,
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and enrichment pathways among these subtypes, confirming their

impact on prognosis. Subsequently, a novel prognostic signature,

termed MIRGs, was constructed, comprising 13 genes: CD36,

VCAN, SERPINE1, SLC24A2, RAG2, APOH, LGR6, CER1, VTN,

NPR3, GRP, RNASE3, and EGF. MIRGs effectively categorized GC

patients into high-risk and low-risk groups, with the high-risk

group demonstrating reduced overall survival time and poorer

survival rates. Importantly, MIRGs were identified as independent

predictors of the prognosis of GC patients. Nomograms were
Frontiers in Immunology 14
developed by combining various clinical variables with the risk

score, providing a comprehensive perspective on the prognostic

capabilities of MIRGs. This study, pioneering the integration of

MRGs with IRGs, offers a unique and promising approach to

prognostic modeling and suggests new avenues for therapeutic

strategies in GC.

We further conducted a more in-depth investigation into the

molecular mechanisms that contribute to the notable disparity in

prognosis between distinct risk subgroups. The findings of immune
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FIGURE 8

Single-cell RNA-sequencing analysis and single gene analysis of NPR3. (A) UMAP plot of 16 cell clusters. (B) Heatmap showing the top 5 marker genes
for each cluster. (C) Scatter plot depicting the distribution of the marker gene for each cluster. (D) UMAP plot of all clusters with cell-type annotations.
(E, F) Scatter plot (E) and bubble plot (F) displaying the distribution of NPR3 genes in clusters. (G) Differential expression of NPR3 between normal tissues
and gastric cancer. (H) The Kaplan-Meier survival analysis of NPR3. (I) ROC curve of NPR3 in predicting survival time. (J) Correlation between various
immune cells and NPR3. (*, **, ***, and ns represent p < 0.05, p < 0.01, p < 0.001, and “not statistically”, respectively.).
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cell infiltration analysis indicated a high proportion of monocytes and

M2macrophages in high-risk patients. Macrophages, which originate

from monocytes, can be classified into two subtypes: M1 and M2

macrophages (64). Previous research has demonstrated that M2

macrophages are pivotal in the development and progression of

GC. There is an increasing consensus (65, 66) suggesting that the

infiltration of M2 macrophages is strongly linked to the immune

evasion environment in GC. M2 macrophages typically release pro-
Frontiers in Immunology 15
angiogenic molecules, such as transforming growth factor-a and -b
(TGF-a and -b), vascular endothelial growth factor (VEGF), which

promote angiogenesis in GC (67, 68). M2 macrophages also facilitate

the migration and infiltration of tumor cells by stimulating epithelial-

mesenchymal transition (EMT) in GC (69–71). In addition, M2

macrophages induce the metastasis of gastric cancer by secreting

CHI3L1 (72). Moreover, M2 macrophages have been observed to

exacerbate the advancement of GC by modifying metabolism,
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FIGURE 9

Function validation of NPR3 in GC. (A) The expression of NPR3 protein in GES-1, AGS, MKN7, SGC7901, NCI-N87 cells. (B) The expression of NPR3
protein in AGS cells following transfection of p-NPR3. (C) The expression of NPR3 protein in SGC7901 cells following transfection of p-NPR3.
(D) Cell viability of AGS cells after transfection of p-NPR3. (E) Cell viability of SGC7901 cells after transfection of p-NPR3. (F) Clone formation of AGS
cells after transfection of p-NPR3. (G) Clone formation of SGC7901 cells after transfection of p-NPR3. (H) Migration of AGS cells after transfection of
p-NPR3. (I) Migration of SGC7901 cells after transfection of p-NPR3. (J) EdU assay of AGS cells after transfection of p-NPR3. (K) EdU assay of
SGC7901 cells after transfection of p-NPR3. (*, ** represent P < 0.05, P < 0.01, respectively.).
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specifically affecting fatty acids (73), arginine, proline (74), and

methionine (75) metabolism. A high density of M2 macrophages

has been identified as a predictive indicator of unfavorable outcomes

in GC (76, 77). Consistently, a high abundance ofM2macrophages in

patients at high risk for tumor progression and unfavorable outcomes

was identified in our study. In addition to the above observation,

numerous immune checkpoint expressions were substantially

upregulated in individuals classified as high-risk. Immune

checkpoints mediate co-inhibitory signaling pathways and induce

tumor cells to evade immunosurveillance (78, 79). The combination

of PD-1 expressed on immune cells and PD-L1 on antigen-presenting

cells and tumor cells hinders the functioning of T cells and facilitates

the evasion of the immune system by tumors (80). Besides, it is now

understood that cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibits

the binding of CD28 receptors on CD4+ T cells to B7 molecules on

antigen-presenting cells. This activity impedes the transmission of

signals from T-cell receptors, hence inhibiting their activation (81). T

cell immunoreceptor with immunoglobulin and ITIM domain

(TIGIT) contributes to suppress the immune response against

malignancies through multiple routes. TIGIT suppresses dendritic

cell maturation (82), inhibits natural killer cell effector function (83),

and promotes macrophage polarization to the M2 phenotype (84). A

study documented that lymphocyte activation gene-3 (LAG-3) can

coordinate with PD-1 to promote the immune escape of GC,

indicating its potential as an indicator of poor prognosis (85). The

elevated levels of immune checkpoints were an additional factor

contributing to unfavorable prognosis of high-risk patients. The high-

risk group showed enrichment in pathways linked to cancer, which

involves cell adhesion molecules, the TGF-b signaling pathway, and

the JAK-STAT signaling system, as evaluated by GSVA. Cell

adhesion molecules, particularly integrins, can enhance the survival,

proliferation, and infiltration of tumor cells, hence facilitating the

advancement and metastasis of malignancies (86). The TGF-b
signaling pathway significantly influences the development of GC

(87). Another study revealed a significant expression of TGF-b
protein in GC, which contributes to the malignant transformation

and proliferation of tumors (88). Additionally, TGF-b is widely

recognized as the main inducer for the EMT pathway in GC (89).

The JAK-STAT signaling system plays a role in the development and

progression of GC. Previous research (90) demonstrated that the

Janus kinase (JAK) dimers facilitate the phosphorylation of tyrosine

705 of signal transducer and activator of transcription 3 (STAT3),

which is excessively active in GC. STAT3 governs the transcription of

genes that facilitate tumor infiltration, cancer cell proliferation, and

resistance to chemotherapy (91, 92). Besides, STAT3 promote

mesothelial-to-mesenchymal transition and contributes to

peritoneal metastasis of GC (93). The distinct molecular

mechanisms may account for the poorer prognosis of individuals

with GC who are classified as high-risk.

Herein, we conducted a comprehensive study on the

significance of NPR3 in GC. As a natriuretic peptide receptor,

natriuretic peptide receptor 3 (NPR3) has been linked to the

development of a variety of malignancies. Suppression of NPR3

expression facilitated the spread of clear cell renal carcinoma (41).

The induction of apoptosis in hepatocellular carcinoma cells was

reported to result from the up-regulation of NPR3 (44). The
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expression of NPR3 inhibited the development of osteosarcoma

by suppressing the PI3K-AKT pathway (42). In contrast, a study

uncovered that NPR3 overexpression promoted the proliferation of

colorectal cancer cells (43). Moreover, NPR3 was involved in

constructing prognostic signatures to forecast the outcome of

individuals with GC (60, 94) and breast cancer (95–97). It was

found that NPR3 actively stimulates the migration and proliferation

of breast tumor cells (95). Nevertheless, the specific function of

NPR3 in gastric cancer has not been comprehensively examined.

NPR3 protein expression was demonstrated to be significantly

downregulated in GC cell lines during experimental validation.

The NPR3 overexpression stimulated the migration and growth of

GC cell lines, indicating that NPR3 may function as a promoter of

tumor growth in GC progression. Therefore, NPR3 holds significant

potential as a therapeutic and prognostic indicator for GC.

In summary, our research successfully developed a novel

prognostic signature for gastric cancer incorporating 13 genes

linked to manganese metabolism and the immune system. This

prognostic signature exhibited outstanding predictive performance,

providing valuable insights for clinical decision-making in GC

treatment. The prospect of combining manganese with immune

checkpoint inhibitors emerges as a promising avenue for future

GC therapies. However, it is essential to acknowledge certain

limitations in this research. The findings rely on publicly

available databases and laboratory experiments conducted on

isolated cells. Further investigations involving animal models and

clinical trials are imperative before translating these findings into

therapeutic applications.
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