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Integrated multi-omics and
artificial intelligence to explore
new neutrophils clusters and
potential biomarkers in sepsis
with experimental validation
Peng Xu †, Zuo Tao † and Cheng Zhang*

Department of General Surgery, General Hospital of Northern Theater Command, Shenyang,
Liaoning, China
Background: Sepsis, causing serious organ and tissue damage and even death,

has not been fully elucidated. Therefore, understanding the key mechanisms

underlying sepsis-associated immune responses would lead to more potential

therapeutic strategies.

Methods: Single-cell RNA data of 4 sepsis patients and 2 healthy controls in the

GSE167363 data set were studied. The pseudotemporal trajectory analyzed

neutrophil clusters under sepsis. Using the hdWGCNA method, key gene

modules of neutrophils were explored. Multiple machine learning methods

were used to screen and validate hub genes for neutrophils. SCENIC was then

used to explore transcription factors regulating hub genes. Finally, quantitative

reverse transcription-polymerase chain reaction was to validate mRNA

expression of hub genes in peripheral blood neutrophils of two mice

sepsis models.

Results:We discovered two novel neutrophil subtypes with a significant increase

under sepsis. These two neutrophil subtypes were enriched in the late state

during neutrophils differentiation. The hdWGCNA analysis of neutrophils unveiled

that 3 distinct modules (Turquoise, brown, and blue modules) were closely

correlated with two neutrophil subtypes. 8 machine learning methods revealed

8 hub genes with high accuracy and robustness (ALPL, ACTB, CD177, GAPDH,

SLC25A37, S100A8, S100A9, and STXBP2). The SCENIC analysis revealed that

APLP, CD177, GAPDH, S100A9, and STXBP2 were significant associated with

various transcriptional factors. Finally, ALPL, CD177, S100A8, S100A9, and

STXBP2 significantly up regulated in peripheral blood neutrophils of CLP and

LPS-induced sepsis mice models.

Conclusions: Our research discovered new clusters of neutrophils in sepsis.

These five hub genes provide novel biomarkers targeting neutrophils for the

treatment of sepsis.
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1 Introduction

Sepsis is the result of a dysregulated host response to infection

and can cause serious organ damage and even death. Mortality rates

of sepsis rapidly exceed 30–35% without prompt and effective

intervention (1). Over the past few decades, anti-inflammatory

treatments have not been successful, and the immunosuppression

often seen in patients with sepsis makes them more susceptible to

nosocomial infections and organ dysfunctions (2). The causative

factor for concomitant immunosuppression is lymphocyte

exhaustion and reprogramming of innate immunity (3).

Therefore, understanding the key mechanisms underlying sepsis-

associated immune responses would lead to more potential

therapeutic strategies (4).

Genome expression profiling studies have previously relied on

whole blood to characterize diagnostic or prognostic genes,

however, rarer cell types or cell type-specific signatures in sepsis

were rarely detected (5). With the development of single-cell-RNA

(sc-RNA) transcriptome, the immunosuppression condition was

gradually discovered. It has been shown that myeloid cells are

increased in number but lacking in function in sepsis (6). Guilin Li

et al. reveals that the molecules CAP-1 and IL16 on monocytes may

serve as potential diagnostic markers for sepsis based on sc-RNA

analysis (7). Single-cell RNA sequencing (scRNA-seq) analysis

revealed a new role of circulating MAIT17 in promoting sepsis

severity and suggests the PI3K-LDHA signaling as a driving force in

MAIT17 responses (8). By comparing the immune cell landscapes

in sepsis with those in other conditions, researchers aim to identify

common and disease-specific immune cell states and pathways,

which could provide a more comprehensive understanding of the

immune response and inform the development of novel

therapeutic approaches.

Machine learning (ML) showed great promise in assessing high-

dimensional data and identifying genes with biological significance

(9). In sepsis, ML methods were widely used in identification of

subclasses and development of prediction models (10, 11). Given

sepsis is made up of multiple types of cells, such as neutrophils,

macrophages, T cells and B cells, combination of single-cell

sequencing and machine learning methods is proved to be a

groundbreaking approach to study the genetic attributes of sepsis

at the individual cell level (12).

In this study, we integrated single-cell RNA sequencing to

identify specific neutrophils cell clusters and signature gene sets in

sepsis. hdWGCNA (High Dimensional Weighted Correlation

Network Analysis) method and multiple machine learning

methods (Lasso, k-Nearest Neighbors, Linear Discriminant

Analysis, Logistic Regression, Naive Bayes, Random Forest,

Recursive Partitioning, and Support Vector Machine) were used

to transcriptome analysis and hub genes identification. Finally,

two mice models of sepsis were establishment and validated

expressions of hub genes. Our findings provide an overall

perspective on the heterogeneity of neutrophils in sepsis and

will inform the development of personalized treatment and

management strategies.
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2 Methods

2.1 Patients and datasets

All datasets were obtained from the GEO dataset (https://

www.ncbi.nlm.nih.gov/geo/). The scRNA-seq dataset GSE167363

included 2 healthy subsets and 4 sepsis subsets. The transcriptomic

data were downloaded from GEO datasets GSE57065 and

GSE95233. The training dataset GSE57065 included 25 healthy

subsets and 28 sepsis subsets. The validation dataset GSE95233

included 22 healthy subsets and 51 sepsis subsets. GSE57065 and

GSE95233 were also used for meta-analysis. Information of

GSE167363, GSE57065, and GSE95233 were showed in

Supplementary Table S1.
2.2 Single cell analysis

The R “Seurat” package (version 4.3.0.1) was used to process the

scRNA-seq data. The expression profile was read in by

Seurat package and screened out (nFeature_RNA>200 &

nFeature_RNA<5000 & percent.mt < 20). 1Unsupervised

clustering was conducted using Principal Component Analysis

(PCA) and Uniform Manifold Approximation and Projection

(UMAP) analysis after data normalization with the LogNormalize

method, allowing us to see cell populations on a two-dimensional

map. The Human Primary Cell Atlas was used as the source of

reference material for the SingleR package’s cell annotation

function. To identify each cluster’s marker gene, we used the

“FindAllMarkers” tool and threshold values of fold change (FC).
2.3 High dimensional weighted correlation
network analysis

High dimensional data, such as single cell RNA-seq, can be used

to perform weighted gene co-expression network analysis

(WGCNA) using hdWGCNA. hdWGCNA detects strong

modules of linked genes and gives the biological context for these

modules. It may be used to build co-expression networks in a cell

type-specific manner. In this study, we investigated the hub genes of

neutrophils under sepsis using hdWGCNA. And lastly, a

subpopulation of hepatocytes undergoing regeneration was

screened for distinctive genes. The “hdWGCNA” package version

utilized in this research is 0.1.1.9010.
2.4 Trajectory analysis for cell subsets

The trajectory analysis was performed via the R “Monocle”

package (version 2.18.0). The cell data set was constructed using

an integrated gene expression matrix, exported from the Seurat

object into Monocle. SetOrderingFilter was used to sequence

cells based on the variable genes defined by dispersionTable.
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Finally, we then reduced the dimensionality of the trajectory

using the Darter method and estimated the arrangement of cells

using the orderCells function. The differentiation time of cell

subsets was then identified clustering characteristics and

gene markers.
2.5 Cellular communication analysis

R “CellChat” package (version 1.0.0) was used to analyze

cellular communications. In sepsis, we investigated the differences

and connections between immune cells during the current

regeneration process, as well as the interactions of regeneration-

related subsets with other cell types via cell communication analysis.

Finally, we selected 4000 immune cells for processes.
2.6 Function analysis

High-throughput molecular research results are often translated

into biological applications by analyzing gene function. We

analyzed gene function using the R “clusterProfile” package

(version 3.17) and visualized hub genes containing Disease

Ontology (DO), Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG). The significance level was set

at P<0.05.
2.7 Identification of hub genes via machine
learning algorithms

Multiple machine learning algorithms were applied to this study

to identify feature genes. The first step was to perform Least

Absolute Shrinkage and Selection Operator (Lasso) to screen

candidates by iteratively reweighting least squares. Feature

variables were selected based on minimum criteria after running

the algorithm for 1000 cycles. Next, seven machine learning

algorithms (k-Nearest Neighbors, Linear Discriminant Analysis,

Logistic Regression, Naive Bayes, Random Forest, Recursive

Partitioning, and Support Vector Machine) were applied. Finally,

the receiver operating characteristic (ROC) curve was used to assess

the classification performance of the hub genes in both training and

validation cohorts. The pROC software was used to create ROC

curves and the area under the curve was calculated.
2.8 Analysis of transcriptional factor
regulatory network

Single-cell regulatory network interference and clustering

(SCENIC, version 1.2.4) was created specifically for single cell

data. Following the introduction of the gene co-expression

network derived from transcription factor (TF) motifs by

SCENIC, high-reliability gene regulatory networks (GRNs)

predominately composed of TFs were found. We further

highlighted the transcription factors of hub genes.
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2.9 Immune infiltration analysis

CIBERSORT was used to determine immune cell proportions

(13). Correlation analysis was then conducted to analyze the

relationship between immune cells and eight hub genes (ACTB,

ALPL, CD177, GAPDH, S100A8, S100A9, SLC25A37, and STXBP2).
2.10 GSEA analysis and ssGSEA analysis

Gene Set Enrichment Analysis (GSEA) (https://www.

broadlnstitute.org/gsea/) and single sample Gene Set Enrichment

Analysis (ssGSEA) were to explore the biological functions and gene

expressions according to all gene sets in the Hallmark database.
2.11 Gene set variation analysis

The Gene Set Variation Analysis (GSVA) is an unsupervised,

non-parametric method. Based on the R “GSVA” package (version

1.42.0) transformation of gene expression data, we analyzed the

data as a feature derived from the expression matrix of each single

gene. Rank statistics were used to calculate the gene sets for each

feature, and expression matrices were converted into Enrichment

Score (ES) matrixes. The GSVA enrichment score for each sample

could be obtained, facilitating statistical analysis of the data.
2.12 Establishment of the sepsis
mouse model

Cecal Ligation and Puncture (CLP) mice sepsis models: After

inhaling isoflurane, eight-week C57 mice were anesthetized, and

a stump was punctured with a 22-gauge needle once to expel

stool. Afterward, the cecum was repositioned intraabdominally,

and the abdomen closed. For fluid resuscitation, 0.2 ml of saline

was administered intraperitoneally. Sham-operated mice did

not undergo puncture or ligation. Mice were returned to cages

and sacrificed 4 hours after the operation. The mice were

intraperitoneally injected with phosphate-buffered saline (PBS) or

Lipopolysaccharide (LPS) (20 mg/kg) to establish LPS-induced

sepsis model.
2.13 Isolation of neutrophils

Mice of sepsis model were euthanized by cervical dislocation

after injecting sodium pentobarbital intraperitoneally. Peripheral

blood neutrophils were isolated from mice using the neutrophil

isolation kit (130-097-658, Miltenyi).
2.14 Quantitative RealTime PCR

Following the manufacturer’s instructions, TRIzol reagent

(12183-555, Invitrogen) was used to extract RNA from
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neutrophils. Reverse transcription was carried out using Takara’s

Prime-Script Rase. After the premix Ex-Taq (Takara), the gene

expression level was determined by qRT-PCR and normalized to

the beta-actin (b-Actin). The expression level was calculated using

the 2-DDCt technique. Table 1 contains a list of the primer pairs

utilized in the experiments. The study was approved by the Ethics

Committee of General Hospital of Northern Theater.
2.15 Statistical analysis

To perform the statistical analysis, R software (version 4.2.3,

available at https://www.r-project.org) and GraphPad Prism 8.0

software were used. The two-tailed Student t-test determined the

statistical significance. Co-expression was adjusted using Pearson’s

correlation. P<0.05 was deemed statistically significant.
3 Results

3.1 Flowchart of the study

The flowchart of this study was showed in Figure 1.
3.2 Single-cell analysis reveals specific
proportions of neutrophils

To obtain high-quality cell samples from sepsis tissues, we

preprocessed scRNA-seq data using stringent quality control

metrics. We obtained 32,396 high-quality cell samples

(Supplementary Figure S1A). The Pearson correlation coefficient of
Frontiers in Immunology 04
0.82 showed a strong positive correlation between the number of

genes detected and sequencing depth (Supplementary Figure S1C).

The “Harmony” method and the “PCA” method was then used to

reduce dimension and eliminate redundant samples (Supplementary

Figures S1B, D, E). Unsupervised transcriptome analysis was

performed using UMAP diagrams (Figures 2A, B). Cell abundance

in healthy control and sepsis samples was showed (Supplementary

Figures S2A, B). Seven separate clusters (B cells, Monocytes, T cells,

Neutrophils, NK cells, Platelets, and CD34- Pre-B cell) were showed

on the UMAP diagram (Figure 2C). The ratio and proportion of

those seven cell clusters in healthy control and sepsis samples were

visualized (Figures 2D–F). In sepsis, Neutrophils, Platelets, and

CD34-Pre-B cells tended to be increased, while other cell clusters

(B cells, Monocytes, T cells, and NK cells) were on a decreasing trend.

As neutrophils play a vital role in sepsis, our study then aimed to

explore sepsis-related neutrophils. To explore the changes of

neutrophils in sepsis, we first reduce dimension by the “PCA”

method (Figure 2G). The ElbowPlot identified the optimal number

of pcs as 11 (Figure 2H). UMAP diagram also showed abundances of

neutrophils between sepsis and healthy controls (Figure 2I). Eight

clusters of neutrophils were then identified. The ratio of eight

separate clusters were also showed (Figure 2J). Cell numbers of

each neutrophil cluster was showed in Table 2. Cluster 1&2 was

not found in healthy controls, however, cluster 1&2 significantly

increased in sepsis. Cluster 3&4 also increased in sepsis and cluster 0

significantly decreased in sepsis. The result indicated cluster 1&2

of neutrophils may be the potential responder cells against

infection. It was found that Sepsis_Neutrophils-Monocyte and

Sepsis_Neutrophils-Common_Neutrophils had higher interactions

(Figure 2K). Moreover, interactions of Sepsis_Neutrophils-

Monocyte and Sepsis_Neutrophils-Common_Neutrophils may rely

on RETN-CAP1 signal transduction pathway (Figure 2L). However,

Sepsis_Neutrophils showed no signifcant correlation with CCL

signaling pathway, which plays an important role in immune

response (Figure 2M). Furthermore, incoming, and outgoing

signaling patterns analysis demonstrated that Sepsis_Neutrophils

correlated with Resistin, Annexin, Visfatin, and IL1 (Figure 2N).

Moreover, Sepsis_Neutrophils and Common_Neutrophils showed a

significant difference on both incoming interaction strength and

outgoing interaction strength (Figure 2O).
3.3 Pseudotime analysis and hdWGCNA
analysis of sepsis-related neutrophils

After standardization of data, the trajectory analysis projects all

neutrophils cells onto three states (Figures 3A, B). The result showed

that eight neutrophils’ clusters appeared in the pseudo-timeline, and

the cluster 1&2 were most abundant in the state 2&3 (Figures 3C, D).

The hub genes in cluster 1&2 were showed. Interestingly, all 50 hub

genes all showed an elevated expression in the late stage of

neutrophil-development (Figure 3E). This result was in consist of

the trajectory analysis. Furthermore, hdWGCNA analysis was used

for exploring gene modules related to cluster 1&2 of neutrophils. The

soft threshold was adjusted to 5 for scale-free network construction

(Figure 3F). Then the adjacency matrix and the TOM was built.
TABLE 1 The primer sequence for PCR analysis.

Primer Forward
Sequence

Reverse
Sequence

ACTB ATTGTTACCAA
CTGGGACG

CTGGGTCAT
CTTTTCACG

ALPL TCATCAGTA
TTTGGAAGAGC

GAGCGAAGG
GTCAGTCAG

b-actin GTGCTATGTTG
CTCTAGACTTCG

ATGCCACAGGA
TTCCATACC

CD177 CCCCACCTA
TCAAACCTT

CAGATCCCAG
CATACAAAG

GAPDH AGGTCGGTGT
GAACGGATTTG

GGGGTCGTTG
ATGGCAACA

S100A8 CCTCAGTTTG
TGCAGAATAT

CCTTGTGGCT
GTCTTTGT

S100A9 CGACACCTT
CCATCAATAC

AACTGTGCT
TCCACCATT

SLC25A37 AGACACGGA
TGCAGAGTT

TCATAGCAGGC
AAAATACA

STXBP2 CCCACTATTA
CACGAACTCA

CTTCTTGGAAA
CATCTGCTA
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Finally, 3 modules (Turquoise, brown, and blue modules) were

identified based on average hierarchical clustering and dynamic

tree clipping (Figure 3G). K-means methods identified hub genes

in each module (Figure 3H). RPS18, RPS23, RPL32, RPL22, RPL11,

EEF1A1, RPL23A, RPS8, RPL13, and RPL18A in the turquoise

module. PTPRC, C16orf27, TLE3, ROCK1, H2AFY, HIF1A, KLF6,

ZEB2, CTNNB1, and MALAT1 in brown module. GADD45B,

IFITM2, LCN2, CYSTIM1, S100A12, CST7, ALPL, MMP9, CD63,

and CD177 in blue module. The correlation analysis showed that the

blue module was positively correlated with the brown module and

negatively correlated with the turquoise module (Figure 3I).
Frontiers in Immunology 05
Moreover, among three modules, the blue module expressed

highest in cluster 1&2 of neutrophils (Figure 3J). As cluster 1&2 of

neutrophils may be the potential responder cells against infection, the

genes in the blue module may have potential value for research. DO,

GO, and KEGG enrichment analysis were performed on the genes in

cluster 1&2 neutrophils (Figures 3K–M). The results showed that

most of genes were enriched in the neutrophil degranulation,

neutrophil activation, and neutrophil mediated immunity. IL-17

signaling pathway may be the potential mechanism in the

neutrophil-related function. The pathway-network and pathway-

gene interaction analyses were then showed.
FIGURE 1

The flowchart of this study. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, P>0.05.
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3.4 Hub genes selection based on machine
learning algorithms

GSE57065 was regarded as training dataset and GSE95233 was

validation dataset. Firstly, these two datasets were normalized before
Frontiers in Immunology 06
analysis (Supplementary Figures S3A–D). Secondly, datasets GSE57065

and GSE95233 were merged and normalized (Supplementary Figures

S3E, F). Thirdly, meta-analysis was used to eliminate the batch effect

(Supplementary Figures S3G, H). The differences in expression of 50

hub genes were showed (Figures 4A–C). Moreover, correlations
B C

D E F

G H I

J K L

M

A

N O

FIGURE 2

Single-cell analysis reveals specific proportions of neutrophils. (A) UMAP plots of immune cells in blood of healthy control and sepsis patients. (B) UMAP plots
of two healthy control samples and four sepsis samples. (C) UMAP plots for single cell samples with different colors representing B cells, Monocyte, T cell,
Neutrophils, NK cells, Platelets, and Pre-B CD34- cells respectively. (D) Ration of B cells, Monocyte, T cell, Neutrophils, NK cells, Platelets, and Pre-B CD34-

cells in healthy control and sepsis patients. (E, F) Proportion of B cells, Monocyte, T cell, Neutrophils, NK cells, Platelets, and Pre-B CD34- cells in healthy
control and sepsis patients. (G) A PCA map of the distribution of cells in each sample, and each color represents the cells in each sample. (H) Elbowplot for
identifying the optimal PCs. (I) UMAP plots of each neutrophil cluster in healthy control and sepsis patients. (J) Ration of each neutrophil cluster in healthy
control and sepsis patients. (K) Number of interactions and interaction weights/strength between cell groups. (L) Bubble plots displayed the involved CCL-
related signaling pathways documented in the “CellChat” R package in cell–cell communications. (M) The role of eight cell types in the CCL signaling
pathway network. (N) Signaling role analysis on the aggregated cell–cell communication network from all signaling pathways between eight cell types.
(O) The scatter plot of the inferred roles of eight cell type considering their ingoing and outgoing interaction strength.
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between every two genes were also identified (Figure 4D). Hub genes of

cluster 1&2 Sepsis_Neutrophils were subjected to LASSO regression

and 8 features were selected (ALPL, ACTB, CD177, GAPDH,

SLC25A37, S100A8, S100A9, and STXBP2) (Figures 4E, F). The

coefficient of each feature was listed as Table 3. Besides, seven

machine learning algorithms (k-Nearest Neighbors, Linear

Discriminant Analysis, Logistic Regression, Naive Bayes, Random

Forest, Recursive Partitioning, and Support Vector Machine) were

utilized and mean AUCs of seven algorithms were compared

(Figure 4G). Only the Recursive Partitioning showed a lower AUC

compared with other six algorithms (Figure 4H). Moreover, the AUC

in the validation dataset was 0.988 and the model had a strong

generalization ability (Supplementary Figure S4). We demonstrated

the expression of eight hub genes in the training dataset GSE57065. All

eight hub genes showed statical higher expressions in neutrophils

under sepsis (Figure 4I). ROC curves showed that five hub genes

(except ACTB, S100A8, and SLC5A37) all showed higher AUCs

(Figure 4J). In validation dataset GSE95233, six hub genes except

ACTB and SLC5A37 expressed higher significantly in neutrophils

under sepsis (Supplementary Figure S5A). ROC curves showed that

six hub genes except ACTB and SLC5A37 all showed higher AUCs

(Supplementary Figure S5B).
3.5 Immune analysis of hub genes

Significant differences were observed in B cell naïve, B cells

memory, Plasma cells, T cells CD8+, T cells CD4+ naïve, T cells

CD4+ memory resting, T cells follicular helper, T cells gamma delta,

NK cells resting, Macrophages M0, Macrophages M1, Macrophages

M2, Dendritic cells resting, Dendritic cells activated, Mast cells

resting, Mast cells activated, Eosinophils, and Neutrophils

(Figures 5A, B). Moreover, the correlation between hub genes and

immune cells were identified and visualized (Figure 5C). Hub genes

were positively associated with Macrophage M0 cells. Hub genes

negatively correlated with T cells CD4+ memory resting, T cells

CD8+, T cells gamma delta, and T cells CD4+ memory activated.
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To explore the correlation between each hub gene and immune

cells, correlation between 20 types of immune cells and eight hub

genes were showed (Supplementary Figures S6–S13). Among eight

hub genes, only S100A9 and STXBP2 showed no significant

correlation with neutrophils. While correlations with other

immune cells were also showed.
3.6 Function analysis of hub genes

ssGSEA and GSEA showed the potential biological pathway of

eight hub genes in sepsis (Figures 6A, B). GSVA analysis showed that

expression and correlation between eight hub genes and relative

pathways in sepsis (Figures 6C, D). GSVA analysis showed that eight

hub genes of neutrophils in sepsis were mainly enriched in

Glycosaminoglycan_Degradation, Insulin_Signaling_Pathway,

Prostate_Cancer, and Melanoma. Moreover, GSEA analysis reveals

that related pathways of hub genes. Potential pathways that associated

with up-regulation of eight hub genes(ALPL, ACTB, CD177, GAPDH,

SLC25A37, S100A8, S100A9, and STXBP2)were showed in

Supplementary Figure S14A. Results showed higher expression of

eight hub genes mostly associated with starch and sucrose

metabolism. Additionally, pathways of ribosome and graft-verus-host

disease that associated with down-regulation of eight hub genes (ALPL,

ACTB, CD177, GAPDH, SLC25A37, S100A8, S100A9, and STXBP2)

were showed in Supplementary Figure S14B.
3.7 Transcriptional factor network and
hub genes

SCENIC was to identify TFs with gene expression activity

among subclusters of neutrophils. We applied the SCENIC

analysis pipeline to the neutrophils and resolved distinct regulons

associated with each cluster in neutrophils. Regulons were robust in

activity and specific for each cell type (Figures 7A, B). For example,

FOS_extended_(36g) and FOS_(28g)were lower active in the sepsis-

specific neutrophils. Moreover, SPI1_extended_(38g), SPI1_(37g),

and HMGB1_(11g) were highly active in the sepsis-specific

neutrophils (Figure 7C). Heatmap of 25 TFs between sepsis and

healthy control were showed (Figure 7D). The top ten TFs with the

most difference between sepsis and healthy control, including SPI1,

HMGB1, JUN, NFIL3, RUNX1, CEBPD, FOS, REL, JUND, and

FOSB (Figure 7E). The correlation analysis of the inferred TFs and 8

hub genes was performed. APLP, CD177, GAPDH, S100A9, and

STXBP2 were significant associated with various TFs (Figure 7F).
3.8 Validation of hub genes in sepsis
mice model

Moreover, gene correlations were identified and visualized

(Figure 8A). CD177 and S100A9 showed a highest correlation

with significance. To evaluate the expression of eight hub genes in

neutrophils under sepsis. We established two sepsis model: CLP
TABLE 2 Cell numbers of each neutrophil cluster in healthy control and
sepsis samples.

Cluster Cell numbers

Healthy
control

Sepsis Total

0 388 84 472

1 0 347 347

2 0 344 344

3 31 257 288

4 9 260 269

5 47 96 143

6 21 41 62

7 20 22 42
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model and LPS-induced model. qRT-PCR detected the relative

expression of all eight genes in monocytes. Results showed that

ALPL, CD177, S100A8, S100A9, and STXBP2 significantly up

regulated in sepsis (Figure 8B). In conclusion, ALPL, CD177,

S100A8, S100A9, and STXBP2 may be play a vital role in

neutrophils function response to sepsis.
Frontiers in Immunology 08
4 Discussion

In this study, we first discovered new clusters of neutrophils

between sepsis and healthy control samples based on the datasets

GSE167363. A previous study showed the cells in GSE167363 were

isolated within 24 h through density gradient centrifugation, which
B
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F G

H I J

K L M
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FIGURE 3

Pseudotime analysis and hdWGCNA analysis of sepsis-related neutrophils. (A–D) Pseudotime analysis for Neutrophils. (E) Six clusters of neutrophils by
moncyte analysis and hub genes in each cluster were visualized. (F) Top left panel depicted the soft power threshold for choosing a scale-free topology
model fit greater than or equal to 0.9. The other three panels showed the mean, median, and max connectivity of the topological network respectively
when different minimum soft thresholds are chosen, reflecting the connectivity of the network. The average connectivity of the topological network is most
stable at the lowest soft threshold equals. (G) Three modules were identified as shown in the hdWGCNA dendrogram. (H) Hub genes in each module were
identified and ranked by k-means. (I) Correlation of three gene modules (turquoise, brown, and blue). (J) Feather plots depicted the corresponding module
scores in neutrophils and the bubble plot displayed the scores obtained by three modules in neutrophils subtypes. (K) Dot plot of the DO functional enrich
analysis of cluster 1&2 neutrophils. (L) Dot plot of the GO functional enrich analysis of cluster 1&2 neutrophils. (M) Cnet plot of the KEGG functional enrich
analysis of cluster 1&2 neutrophils.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1377817
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2024.1377817
B

C

D

E F

G H

I

J

A

FIGURE 4

Hub genes selection based on machine learning algorithms. (A) Heatmap displaying the distribution of 50 DEGs. (B) Volcano plot showing expression of
DEGs (|logFC|>1 and adjusted P value<0.05) in cluster 1&2 neutrophils. (C) Box plots displaying the expression of the expression of the top 50 genes.
(D) Heatmap for correlations between 50 DEGs. (E) Coefficient profile plots showing the shrinkage of gene number. (F) Penalty plot for the LASSO
model. (G) The AUC of seven machine learning althogrims. (H) Mean AUC of fivefold cross-validation for 9 replications of each model. (I) Expression
difference of ALPL, ACTB, CD177, GAPDH, SLC25A37, S100A8, S100A9, and STXBP2 in GSE57056 between sepsis group and control group. (J) In
GSE57056, ROC curve of predicted risk scores of ALPL, ACTB, CD177, GAPDH, SLC25A37, S100A8, S100A9, and STXBP2 in sepsis diagnosis. *, P<0.05.
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indicates the reliability of bioinformatics analysis (14). We

identified 8 clusters of neutrophils based on sc-RNA analysis,

while proportions of cluster 1&2 were with the most difference.

Then, we applyied hdWGCNA, a thorough method for examining

co-expression networks in highly dimensional transcriptomics data,

to identify hub gene modules in new clusters 1&2 of neutrophils

(15). Hub genes of new clusters of neutrophils were identified and

the lasso regression screened eight hub genes (ACTB, ALPL,

CD177, GAPDH, S100A8, S100A9, SLC25A37, and STXBP2).

Seven machine learning algorithms (k-Nearest Neighbors, Linear

Discriminant Analysis, Logistic Regression, Naive Bayes, Random

Forest, Recursive Partitioning, and Support Vector Machine) were

used to demonstrate the diagnostic performance. Then we

investigated expression, the biological function, and the immune

cell landscape of eight hub genes in sepsis. Finally, we validated the

role of eight hub genes in both CLP- and LPS-induced sepsis

in mice.

ML has shown great promise in enhancing the prediction,

diagnosis, and management of sepsis. Min Huang et al.

conducted the Support Vector Machine classifier and identified

mortality biomarkers of sepsis (16). Moreover, another study

applied a new machine learning method in predicting 20

differentially expressed genes for sepsis outcomes (17). In our

study, we first applied single-cell RNA analysis to identify specific

neutrophil clusters. Then, hdWGCNA and multiple machine

learning methods were applied to identify hub genes. The

hdWGCNA is an advanced computational framework designed to

analyze and interpret high-dimensional transcriptomics data, such

as single-cell RNA-seq or spatial transcriptomics (18). hdWGCNA

was used in multiple cancer (including pancreatic cancer, breast

cancer, and gastric cancer) (19–21). So far, hdWGCNA combining

single-cell RNA sequencing has not been reported in sepsis.

Moreover, we applied multiple ML algorithms to validate the

clinical role of hub genes. This reflects the technique novelty of

our study.

Neutrophils is an effector cell in the innate immune system that

helps to fight infection as a first line of defense (22). Studies showed

that sepsis-related neutrophils were dysfunctional and contributed

to the multi-organ failure (22). Among multiple organs, the lung is

the first and most frequently injured organ to fail (23). Moreover,

the acute respiratory distress syndrome (ARDS), which resulted
Frontiers in Immunology 10
from the acute lung injury (ALI), was the main factors of sepsis

patients’ deaths (23).

Neutrophils play both important protective and harmful functions

in sepsis, according to data from animal models, some of which include

particular subsets (24). Evidence has shown that different neutrophil

subtypes or states, such as their release levels of cytokines,

myeloperoxidase, reactive oxygen species (ROS), and neutrophil

extracellular traps (NETs) in distinct clinical circumstances, are

functionally diverse in critical immune phenotypes (25). Previous

studies showed PD-L1 is upregulated on neutrophils during sepsis

and neutrophils may suppress acquired immunity via the PD-L1/PD-1

immune checkpoint (26). The clinical observation of a “left shift” in the

total blood count to more immature neutrophils in cases of severe

illness in humans is well known (24). Hong et al. identify four

neutrophil subtypes in sepsis based on sc-RNA sequencing and

characterized by different expressing genes (27). In our study, we

also identified sepsis-specific neutrophil clusters based on single-cell

RNA analysis. Moreover, our work emphasized on revealing the genes

that is specific to sepsis in those subpopulations of neutrophils based on

“hdWGCNA” and multiple ML methods. However, our study showed

that specific clusters of neutrophils appeared at the late stage of sepsis,

which was in accord with the previous study (26). And these specific

clusters may be the potential subsets of neutrophils in response to

sepsis. Moreover, identifying specific clusters of neutrophils and related

hub genes is vital for treating sepsis. RuiCi Lin. Et.al. found that Tram-/-

neutrophils enable effective reprogramming into a resolving state that is

beneficial for treating experimental sepsis via reprogramming

monocytes, neighboring neutrophils, T cells and endothelial cells

(28). In our study, we identified two specific neutrophil subtypes and

related eight hub genes (ACTB, ALPL, CD177, GAPDH, S100A8,

S100A9, SLC25A37, and STXBP2). Indeed, only ALPL, CD177,

S100A8, S100A9, and STXBP2 showed elevated expression in vivo

sepsis model. Therefore, ALPL, CD177, S100A8, S100A9, and STXBP2

may be potential targets in treating sepsis.

Dysfunction of ALPL was known as the main cause of

hypophosphatasia (HPP) (29). However, studies of ALPL in

sepsis and neutrophils was still limited. In a prospective cross-

sectional study containing 427 Emergency Department patients,

ALPL showed as a biomarker of infectious and its AUC value was

0.83 (30). In neutrophils, ALPL encodes neutrophil alkaline

phosphatase (NAP), a membrane-bound glycosylated protein that

functions to catalyze dephosphorylation and transphosphorylation

events (31). In sepsis, neutrophil NAP number substantially rises

during bacterial infections when the cells are stimulated by

inflammatory signals, and NAP-overexpressed neutrophils exhibit

accelerated chemotaxis, which promotes their movement towards

inflammatory areas, ROS production, and apoptosis (32).

CD177, a GPI-anchored protein, interacted with the proteinase-

3 receptor (PR3) and CD177-PR3 complex regulates neutrophil

migration in circulation (33). Previous study showed CD177 was up

regulated in neutrophils under sepsis and neutrophil expressed

CD177 anchored less with platelets, associated with less NETosis

and worse outcome (34). Interestingly, expression of CD177 was

negatively with expression of CD10 in neutrophils, which is a

marker of immature myeloid cells (35). This was consisted with

our study, which is those specific neutrophils with CD177
TABLE 3 The coefficient of each feature.

Feature Coefficient

ACTB -3.7197339587957

ALPL 0.548896764272396

CD177 0.325706654849931

GAPDH 7.69112519608401

S100A8 0.400471605674625

S100A9 7.44130879698439

SLC25A37 1.77117069243124

STXBP2 1.24120863955331
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expression appeared at the late stage of sepsis. Ingred GR et al.

identified a new cluster of neutrophils with high expression of

CD177 and suppression of CD10 in response to infections (36).

Moreover, this new cluster of neutrophils were found absence in

healthy individuals and newly released from the bone marrow (36).

S100 family members S100A8 and S100A9 are cytoplasmic EF-

hand Ca2+-binding proteins (37). A previous study verified that

expressions of S100A8/A9 are elevated in blood cells of sepsis

patients and S100A8/A9 showed high accuracy in sepsis diagnosis

(38). S100A8/A9 also interacted with platelets under inflammation
Frontiers in Immunology 11
and regulated neutrophil recruitment (39). S100A8/A9 bind to

TLR-4 and induce platelet pyroptosis, which are highly effective

in causing NETosis (40). In addition, NETs release S100A8/A9,

which further promotes platelet pyroptosis (40). They combine to

generate a heterodimer that is strongly expressed in active

neutrophils (37). Moreover, S100A8/A9 was mostly enriched in

damage-associated molecular patterns (DAMPs) (41). Similarly,

Sprenkeler EGG et al. showed that S100A8/A9 promote adhesion

and elevate CD11b expression of neutrophils, which verify this

DAMPs amplifies neutrophil activation (42). S100A9 also promotes
B

C

A

FIGURE 5

Immune infiltration in sepsis. (A) Panel representative boxplot shows the differences of infiltrated immune cells between sepsis samples (P type) and control
samples (C type). (B) The relative proportions of 22 immune cell types between sepsis samples (P type) and control samples (C type). (C) Correlations
between hub genes and immune cells. *, P<0.05; **, P<0.01; ***, P<0.001; ns, P>0.05.
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neutrophils differentiated into pro-inflammatory N1 sub-

population, as well as the chemotactic and enzymatic activity of

N1 sub-population (43).

STXBP2, is crucial for the formation of the SNARE complex in

platelets (44). In sepsis, STXBP2 in platelets regulated activation of

platelets, NETosis, and sepsis thrombosis. However, the role of

STXBP2 in neutrophils was still unclear. Our study showed that

over-expressed of STXBP2 in neutrophils may be potential

character in sepsis. Therefore, the specific function of STXBP2

needs to be further investigated.
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5 Conclusions

In our study, we discovered specific clusters of neutrophils in sepsis

based on single-cell RNA sequencing. We also identified five hub genes

(ALPL, CD177, S100A8, S100A9, and STXBP2) in those special

neutrophil clusters via the hdWGCNA method, machine learning

algorithms, and transcriptomic analysis, as well as experimental

verification. Our next step was to explore effects of five hub genes in

neutrophils under sepsis. Five potential targets were identified for

translational study in sepsis based on our novel mechanism.
B
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A

FIGURE 6

ssGSEA and GSVA of eight hub genes. (A) The specific distribution of the 50 hallmark gene sets in sepsis samples (P type) and control samples (C type).
(B) Correlation analysis of the 50 hallmark gene sets with eight hub genes. (C, D) Heatmap showing the enriched pathways of eight hub genes in neutrophil
clusters using GSVA.
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FIGURE 7

Transcriptional regulatory network of neutrophils. (A) UMAP plot depicts the distribution of neutrophils in the sepsis and healthy control groups. (B) Activity
distribution of FOS, REL, JUN, FOSB, and JUND. (C) Heatmap shows the differences of TFs in neutrophils between the sepsis and healthy control groups.
(D) Heatmap of the top 25 regulators with the highest area under curve (AUC) scores showing the activity of TFs in neutrophils clusters using SCENIC.
(E) Top activities of TFs between different groups. RSS indicates Regulon Specificity Score. (F) Correlation between eight hub genes (ALPL, ACTB, CD177,
GAPDH, SLC25A37, S100A8, S100A9, and STXBP2) expression and the level of 24 inferred TFs. *, P<0.05; **, P<0.01; ***, P<0.001.
BA

FIGURE 8

Correlations and the relative expressions of eight hub genes were validated by qRT-PCR. (A) Correlation between eight hub genes (ALPL, ACTB,
CD177, GAPDH, SLC25A37, S100A8, S100A9, and STXBP2) expression. (B) The expressions of ALPL, ACTB, CD177, GAPDH, SLC25A37, S100A8,
S100A9, and STXBP2 (ns, P>0.05; *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001).
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SUPPLEMENTARY FIGURE 1

Quality control of scRNA-seq data before analysis. (A, B) Quality control

conditions. (C) Correlation between the number of genes detected and the
sequencing depth. (D) The “PCA”method was used to reduce dimension. (E) The
“harmony” method was used to eliminate redundant samples.
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SUPPLEMENTARY FIGURE 2

Cell abundance of scRNA-seq samples. (A, B) Differential cell abundance
from whole-blood scRNA-seq with sampled neighborhoods colored by

statistical significance (spatial FDR < 0.05) in patient samples in 2 healthy

subsets and 4 sepsis subsets.

SUPPLEMENTARY FIGURE 3

Data preprocessing. (A)Gene expression level statistics of GSE57056 before
removed batch effect. (B)Gene expression level statistics of GSE57056 after

removed batch effect. (C) Gene expression level statistics of GSE95233
before removed batch effect. (D) Gene expression level statistics of

GSE95233 after removed batch effect. (E) Gene expression level statistics
of meta datasets (merging GSE57056 and GSE95233) before removed

batch effect. (F) Gene expression level statistics of meta datasets

(merging GSE57056 and GSE95233) after removed batch effect.
(G-H) PCA of merging data (GSE95233 and GSE57065).

SUPPLEMENTARY FIGURE 4

ROC curve of the diagnostic model in the independent external validation set.

SUPPLEMENTARY FIGURE 5

Identification of expression difference and ROC in the validation dataset

GSE95233. (A) Expression difference of ALPL, ACTB, CD177, GAPDH,
SLC25A37, S100A8, S100A9, and STXBP2 in GSE95233 between sepsis

group and control group. (B) In GSE95233, receiver operating characteristic

(ROC) curve of predicted risk scores of ALPL, ACTB, CD177, GAPDH,
SLC25A37, S100A8, S100A9, and STXBP2 in sepsis diagnosis.

SUPPLEMENTARY FIGURE 6

The correlation between ALPL expression and immunemodel. (A)Correlation
Coefficient between ALPL and 22 immune cell types. (B) Correlation between

ALPL and immune cell types with significance.

SUPPLEMENTARY FIGURE 7

The correlation between ACTB expression and immune model. (A) Correlation
Coefficient between ACTB and 22 immune cell types. (B) Correlation between

ACTB and immune cell types with significance.

SUPPLEMENTARY FIGURE 8

The correlation between CD177 expression and immune model. (A) Correlation
Coefficient between CD177 and 22 immune cell types. (B) Correlation between

CD177 and immune cell types with significance.

SUPPLEMENTARY FIGURE 9

The correlation between GAPDH expression and immune model. (A) Correlation
Coefficient between GAPDH and 22 immune cell types. (B) Correlation between

GAPDH and immune cell types with significance.

SUPPLEMENTARY FIGURE 10

The correlation between S100A8 expression and immune model.

(A) Correlation Coefficient between S100A8 and 22 immune cell types.
(B) Correlation between S100A8 and immune cell types with significance.

SUPPLEMENTARY FIGURE 11

The correlation between S100A9 expression and immune model. (A) Correlation
Coefficient between S100A9 and 22 immune cell types. (B) Correlation between
S100A9 and immune cell types with significance.

SUPPLEMENTARY FIGURE 12

The correlation between SLC25A17 expression and immune model.

(A) Correlation Coefficient between SLC25A17 and 22 immune cell types.
(B) Correlation between SLC25A17 and immune cell types with significance.

SUPPLEMENTARY FIGURE 13

The correlation between STXBP2 expression and immune model. (A) Correlation
Coefficient between STXBP2 and 22 immune cell types. (B) Correlation between

STXBP2 and immune cell types with significance.

SUPPLEMENTARY FIGURE 14

GSEA identifies signaling pathways in the optimal hub genes. (A) The main
signaling pathways that are significantly enriched under the up regulation of

ALPL, ACTB, CD177, GAPDH, SLC25A37, S100A8, S100A9, and STXBP2. (B) The
main signaling pathways that are significantly enriched under the downregulation

of ALPL, ACTB, CD177, GAPDH, SLC25A37, S100A8, S100A9, and STXBP2.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1377817/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1377817/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1377817
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2024.1377817
References
1. Vincent JL. Current sepsis therapeutics. EBioMedicine. (2022) 86:104318.
doi: 10.1016/j.ebiom.2022.104318

2. Zhang W, Fang X, Gao C, Song C, He Y, Zhou T, et al. MDSCs in sepsis-induced
immunosuppression and its potential therapeutic targets. Cytokine Growth Factor Rev.
(2023) 69:90–103. doi: 10.1016/j.cytogfr.2022.07.007

3. Schrijver IT, Théroude C, Roger T. Myeloid-derived suppressor cells in sepsis.
Front Immunol. (2019) 10:327. doi: 10.3389/fimmu.2019.00327

4. Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, et al. ATF4 knockdown in
macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and
HIF-1a ubiquitination in sepsis. Clin Immunol. (2023) 109698. doi: 10.1016/
j.clim.2023.109698

5. Reyes M, Filbin MR, Bhattacharyya RP, Billman K, Eisenhaure T, Hung DT, et al.
An immune-cell signature of bacterial sepsis. Nat Med. (2020) 26:333–40. doi: 10.1038/
s41591-020-0752-4

6. Wang T, Zhang X, Liu Z, Yao T, Zheng D, Gan J, et al. Single-cell RNA sequencing
reveals the sustained immune cell dysfunction in the pathogenesis of sepsis secondary to
bacterial pneumonia. Genomics. (2021) 113:1219–33. doi: 10.1016/j.ygeno.2021.01.026

7. Li G, Yang Z, Yang C, Xie Y, Gong S, Lv S, et al. Single-cell RNA sequencing
reveals cell-cell communication and potential biomarker in sepsis and septic shock
patients. Int Immunopharmacol. (2024) 132:111938. doi: 10.1016/j.intimp.2024.111938

8. Li X, Fu S, Cheng H, Ma M, Song Z, Li J, et al. Differentiation of type 17 MAIT
cells in circulation contributes to the severity of sepsis. Am J Pathol. (2024) S0002-9440
(24)00125-1. doi: 10.1016/j.ajpath.2024.03.010

9. Zhang WY, Chen ZH, An XX, Li H, Zhang HL, Wu SJ, et al. Analysis and
validation of diagnostic biomarkers and immune cell infiltration characteristics in
pediatric sepsis by integrating bioinformatics and machine learning. World J Pediatr.
(2023) 19:1094–103. doi: 10.1007/s12519-023-00717-7

10. Zhou W, Zhang C, Zhuang Z, Zhang J, Zhong C. Identification of two robust
subclasses of sepsis with both prognostic and therapeutic values based on machine
learning analysis. Front Immunol. (2022) 13:1040286. doi: 10.3389/fimmu.2022.1040286

11. Janevic T, Tomalin LE, Glazer KB, Boychuk N, Kern-Goldberger A, Burdick M,
et al. Development of a prediction model of postpartum hospital use using an equity-
focused approach. Am J Obstet Gynecol. (2023) S0002-9378(23)00769-X. doi: 10.1016/
j.ajog.2023.10.033

12. Zhang T, Lian G, Fang W, Tian L, Ma W, Zhang J, et al. Comprehensive single-
cell analysis reveals novel anergic antigen-presenting cell subtypes in human sepsis.
Front Immunol. (2023) 14:1257572. doi: 10.3389/fimmu.2023.1257572

13. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015)
12:453–7. doi: 10.1038/nmeth.3337

14. Qiu X, Li J, Bonenfant J, Jaroszewski L, Mittal A, Klein W, et al. Dynamic
changes in human single-cell transcriptional signatures during fatal sepsis. J Leukoc
Biol. (2021) 110:1253–68. doi: 10.1002/JLB.5MA0721-825R

15. Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. hdWGCNA
identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep
Methods. (2023) 3:100498. doi: 10.1016/j.crmeth.2023.100498

16. Huang M, Atreya MR, Holder A, Kamaleswaran R. A machine learning model
derived from analysis of time-course gene-expression datasets reveals temporally stable
gene markers predictive of sepsis mortality. Shock. (2023) 60:671–7. doi: 10.1097/
SHK.0000000000002226

17. Banerjee S, Mohammed A, Wong HR, Palaniyar N, Kamaleswaran R. Machine
learning identifies complicated sepsis course and subsequent mortality based on 20
genes in peripheral blood immune cells at 24 H post-ICU admission. Front Immunol.
(2021) 12:592303. doi: 10.3389/fimmu.2021.592303

18. Yang H, Li Z, Zhu S, Wang W, Zhang J, Zhao D, et al. Molecular mechanisms of
pancreatic cancer liver metastasis: the role of PAK2. Front Immunol. (2024)
15:1347683. doi: 10.3389/fimmu.2024.1347683

19. Xu W, Zhang W, Zhao D, Wang Q, Zhang M, Li Q, et al. Unveiling the role of
regulatory T cells in the tumor microenvironment of pancreatic cancer through single-
cell transcriptomics and in vitro experiments. Front Immunol. (2023) 14:1242909.
doi: 10.3389/fimmu.2023.1242909

20. Chen Y, Jin C, Cui J, Diao Y,Wang R, Xu R, et al. Single-cell sequencing and bulk
RNA data reveal the tumor microenvironment infiltration characteristics of
disulfidptosis related genes in breast cancer. J Cancer Res Clin Oncol. (2023)
149:12145–64. doi: 10.1007/s00432-023-05109-y

21. XuW, Jiang T, Shen K, Zhao D, Zhang M, ZhuW, et al. GADD45B regulates the
carcinogenesis process of chronic atrophic gastritis and the metabolic pathways of
gastric cancer. Front Endocrinol (Lausanne). (2023) 14:1224832. doi: 10.3389/
fendo.2023.1224832

22. Bruserud Ø, Mosevoll KA, Bruserud Ø, ReikvamH,Wendelbo Ø. The regulation
of neutrophil migration in patients with sepsis: the complexity of the molecular
mechanisms and their modulation in sepsis and the heterogeneity of sepsis patients.
Cells. (2023) 12:1003. doi: 10.3390/cells12071003
Frontiers in Immunology 15
23. Park I, Kim M, Choe K, Song E, Seo H, Hwang Y, et al. Neutrophils disturb
pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J. (2019)
53:1800786. doi: 10.1183/13993003.00786-2018

24. Kwok AJ, Allcock A, Ferreira RC, Cano-Gamez E, Smee M, Burnham KL, et al.
Neutrophils and emergency granulopoiesis drive immune suppression and an extreme
response endotype during sepsis. Nat Immunol. (2023) 24:767–79. doi: 10.1038/
s41590-023-01490-5

25. Jin H, Aziz M, Murao A, Kobritz M, Shih AJ, Adelson RP, et al. Antigen-
presenting aged neutrophils induce CD4+ T cells to exacerbate inflammation in sepsis.
J Clin Invest. (2023) 133:e164585. doi: 10.1172/JCI164585

26. Qi X, Yu Y, Sun R, Huang J, Liu L, Yang Y, et al. Identification and
characterization of neutrophil heterogeneity in sepsis. Crit Care. (2021) 25:50.
doi: 10.1186/s13054-021-03481-0

27. Hong Y, Chen L, Sun J, Xing L, Yang Y, Jin X, et al. Single-cell transcriptome
profiling reveals heterogeneous neutrophils with prognostic values in sepsis. iScience.
(2022) 25:105301. doi: 10.1016/j.isci.2022.105301

28. Lin R, Wang J, Wu Y, Yi Z, Zhang Y, Li L. Resolving neutrophils due to TRAM
deletion renders protection against experimental sepsis. Inflamm. Res. (2023) 72
(8):1733–44. doi: 10.1007/s00011-023-01779-z

29. Jandl NM, Schmidt T, Rolvien T, Stürznickel J, Chrysostomou K, von Vopelius
E, et al. Genotype-phenotype associations in 72 adults with suspected ALPL-associated
hypophosphatasia. Calcif Tissue Int. (2021) 108:288–301. doi: 10.1007/s00223-020-
00771-7

30. Meltzer AC, Wargowsky RS, Moran S, Jordan T, Toma I, Jepson T, et al.
Diagnostic accuracy of novel mRNA blood biomarkers of infection to predict outcomes
in emergency department patients with undifferentiated abdominal pain. Sci Rep.
(2023) 13:2297. doi: 10.1038/s41598-023-29385-3

31. Pan Y, Choi JH, Shi H, Zhang L, Su S, Wang X. Discovery and validation of a
novel neutrophil activation marker associated with obesity. Sci Rep. (2019) 9:3433.
doi: 10.1038/s41598-019-39764-4

32. Li H, Zhao Y, Li W, Yang J, Wu H. Critical role of neutrophil alkaline
phosphatase in the antimicrobial function of neutrophils. Life Sci. (2016) 157:152–7.
doi: 10.1016/j.lfs.2016.06.005

33. Bai M, Grieshaber-Bouyer R, Wang J, Schmider AB, Wilson ZS, Zeng L, et al.
CD177 modulates human neutrophil migration through activation-mediated integrin
and chemoreceptor regulation. Blood. (2017) 130:2092–100. doi: 10.1182/blood-2017-
03-768507
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sc-RNA Single-cell-RNA

ML Machine Learning

hdWGCNA High Dimensional Weighted Correlation Network Analysis

PCA Principal Component Analysis

UMAP Uniform Manifold Approximation and Projection

WGCNA Weighted Gene Co-expression Network Analysis

DO Disease Ontology

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

ROC Receiver Operating Characteristic

SCENIC Single-cell Regulatory Network Interference and Clustering

TF Transcription Factor

GSEA Gene Set Enrichment Analysis

ssGSEA single sample Gene Set Enrichment Analysis

GSVA Gene Set Variation Analysis

ES Enrichment Score

CLP Cecal Ligation and Puncture

PBS Phosphate-Buffered Saline

LPS Lipopolysaccharide

qRT-PCR Quantitative Real Time-PCR

b-Actin Beta-Actin

ARDS Acute Respiratory Distress Syndrome

ALI Acute Lung Injury

ROS Reactive Oxygen Species

NETs Neutrophil Extracellular Traps

HPP Hypophosphatasia

NAP Neutrophil Alkaline Phosphatase

DAMPs Damage-associated Molecular Patterns

AUC Area Under Curve
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