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rheumatoid arthritis
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Hypothesis: While conventional in silico immunogenicity risk assessments focus

on measuring immunogenicity based on the potential of therapeutic proteins to

be processed and presented by a global population-wide set of human leukocyte

antigen (HLA) alleles to T cells, future refinements might adjust for HLA allele

frequencies in different geographic regions or populations, as well for as

individuals in those populations. Adjustment by HLA allele distribution may

reveal risk patterns that are specific to population groups or individuals, which

current methods that rely on global-population HLA prevalence may obscure.

Key findings: This analysis uses HLA frequency-weighted binding predictions to

define immunogenicity risk for global and sub-global populations. A comparison of

assessments tuned for North American/European versus Japanese/Asian

populations suggests that the potential for anti-therapeutic responses (anti-

therapeutic antibodies or ATA) for several commonly prescribed Rheumatoid

Arthritis (RA) therapeutic biologics may differ, significantly, between the

Caucasian and Japanese populations. This appears to align with reports of

differing product-related immunogenicity that is observed in different populations.

Relevance to clinical practice: Further definition of population-level (regional)

and individual patient-specific immunogenic risk profiles may enable

prescription of the RA therapeutic with the highest probability of success to

each patient, depending on their population of origin and/or their individual HLA

background. Furthermore, HLA-specific immunogenicity outcomes data are

limited, thus there is a need to expand HLA-association studies that examine

the relationship between HLA haplotype and ATA in the clinic.
KEYWORDS

immunogenicity, HLA-DR, T-cell, rheumatoid arthritis, personalized medicine,
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1 Introduction

1.1 Natural history of RA

Rheumatoid arthritis (RA) is a chronic inflammatory disorder

that primarily affects the joints, leading to swelling, pain, stiffness,

and gradual joint destruction. It is a global disease with varying

prevalence rates in different populations; although estimates suggest

that approximately 1% of the world’s population is affected. In the

United States and Japan, the prevalence of RA is approximately 0.3-

1.0% (1–3). The etiology of RA is multifactorial and results from a

complex interplay of genetic, environmental, and hormonal factors.

Among genetic factors, as is true for many autoimmune

diseases, specific variants of the human leukocyte antigen (HLA)

gene, particularly the HLA-DRB1 alleles, have been strongly

associated with RA. This association is more pronounced in

certain ethnic populations. Notably, the “shared epitope” (SE)

hypothesis postulates that a specific sequence of amino acids in

the HLA-DRB1 region is a common feature for most RA patients

(4–6). A list of SE alleles can be found in a recent publication by

Viatte et al. (7). Other genetic aspects of genetic RA susceptibility

are also discussed in the Viatte publication.

More specific examples of differences related to the HLA-DRB1

alleles follow: The HLA-DR*04 allele is frequently found in

individuals of European ancestry who have been diagnosed with

RA in the United States. Conversely, in the Japanese population, the

HLA-DR*09 allele is more commonly associated with RA along

with the HLA-DOA gene (see reference (6) for a discussion of these

contributors to RA risk). Thus, the prevalence of HLA-DR alleles

that are found in native RA patients in the US may differ from the

HLA-DR prevalence of native Japanese patients with RA.

These differences in HLA-DR distribution found in RA patient

populations may also be relevant to the development of immune

responses to RA therapies, since HLA-DR presentation of T cell

epitopes derived from therapeutic proteins has been identified as a

risk factor for the development of anti-therapeutic antibodies

(ATA) (8, 9). RA patients are often treated with biologic protein

drugs (also known as biological DMARDs: disease-modifying

antirheumatic drugs) that are known to be processed and

presented by antigen presenting cells, in the context of HLA-DR

molecules, to T cells that can drive ATA responses to the drugs.

Since these ATA can interfere with the efficacy of the biological

DMARDs, and HLA-DR-restricted epitopes are the root cause of

the ATA, we have hypothesized that regional HLA distributions

may help to explain observed differences in immunogenicity (ATA)

between global patient groups. In fact, a link between HLA-DR and

CD4 T cell activation has already been identified as a factor

underlying RA disease activity in studies of patients in Japan (10).
1.2 Impact of RA on immune cell
populations that can drive ATA

RA also has a direct impact on immune cell populations. T cells,

particularly CD4+ T cells, and B cells play key roles in the
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pathogenesis of RA. They contribute to the chronic inflammation

of the joints, and are responsible for the production of

autoantibodies, including rheumatoid factor (RF) and anti-

citrullinated protein antibodies (ACPAs). In addition, RA patients

are noted to have abnormally activated immune cells such as

macrophages and dendritic cells, activity (11).

Impaired regulatory T cell responses can also contribute to the

development of anti-therapeutic antibodies (ATA) to RA therapies

(12, 13). RA patients reportedly have changes to the ratio of T

effector helper (Teff) to regulatory T cells (Treg), which can

contribute to ATA (14). Effective treatment strategies for RA

often target these immune cell populations to reduce

inflammation and joint damage (15). The immune system

environment is extremely dynamic, and modulatory therapies can

have an impact on both local (joint) and systemic (lymphoid

system) environments, resulting in changes to joint inflammation

and reduction in B cell responses systemically. Likewise, systemic

therapies may have an influence on the activation of T helper cells

driving ATA. Thus, it is not surprising that effective therapy of RA

can also be associated with a reduction in T cell inflammatory

responses, an increase in regulatory T cell responses, and a decrease

in the inflammatory profile of the immune response which, at the

same time, may contribute to a reduction in the anti-therapeutic

immune response (ATA) (16).
1.3 Biologic DMARDs and JAK inhibitors to
treat RA

Biologic therapies for RA known as biologic disease-modifying

antirheumatic drugs (bDMARDs) and JAK (Janus kinase)

inhibitors have transformed the treatment landscape for

rheumatoid arthritis. They work by targeting specific components

of the immune system to inhibit the inflammatory processes that

are driving inflammation in RA. Readers are referred to an excellent

review article by Di Matteo, Bathon, and Emery on therapy for

Rheumatoid Arthritis in the Lancet, published in October 2023, for

additional information on RA therapy (17). Drugs that are used to

treat RA are classified as follows:

1.3.1 TNF inhibitors
These drugs block the cytokine tumor necrosis factor (TNF), which

plays a major role in promoting inflammation. Monoclonal antibodies

that target TNF include Infliximab (Remicade), Adalimumab

(Humira), Certolizumab pegol (Cimzia), and Golimumab (Simponi).

Etanercept (Enbrel) is an Fc-fusion of the TNF receptor that also traps

TNF, rather than directly inhibiting the cytokine.

1.3.2 Non TNF inhibitors
Both TNFa and IL-6 contribute to inflammation in RA,

therefore IL-6 is another inflammatory cytokine that is targeted in

RA treatment. IL-6 inhibitors include anti–IL-6 receptor

monoclonal antibodies such as Tocilizumab (Actemra) and

Sarilumab (Kevzara). Abatacept (Orencia) is a fusion protein

comprised of IgG Fc fused to the extracellular domain of CTLA-
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4, which can bind to the B7 molecules (CD80 and CD86) on

antigen-presenting cells. By binding to B7, abatacept prevents a

critically important costimulatory signal to T cells, thereby reducing

the activity of T cells and the consequent inflammatory response.

1.3.3 JAK inhibitors
RA is also treated using Janus kinase (JAK) inhibitors, a newer

class of small molecules (not therapeutic proteins) that block the

Janus kinase pathway, which plays a role in the immune response.
1.4 Immunogenicity of therapeutic proteins
in RA

1.4.1 Clinical observations
Several publications have addressed and reported the incidence

and prevalence of ATA in RA. See for example the systemic review

by Thomas et al. (18), Woblink et al. (19), and an earlier publication

by Garces and Demengeot (20). As discussed above, the recognition

and response to these therapeutic proteins is likely heightened in

RA due to the underlying dysregulated immune response. For

example, approximately 12% of patients treated with therapeutic

monoclonal antibodies against TNF develop ATA, but the

incidence is much higher in RA patients.

One systemic review found that ATA were involved in decreased

response to TNF inhibitors by 27% of patients in RA and by 18% in

spondyloarthritis (18). Another systemic review has demonstrated

that patients with RA who are treated with TNF inhibitors, such as

infliximab or adalimumab, have a higher incidence of developing

ATAs compared to those with other inflammatory conditions like

Crohn’s disease (13). This propensity to develop ATAs can have

important clinical implications, as the presence of these antibodies

has been linked to decreased drug efficacy, increased risk of adverse

reactions, and reduced treatment durability. Immune response to

prescribed RA medication is a problem that affects a significant

number of RA patients.

As hypothesized above, the HLA-DR of the individual patient

or patient population, as well as to their ability to present natural

Treg epitopes may be related to the development of ATA to the

individual RA product. This underscores the need for personalized

approaches in treating RA, including careful selection of therapeutic

agents, taking into consideration the risk of immunogenicity for

each individual patient, and monitoring therapeutic response and

drug levels over time. Here we focus on populations at the level of

geography, but sub populations, disease-specific populations, and

individuals may each have different immune responses to

therapeutic proteins based on differences in their HLA-DR alleles

[Makuch, Van Hamm et al, manuscript in final revision].

1.4.2 Population-level immunogenicity risk
assessment with iTEM

To address better understand the influence of HLA

distributions on RA therapy, we developed a weighted

immunogenicity risk assessment score for populations of patients,
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that was previously applied to measuring immune responses for

individual patients, called the “Individualized T-cell epitope

measure” (iTEM) tool. This tool makes it possible to estimate the

risk of immune response to a protein antigen based on the HLA-DR

frequency in a population, or the combination of HLA-DRs in a

single individual (21, 22). The individual score is calculated by

counting the number of T effector epitopes, presented by any given

HLA-DR that is identified in a monoclonal or DMARD, and

adjusted for the presence of validated Treg epitopes (also known

as Tregitopes) that are known to occur in monoclonal antibody

sequences (8), as described in greater detail below.

Since HLA typing is not routinely performed as an aspect of

clinical care for RA patients, we used population-based HLA-DR-

adjusted immunogenicity risk assessments to evaluate whether

differences in immune responses to biologic products may be

related to differences in the HLA prevalence in populations,

beginning with HLA prevalence in RA populations in Japan and

in the US (to establish an approach that could be used for additional

regional populations and sub-populations). iTEM was used to

convert HLA-DRB1 allele binding predictions generated by

EpiMatrix, an epitope-mapping tool, into an allele-specific scoring

system for the HLA distributions observed in Japanese (East Asian)

and US (Caucasian) populations. We also identified combinations

of HLA-DR alleles for which differences in the predicted immune

responses were the greatest (highest risk) or the least (lowest risk).

We then demonstrated that iTEM (HLA-DR-restricted

haplotype) analysis of immunogenicity risk appears to differentiate

populations in which a specific RA drug may be more likely to

activate an immune response and below which immune response is

likely to be absent. iTEM may be a useful tool for selecting

populations or individuals for which RA drugs may be less likely to

elicit ATA, and iTEM may be a useful tool for pre-clinical evaluation

of biologic products tailored to selected (different) population groups.
2 Methods

2.1 Compiling HLA expression frequencies

HLA-DR allele expression frequencies were calculated using gold

standard data extracted from The Allele Frequency Net Database (23)

with a minimum of four-digit (two field) resolution (e.g.,

DRB1*01:01). To optimize specificity, population samples were

selected based on ethnic origin filters (“Caucasoid” vs. “Oriental”

are the terms used in the Database). For the Japanese population,

seven population samples with matching ethnic origin (“Oriental”)

and geographic filters (“Japan”) were available (Supplementary

Table 1A). For the Caucasian population, 27 population samples

were available across North American and European regions

(Supplementary Table 1B). Allele frequencies were calculated based

on the reported “Total % of individuals that have the allele”, scaled by

sample size and aggregated. Alleles expressed at greater than 1%

frequency for at least one population were selected (Table 1,

Supplementary Table 2).
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2.2 Compiling observed immunogenicity
data for monoclonal antibodies &
fusion proteins

A fair estimate of ATA response rate to a given biologic includes

clinical data from any available study with significant numbers of

systematically chosen participants; however, study size may vary from

biologic to biologic and target population to target population. In

most cases, an average ATA response rate was calculated based on the

rates reported in FDA package inserts using a method described in

detail for global population groups in a previous publication by Jawa

et al. (24). As previously described, where multiple clinical studies

were included, this average was weighted by the number of study

participants included for each reported rate. Rates associated with

monotherapy were preferred. Where no rates were reported without

concomitantmedication, a systematic review was performed to justify

the inclusion of certain datapoints. Rates associated with very small

samples or concomitant medications expected to have significant

confounding impacts on ATA response were excluded. Due to

measurement inconsistency across product studies, no attempts

were made to specify “neutralizing” antibody response rate.
2.3 Calculating immunogenic
potential scores

Methods to assess the immunogenic potential of a complete

protein are available on several public and academic platforms such

as the Immune Epitope Database (25), in some cases paired with

mathematical models based on hypothetical binding affinities and T

cell precursor frequencies (26), or with MAPPs-determined

peptidomes (27–29). Here, we used the EpiMatrix scoring system

that has been described previously (30, 31). EpiMatrix was

developed by De Groot and colleagues at Brown University and

licensed to EpiVax in 1998. EpiMatrix and JanusMatrix have been

applied and validated in the field of vaccine development, most

recently for personalized cancer vaccine development (31)(.

Substantial improvements to the EpiMatrix algorithm have

resulted in a high degree of accuracy for class II epitopes (77-

100%) and higher than 95% for most class I epitopes (32, 33).

Briefly, the EpiMatrix algorithm maps putative ligands to globally

representative HLA-DRB1 supertype alleles (34) and calculates a length-

normalized score to represent aggregate T cell epitope density. This is

called the “Raw” EpiMatrix Score. An adjustment to this score in which

the putative ligands specific for known regulatory Tregitopes are

excluded from the aggregate calculation has been shown to correlate

with the observed immunogenicity of monoclonal antibodies in the

clinic (24). This is called the “Tregitope-adjusted” EpiMatrix Score. An

adaptation of the EpiMatrix Score for use in personalized medicine is

called the individualized T cell Epitope Measure, or “iTEM” Score (21).

This score restricts the aggregation of epitope content to a set of two

HLA-DR alleles, in order model the scenario of an individual patient,

who may be homozygous or heterozygous.

The iTEM Score has been applied to the personalized

immunogenicity risk assessment for replacement enzymes (22,
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35) and peptides derived from vaccine candidate antigens (36). In

previous iterations of iTEM, corrections have been applied for

“cross-conservation with self-epitopes” (using the JanusMatrix

tool). As this tool has not yet been adjusted for Tregitopes and

therefore cannot be applied to antibody-derived biological

DMARDs without significant modification, we elected to use the

well-standardized Tregitope correction (8) to the EpiMatrix analysis

in the models that were applied below (22, 37) instead of the

JanusMatrix-corrected version of iTEM (J-iTEM).
3 Approach and calculations

3.1 Modeling population distributions

To understand the relative immunogenic potential of each

biologic specific to distinct populations, we first created 100

iterative random samples of allele frequencies from each

population. We used these frequencies to weight the epitope

content in each biologic according to the HLA frequency sample,

generating an allele frequency-weighted score. The distribution of

100 allele frequency-weighted scores for each biologic for each

population was visualized as a violin plot and compared to the

conventional EpiMatrix Score based on global HLA supertype

alleles (Supplementary Figure 1).
3.2 Statistical analysis

Medians of Raw and Tregitope-adjusted EpiMatrix Scores by

population were compared for each biologic by Wilcoxon signed

rank test; p-values <0.05 were considered significant. Results were

confirmed with multiple approaches to adjusting p-values for multiple

comparisons and quantifying effect sizes (Supplementary Table 3).
3.3 Modeling risk for individuals
in populations

An iTEM Score was calculated for each biologic and each

potential combination of HLA alleles in each population. Both

“Raw” and “Tregitope-adjusted” iTEM Scores were calculated

(Supplementary Figure 2).
3.4 Differentiation by absolute difference
between populations according to joint
probability of allele pairs

To compare and visualize the impact of HLA expression

frequency on immunogenic risk, box and whisker plots of

Tregitope-adjusted iTEM Scores for all potential pairs of HLA

alleles were generated. Pairs of alleles with joint probabilities

greater than 5%, and absolute differences of greater than 5%

between Japanese and Caucasian populations are shown.
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4 Results

4.1 Observed HLA frequencies

Available population data were less abundant for Japanese

populations than for Caucasian populations (Supplementary

Tables 1A, B). Still, sample sizes were sufficient to calculate

expression frequencies for multiple common HLA alleles. As shown

in Table 1, alleles expressed at similar frequencies in both populations

include HLA-DRB1*0101 and *1501 (Supplementary Figure 3).

Notable differences in the HLA-DR distribution between US and

Japanese populations are highlighted here: HLA-DRB1*0901 and
Frontiers in Immunology 05
*1502 are expressed at high frequency in the Japanese population but

not in the Caucasian population, whereas HLA-DRB1*0301 and

*0701 are expressed at high frequency in the Caucasian population,

but not in the Japanese population. Based on the potential for HLA-

DR-restricted T cell epitopes to drive immunogenicity (as measured

by ATA), these differences indicate at least some potential for

population-specific immunogenic risk based on differential

presentation of HLA ligands. A complete, annotated list of

evaluated alleles can be seen in Supplementary Table 2.
4.2 Immunogenicity scores of RA biologics

4.2.1 Range of scores calculated for
global supertypes

On an overall, global level (not restricted by population-level

prevalence data), the Tregitope-adjusted EpiMatrix Immunogenicity

Scores of the evaluated RA biologics range from positive 16.99

(Tocilizumab) to negative 60.58 (Etanercept) on the normalized

scale illustrated in Figure 1. The highest scores are above the

average score of a benchmark set of monoclonal antibodies known

to simulate ATA in >5% of exposed patients, while the lowest scores

are well below the average score of a benchmark set of monoclonal

antibodies known to stimulate ATA in <5% of exposed patients

(Figure 1) (30).

4.2.2 Medians of scores for regional populations
On a population level, all the medians of the simulated

population distributions of Raw EpiMatrix Scores for most RA

biologics differ significantly between Japanese and Caucasian

populations, except for Sarilumab (Figure 2, Table 2). Tregitope-

adjusted EpiMatrix Score simulated population distribution

medians also differ significantly between Japanese and Caucasian

populations, with Adalimumab falling near the threshold for

significance after adjusting for multiple comparisons

(Supplementary Table 3). Fusion proteins consistently have the

lowest median scores, both Raw and Tregitope-adjusted, but also

differ significantly between populations (Figure 2). The effect sizes

showed that the differences in scores between populations are

meaningful except for EpiMatrix scores for Sarilumab and

Tregitope-adjusted EpiMatrix for Adalimumab.

4.2.3 EpiMatrix and Tregitope-adjusted scores
As is also shown in Figure 2, the unweighted (calculated using

supertype HLA-DRB1 alleles) Raw EpiMatrix Scores (not corrected

based on Tregitope content) are consistently higher than HLA allele

expression frequency-weighted Raw EpiMatrix Scores. After

Tregitope-adjustment, unweighted scores for selected DMARDS,

specifically Adalimumab, Certolizumab, Golimumab and

Sarilumab fall within the distributions of HLA allele expression

frequency-weighted scores. In other words, the Tregitope-adjusted

score calculated for supertypes is no longer higher than those of the

weighted scores for Caucasian and Japanese populations. This result

suggests that HLA expression frequencies have differential effects in

the immunogenicity risk assessment scores among RA biologics, in

particular for those with high Tregitope content. For these biologics,
TABLE 1 Expression frequency of HLA alleles in Japanese and
Caucasian populations.

Allele

HLA Allele Frequency, %

Japanese
Population

Caucasian
Population

DRB1*01:01** 13.51 15.02

DRB1*01:03 0.00 1.96

DRB1*01:04 0.00 4.02

DRB1*03:01 0.72 29.04

DRB1*04:01** 2.28 7.82

DRB1*04:04** 12.23 8.41

DRB1*04:05** 25.70 6.54

DRB1*04:08** 0.92 1.94

DRB1*04:10 3.80 0.09

DRB1*07:01 0.41 24.05

DRB1*08:01 16.78 3.98

DRB1*08:02 7.38 0.34

DRB1*08:73 3.02 0.01

DRB1*09:01** 28.77 0.71

DRB1*11:01 4.00 11.47

DRB1*11:02 0.20 6.60

DRB1*11:04 4.09 8.29

DRB1*11:58 2.40 0.03

DRB1*12:01 8.93 2.58

DRB1*13:01 1.22 11.39

DRB1*13:02 12.49 7.28

DRB1*13:03** 0.00 2.58

DRB1*14:01 5.10 4.83

DRB1*15:01 13.99 16.04

DRB1*15:02 22.89 1.86

DRB1*16:01** 1.53 6.98
Bold font indicates classical “shared epitope” allele.
**Indicates RA risk allele based on 95% confidence interval of OR>1 (Raychaudhuri
et al., 2012).
Details of population frequencies are described in Supplementary Table 2.
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the relationship between potential T effector and Tregitope

content is more likely to be affected by variations in HLA

expression frequencies.

4.2.4 Impact of population HLA expression
frequencies is strongest when Tregitope or T
effector epitope content is high

Biologics with high Tregitope content (Supplementary Table 4)

are more likely to change the Tregitope-adjusted EpiMatrix score/

Tregitope content (i.e., T effector/Tregitope) relationship because

they have more chances to be affected by HLA frequencies.

However, both Tregitope content and potential T effector content

can be altered by the HLA frequencies. If the T effector content is
Frontiers in Immunology 06
lower for one population, and the Tregitope content is identical

both populations, differences in the T effector/Tregitope

relationship are expected.

4.2.5 Identification of higher risk HLA pairs
Further analysis of pairs of HLA-DR alleles identifies

haplotypes that could be ‘higher risk’ in each population, and that

may be contributing most to regional differences. Considering the

pairs of HLA alleles that might be expressed by individual patients,

just three pairs of alleles are expressed at >5% greater joint

probabilities in Caucasian populations compared to Japanese

populations, while six pairs of alleles are expressed at >5% greater

joint probabilities in Japanese populations compared to Caucasian
FIGURE 1

Tregitope-adjusted Immunogenicity Risk Potential Scores of RA Biologics and Benchmark Proteins. The EpiMatrix Tregitope-adjusted Protein
Immunogenicity Risk Potential Score represents the aggregate predicted T cell epitope content in each protein, per unit protein length, relative to
the expected T cell epitope content in a protein of equivalent length. Proteins with positive scores carry more epitope content than the random
expectation, and thereby, increased risk for immunogenic response. Proteins with negative scores carry less epitope content than random
expectation, and reduced risk for immunogenic response. These scores are adjusted for the presence of epitopes known to stimulate regulatory T
cells, called Tregitopes. Human proteins have a wide distribution of Immunogenicity Risk Potential Scores, whose median is -9.05. The median
Immunogenicity Risk Potential Score of secreted human proteins is even lower, at -23.08. Protein Immunogenicity Risk Potential Scores above the
median of the human proteome may indicate elevated immunogenic risk for therapeutic protein candidates.
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FIGURE 2

Population-specific EpiMatrix Scores of RA Biologics. We used 100 iterative random samples of allele frequencies from each population to weight
the epitope content in each biologic according to the HLA frequency sample, generating an allele frequency-weighted score for the Caucasian
(green) and Japanese (blue) populations. Supertype scores (black dot) are not weighted for allele frequency. Raw and Tregitope-adjusted EpiMatrix
(EMX) scores were calculated. Applying allele frequency weights to scores reveals variation in distributions by population. In most cases, unweighted
scores (calculated using HLA-DRB1 alleles) are higher than frequency-weighted scores.
TABLE 2 Raw and Tregitope-adjusted EpiMatrix Score distributions for RA biologics.

Biologic
Raw EpiMatrix Tregitope-adjusted EpiMatrix

Median Caucasian Median Japanese p-value Median Caucasian Median Japanese p-value

Adalimumab 62.38 61.18 1.48E-08 -20.26 -19.71 0.0027

Certolizumab 20.22 28.05 2.71E-18 -45.28 -40.73 2.71E-18

Golimumab 8.32 10.68 3.76E-18 -38.41 -30.74 2.71E-18

Infliximab 9.34 7.79 2.58E-16 7.84 5.61 4.77E-18

Sarilumab 17.9 18.05 0.265 -19.6 -23.24 2.71E-18

Tocilizumab 41.16 32.01 2.71E-18 12.58 4.27 2.71E-18

Abatacept -28.83 -30.9 4.23E-18 -37.81 -42.27 2.71E-18

Etanercept -61.26 -58.66 2.71E-18 -68.01 -67.29 6.80E-15

Lenercept -44.74 -46.33 2.94E-17 -52.47 -56.25 2.71E-18
F
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populations (Figure 3). Tregitope-adjusted iTEM Scores for the

highest differential frequency HLA allele pairs tend to fall in the top

quartile of the distributions, especially for the monoclonal antibody

biologics, suggesting higher immunogenicity potential for

frequently expressed population-specific HLA allele pairs.
5 Discussion

To better understand the impact of different HLA distributions

in distinct population groups on immunogenicity risk potential of

RA therapies, we developed a weighted immunogenicity risk

assessment score for populations of patients, and for individual

patients, called the “T-cell epitope measure” (iTEM) tool. This tool

makes it possible to estimate the risk of immune response to a
Frontiers in Immunology 08
protein antigen based on HLA prevalence in a population, or in an

individual (21).
5.1 Summary of key findings

The Human Leukocyte Antigen (HLA) system, specifically the

HLA-DR alleles, play a crucial role in the immune response. They

are responsible for presenting peptides, including those derived

from foreign substances like drugs or pathogens, to the immune

system, specifically to CD4+ T cells. The type of HLA-DR allele that

is expressed by each individual can influence which peptides are

presented to their immune system, which will impact the overall

immune response, especially the production of antibodies. HLA-DR

differences can also have implications for the generation of anti-
FIGURE 3

RA biologic patient-specific immunogenic risk varies according to HLA expression frequency in Caucasian and Japanese populations. Figure
illustrates the distribution of Tregitope-adjusted iTEM Scores for each biologic. The “box” in the box and whisker plot indicates the second and third
quartile of each distribution, separated by a median line, while the “whiskers” indicate the first and fourth quartiles. HLA allele pairs are shown in the
colored circles to highlight those pairs which have the greatest difference in joint probability between the Caucasian and Japanese populations.
Circles shaded green reflect an allele pair whose joint probability is higher in the Caucasian population than the Japanese population; blue-shaded
circles indicate allele pairs whose joint probability is higher in the Japanese population. The size of the circle marker indicates the absolute
difference in the joint possibility of the allele pair between the two populations. Only pairs whose absolute joint probability difference is greater than
5% are shown.
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therapeutic antibodies (ATAs) to biologic therapeutics. Simply

stated, a sequence in each biologic drug might be presented as a

foreign peptide by a particular HLA-DR allele that is common in

one population, triggering an immune response and ATA

production, while the same drug might not trigger the same

response in a population where that HLA-DR allele is less

common. Geographic variations in HLA-DR alleles have been

well documented, reflecting the genetic diversity and evolutionary

pressures of different human populations (38).

Here, we have focused on two populations in which similar

biological DMARDs are used to treat RA, with potentially different

outcomes. We note that HLA-DRB1*09:01 and *15:02 are expressed

at high frequency in the Japanese population but not in the

Caucasian population, whereas HLA-DRB1*03:01 and *07:01 are

expressed at high frequency in the Caucasian population, but not in

the Japanese population.

Based on the key contribution of HLA-DR-restricted T cell

epitopes to immunogenicity risk potential, these differences

indicated at least some potential for population-specific

immunogenic risk based on differential presentation of HLA ligands.

These differences may be exacerbated in the context of autoimmune

diseases such as RA, as certain HLA-DR alleles have been associated

the condition. Possessing these specific alleles not only predisposes

individuals to RA, but also to a more robust or dysregulated immune

response to foreign substances, including biologic therapeutics, which

can contribute to increased ATA production.

Differences in the potential immunogenicity risk, based on

regional HLA-DR allele differences, are summarized in Figure 3.

As shown in this figure, on a population level, all the medians of the

simulated population distributions of Raw EpiMatrix Scores for

most RA biologics differ significantly between Japanese and

Caucasian populations, except for Sarilumab.

Take for example, Tocilizumab. Significant differences in the

ATA formation to this very important anti-IL-6 therapeutic have

been noted in certain populations and could be explained by the fact

the HLA-DR*09 allele is highly prevalent among Japanese RA

patients. Tocilizumab is known to be associated with limited ATA

formation in Japanese patients. The Tregitope adjusted iTEM Scores

for DRB1*09:01 homozygous patients fall in the bottom quartile of

the distribution for Tocilizumab. In this case, HLA-DRB1*09:01

patients are not expected to develop ATA response to the drug.

However, some RA patients in Japan may not carry the HLA-

DRB1*09:01 allele that “protects” against ATA for Tocilizumab. In

those cases, Fc-fusion proteins such as Abatacept or Etanercept is

predicted to be less immunogenic. It is interesting to note that in a

previous study, in vitro analysis and transcriptomic pathway analysis

suggested that a higher frequency of memory CXCR4(+)CD4(+) T

cells predicted a better response to CTLA4-Ig (Abatacept) (13). It is

not clear whether the memory CD4 T cells in the above study were

regulatory T cells, which could explain the observation.

5.1.1 Interpretation of frequency weighted scores,
especially iTEM

We evaluated whether the distributions of scores in the violin

plots are different between populations. We tried a few tests and

found that based on p-values, the populations were different, with
Frontiers in Immunology 09
EpiMatrix scores for Sarilumab as the only exception. P-values were

adjusted for multiple comparisons using 6 different approaches. P-

values only tell us whether an effect exists, but do not tell us whether

the effect is large enough to be practically meaningful. P-values are

influenced by the sample size, so increasing the sample size makes it

more likely to find a statistically significant effect, no matter how

small the effect truly is in the real world. In contrast, effect sizes are

independent of the sample size. For non-parametric tests that used

paired samples, effect sizes are calculated using rank-biserial

correlations. Categorical effect size interpretations based on criteria

defined by different authors were applied, see Supplementary

Table 3. Only the effect size for Sarilumab EpiMatrix and

Tregitope-adjusted EpiMatrix Adalimumab are not classified as

large, very strong, or very large. This means that with exception of

EpiMatrix scores for Sarilumab and Tregitope-adjusted EpiMatrix

for Adalimumab, the scores are significantly different between

populations and the differences can be considered meaningful or

they suggest practical significance.

5.1.2 Discussion of potential impact of T cell
function during treatment

Tregs play a crucial role in maintaining immune tolerance and

controlling excessive immune responses. Restoration of regulatory

T cell (Treg) function during rheumatoid arthritis (RA) treatment

could potentially have a significant impact on disease activity and

progression. In the context of RA, their function is often impaired,

contributing to the chronic inflammation and tissue damage

characteristic of the disease. Enhancing Treg function may not

only help manage the symptoms of RA but could also address some

of the underlying immune dysregulation driving ATA responses.

Some DMARDs have been shown to enhance Treg function (39).

The re-activation of regulatory T cell responses may be responsible

for some of the “treatment-induced tolerance” that has been

observed in many clinical studies (16), and this effect may be

more evident for those individuals that carry HLA-DR alleles that

are able to present T reg epitopes (Tregitopes), and for DMARDS

that contain more Tregitopes.

5.1.3 Consideration of other (non HLA-DR) HLA
Differences in the HLA-DR distributions between Japanese and

Caucasian populations are outlined in Table 1. Notable differences

include HLA-DRB1*01:04, *04:01 and *04:05, all of which are alleles

that have a shared amino acid pattern known as the “shared

epitope” (Table 1). These distinct differences in shared epitope

frequency are seen in RA patients from both populations,

confirming previous observations that HLA-DR does not directly

predict the development of RA. The differences are, however, likely

to have an impact on the development of ATA, a hypothesis that is

validated in Table 2 (see significant differences in immunogenicity

risk potential, as calculated using EpiMatrix); and in Figures 2 and 3

as contrasted with Figure 1, which compares the relative

immunogenicity risk potential of RA therapeutics for global,

rather than geographically defined populations.

Other HLA effects such as HLA-DP, DQ, and that of the non-

classical DOA HLA gene were not measured in this analysis, for

several reasons. Firstly, a significant correlation between ATA and T
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cell epitope content has been defined previously (24), and this

correlation is not preserved when HLA-DP and -DQ predictions are

included in the calculation (33). Second, models assessing the

impact of the DOA-gene have not been established (6).

Additional prospective and retrospective studies may be necessary

to define the contributions of alleles beyond HLA-DR.

As can be seen by Table 1, the impact of shared epitope alleles

on potential for immunogenicity cannot be distinguished from

general HLA prevalence frequency in the two populations. Thus,

the contribution of SE to differences in immunogenicity risk cannot

be quantified in this study.
5.2 Advantages and limitations of study

A significant limitation of this study is that it only addresses the

risk of immunogenicity in two regional populations – Japanese and

American Caucasians. Clearly, there can be significant intra-

regional HLA-DR differences in populations (such as can be

observed between Caucasian-Americans and African Americans)

and there are many global populations for which HLA-DR typing is

inconsistent and incomplete. More information on HLA-DR

haplotypes is a critical need for improving our understanding of

ATA responses to immunomodulatory therapeutics in RA.

Furthermore, while we found that differences in the estimated

immunogenicity risk potential that could be associated with the

frequency of HLA-DR alleles in each of the regional populations we

evaluated to be significant for some of the biological DMARDs, we

evaluated relying solely on HLA-DR-associated immunogenicity

risk assessment which may be insufficient for predicting anti-

therapeutic antibody (ATA) development. This is because ATA

formation is a complex process influenced by a multitude of factors,

both patient-related and drug-related, and not just by the presence

of specific HLA-DR alleles. It is important to note that decreased

TCR diversity has been identified in some RA subjects that have the

“shared epitope” alleles (40). While we did not find an association

between SE and immunogenicity risk in this study, constraints on

TCR diversity may have an important impact on ATA responses.

Notably, several GWAS studies have identified a specific HLA-

DQ allele (HLA-DQA1*05) as being associated with anti-DMARD

antibodies (ATA). In a study of Crohn’s disease subjects,

immunogenicity was linked to HLA-DQA1*05 by GWAS for two

disparate biologics [adalimumab, and infliximab, (26, 41)]. These

two biologic products are significantly different in terms of their

protein sequences. A second publication (42), evaluated linkages

between ATA to eight different biologics with significantly different

mechanisms of actions and protein sequences, and also found a

linkage to HLA-DQLA1*05 along with several other HLA-DR

alleles (some of which were found to be protective).

Since the correlation with ATA was found irrespective of the

sequence of the biologic in these two studies, it is possible that the

association with HLA-DQA1*05 is related to a link between the

gene and Treg function in the lymphoid follicle, rather than HLA

allele restriction of T effector epitopes which are more likely to be

found in the CDR regions and less likely to be found in the common
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framework regions (where Tregitopes are present). An association

with Treg function or Tregitopes could also explain linkages to

HLA-DRB1*01:01, 03:01, and 07:01 (these are prevalent alleles in

European/Caucasian populations) (43). The potential linkages to

epitopes (such as Tregitopes) that are conserved between biologics

would require further study.

In addition to HLA-DR alleles, other genes involved in the

immune response may influence ATA formation, such as genes

coding for cytokines and cytokine receptors, T-cell receptors, and

B-cell activating factors. Use of other drugs, especially

immunosuppressants, can affect the immune response and the

risk of ATA development. The presence of aggregates, post-

translational modifications, and impurities can also increase the

risk of ATA formation. Both the dose and frequency of

administration of biological DMARDs can influence the risk of

ATA development. Environmental factors, including exposure to

pathogens or other foreign antigens, can stimulate the immune

system and potentially influence ATA formation. Given the

multifactorial nature of immunogenicity, a comprehensive risk

assessment for ATA development would need to consider all

these factors and their potential interactions, rather than focusing

solely on HLA-DR-associated risk.

Lastly, we must address the accuracy of the HLA ligand

predictions that are based on EpiMatrix, a tool that has been in

continuous use (with updates) since the early 2000’s. In support of

the accuracy of this tool, we compiled a retrospective evaluation of

EpiMatrix results to internal HLA binding assays which

demonstrated that EpiMatrix ranking has a Positive Predictive

Value (PPV) of 81% and that the HLA class II predictions were

74% accurate. This study involved more than 1600 assays,

performed in house, using the same methodology as published in

De Groot et al., 2020 (33).

In addition, for this publication, we performed a high-level

analysis of HLA-DR-eluted peptides that have been compiled in the

IEDB database (25) to EpiMatrix HLA-DR predictions. We

identified 70,594 peptides in the IEDB that were reported (as of

March 26, 2024) to have been eluted from human HLA-DR

molecules. Using our usual threshold for binding (EpiMatrix Z-

score of 1.64), 58,335 (83%) of these peptides contained at least one

HLA-allele-specific epitope that is also identified by EpiMatrix. At a

slightly lower cutoff that includes “likely” HLA-binding 9-mers (Z-

score of 1.28), 64,064 or 91% of the reported eluted peptides contain

at least one HLA-allele-specific EpiMatrix ligand (unpublished data

analysis by Bill Martin).

Additional T cell epitope and HLA binding validation studies

have been published in the course of grant-funded research

collaborations, describing T cell immune responses to predicted

epitopes in vitro using human lymphocytes. For example, 100% of

subjects exposed to either Tularemia or Vaccinia responded to

pools of T cell epitope clusters that score higher than 20 on the

EpiMatrix immunogenicity scale (44–46). In a recent head-to-head

comparison, the ClustiMer approach outperformed the standard

overlapping peptide approach (usually 15mer peptides overlapping

by five amino acids) used by many biologics’ researchers (44). In

that comparison, T cell responses to the 15mer overlapping peptides
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were lower, on average, than the maximal responses induced by the

pools predicted using immunoinformatic tools (32).

Overall, the HLA-DR-assessments that are included in this

study can be considered to be highly correlated with HLA

binding data, HLA ligand elution studies, and T cell assays as

currently performed and compiled in public databases.
6 Conclusions

In conclusion, analysis of HLA-DR allele haplotypes in

rheumatoid arthritis (RA) patient populations could potentially

improve the selection of disease-modifying antirheumatic drugs

(DMARDs) because these alleles can influence the immune

response, including the response to therapeutics. As we have

shown here, certain HLA-DR alleles might predispose individuals

to a heightened immune response towards specific biologic

DMARDs, increasing the risk of developing ATA that can

neutralize the drug or accelerate its clearance, thereby reducing

their efficacy. Identifying these HLA-DR risk alleles may make

possible to select drugs with a lower risk of immunogenicity for

these patients. Differences in the frequencies of higher risk HLA

pairs in regional populations could also explain any differences in

the immunogenicity of biologics that are observed in regional

cohorts participating in studies that measure ATA.

In clinical practice, understanding the relationship between

HLA-DR alleles and ATA formation could potentially guide

personalized therapeutic decisions and the selection of one

biological DMARD over another. HLA haplotyping has improved

recently, due to the availability of algorithms that deduce HLA

haplotype from NGS sequencing of genetic material in peripheral

blood (47, 48). Making these decisions will depend on the ability of

clinicians to access therapeutic drug monitoring and HLA-DR

typing for their patients. In addition, treatment with certain

therapeutic agents likely modifies the inflammatory response,

leading to the induction of tolerance. Thus, a full understanding

of the disease state of the patient, their specific RA-risk factor and

phenotype, as well as their HLA-DR allele may be required prior to

planning to introduce personalized therapy. More research is

needed to fully understand the implications of HLA-DR

variations on ATA formation and biologic drug response in

different populations.

Achieving the full potential of pharmaceutical products for

treatment of Rheumatoid Arthritis (RA) depends on the

appropriate selection of the best product for the stage of disease,

as well as for the individual patient. Each stage of RA may be

phenotypically different, just as each patient may be somewhat

genetically unique. Advances have been made in the field of

medicine to improve the efficacy of therapy by linking the specific

type of therapy by disease characteristic or to stage of disease.

Similarly, improvements in RA therapy may be possible if therapy is

tailored to characteristics that are unique to populations of patients,

and/or to individual patients, based on their individual HLA

haplotype and disease phenotype. In other fields, tailored therapy

is already being selected. For example, selection of the specific

cancer therapy and the design of cancer vaccines can be based on
Frontiers in Immunology 11
oncogenes that are detected in the patients’ tumors, and on the

patient’s HLA alleles (49–51).
7 Future directions

This study indicates that HLA-DR genotyping could potentially

contribute to the optimization of therapeutic selection. Other

factors, such as other genetic factors, the patient’s disease activity

and severity, comorbidities, and concomitant medications, should

also be considered. Additional prospective studies are needed to

support the role of HLA-DR genotyping in guiding biological

DMARD selection in clinical practice.

This information could be made available to clinicians who

would like to select therapies for their patients that are unlikely to

drive ATA. A website devoted to identifying individualized risk of

ATA for patients treated with enzyme replacement therapies

(Pompe-PIMA) has already been imagined (22). A similar website

could also be developed for selecting the best biological DMARD for

an individual patient based on their HLA-DR allele haplotype and

other genetic factors that are known to be associated with RA. This

website could for example take into consideration RA-specific

disease states and pre-disposing genetic factors such as mutations

associated with regulatory T cell, T follicular helper cell, and

cytokine receptor deficiencies (52). One potential use of such a

website would be to retrospectively evaluate the association between

HLA-DR haplotypes and ATA data generated in the context of

clinical trials. A “batch upload” feature was recently added to the

PIMA website to facilitate such studies. Both retrospective and

prospective studies should be conducted prior to implementing

analyses such as PIMA for RA in clinical settings.
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