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Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at advanced

stages and associated with early distant metastasis and poor survival. Besides

clinical factors, the tumor microenvironment (TME) emerged as a crucial

determinant of patient survival and therapy response in many tumors,

including PDAC. Thus, the presence of tumor-infiltrating lymphocytes and the

formation of tertiary lymphoid structures (TLS) is associated with longer survival

in PDAC. Although neoadjuvant therapy (NeoTx) has improved the management

of locally advanced tumors, detailed insight into its effect on various TME

components is limited. While a remodeling towards a proinflammatory state

was reported for PDAC-infiltrating T cells, the effect of NeoTx on B cell subsets,

including plasma cells, and TLS formation is widely unclear. We thus investigated

the frequency, composition, and spatial distribution of PDAC-infiltrating B cells in

primary resected (PR) versus neoadjuvant-treated patients using a novel

multiplex immunohistochemistry panel. The NeoTx group displayed

significantly lower frequencies of pan B cells, GC B cells, plasmablasts, and

plasma cells, accompanied by a reduced abundance of TLS. This finding was

supported by bulk RNA-sequencing analysis of an independent fresh frozen

tissue cohort, which revealed that major B cell pathways were downregulated in

the NeoTx group. We further observed that plasma cells frequently formed
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aggregates that localized close to TLS and that TLS+ patients displayed

significantly higher plasma cell frequencies compared to TLS- patients in the

PR group. Additionally, high densities of CD20+ intratumoral B cells were

significantly associated with longer overall survival in the PR group. While

CD20+ B cells held no prognostic value for NeoTx patients, an increased

frequency of proliferating CD20+Ki67+ B cells emerged as an independent

prognostic factor for longer survival in the NeoTx group. These results indicate

that NeoTx differentially affects PDAC-infiltrating immune cells and may have

detrimental effects on the existing B cell landscape and the formation of TLS.

Gaining further insight into the underlying molecular mechanisms is crucial to

overcome the intrinsic immunotherapy resistance of PDAC and develop novel

strategies to improve the long-term outcome of PDAC patients.
KEYWORDS
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Introduction

Despite promising advances in other cancer entities, pancreatic

ductal adenocarcinoma (PDAC) remains one of the most lethal

cancers, with an average 5-year survival of approximately 10% (1).

This can be attributed to several factors, including detection during

advanced stages, early occurrence of distant metastases, and poor

response to standard chemotherapy regimens (2). For the low

proportion of patients being eligible, complete surgical resection

followed by adjuvant chemotherapy is still the predominant

curative option (3). Although neoadjuvant (radio)chemotherapy

(NeoTx) provides an additional option for locally advanced and

borderline resectable tumors, overall survival (OS) remains low, and

recurrences are frequent (4). While novel immunotherapies such as

checkpoint inhibitors (CPI) enabled a successful treatment of

advanced-stage tumors of, for example, lung and melanoma,

PDAC displayed discouragingly low response rates to CPI

monotherapy so far (5, 6). Since the discovery of CPIs, a great

effort has beenmade to uncover the underlying mechanisms of action

and identify potential biomarkers to efficiently predict response rates

and stratify patients accordingly (7). It was found that besides

molecular determinants such as the tumor mutational burden, the

existing tumor immune contexture plays a pivotal role in determining

both response to therapy and prognosis (8, 9). Importantly, PDAC is

characterized by a dense, fibrous desmoplastic stroma and an

immunosuppressive tumor microenvironment (TME), potentially

contributing to the poor response to CPI therapy (10, 11). Over the

last decade, efforts to identify biomarkers to efficiently predict therapy

response and guide personalized treatment approaches in PDAC

have been primarily focused on tumor-infiltrating T cells, whereas

studies exploring the B cell compartment are rather limited (12–15).

Tumor-associated B cells can present scattered in the pancreatic TME

or organized in tertiary lymphoid structures (TLS). TLS constitute
02
specialized cellular hubs of T and B cell activation, which can form in

close proximity to tumors, orchestrate effective adaptive antitumor

immunity, and are thus associated with improved survival and

treatment response in many cancers, including PDAC (16–19).

Mature TLS consist of distinct T- and B cell zones, activated

dendritic cells (DCs), high endothelial venules, and a germinal

center (GC) reaction within the B cell follicle and thus harbor a

plethora of B cell subtypes.

Previous studies investigating the B cell composition in PDAC

relied solely on the use of the pan B cell marker CD20 or

transcriptomic data (20–23). However, not only the frequency but

also the quality and spatial organization of the B cell response are

crucial (24). The main B cell subtypes that can be found in solid

tumors are naïve B cells, memory B cells, GC B cells, plasmablasts,

plasma cells, and regulatory B cells (Bregs) (25). Naïve B cells, which

were not exposed to antigen yet, are predominantly found in

secondary lymphoid organs or peripheral blood and represent only

a small proportion of B cells present in tumors. Upon antigen

encounter and activation, B cells can migrate into B cell follicles to

drive the GC reaction. For T cell-dependent antigens, CD4+ follicular

T helper cells expressing CD40L and a cytokine cocktail stimulate

activated B cells to undergo somatic hypermutation and isotype

switching. GC B cells proliferate rapidly and are characterized by

the expression of CD20, the GC master regulator Bcl6, and the

proliferation marker Ki67 (25). Memory B cells express CD20, CD27,

and immunoglobulin (Ig)M and mainly circulate in peripheral blood

to initiate a response upon secondary exposure to their respective

antigen but can also be found within tumor-associated TLS. A subset

of B cells differentiates into plasmablasts, which produce antibodies

but can still proliferate and are thus characterized by expression of

Ki67 in addition to CD20, CD27, MUM1, and CD38. Further

differentiated plasma cells are usually located within the tumor

stroma and are negative for CD20 and Ki67 but express, in
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addition to MUM1 and CD38, the characteristic molecule CD138.

Due to the lack of specific cell-surface markers for Bregs, they

are usually characterized functionally by the secretion of

immunosuppressive cytokines like interleukin 10 and transforming

growth factor (TGF)-b (26). Thus, Bregs can drive the generation of

regulatory T cells and an M2 polarization of macrophages and are

commonly associated with immunosuppression and worse clinical

outcomes. Another mechanism by which B cells can contribute to

tumor progression is the secretion of vascular endothelial growth

factor, which promotes angiogenesis (27). In contrast, plasma cells

can enable tumor cell killing by IgG-mediated antibody-dependent

cellular cytotoxicity and promote antigen-presentation by DCs (28,

29). However, sustained antibody production can also drive chronic

inflammation by forming immune complexes and activating the

complement system, which may promote cancer development and

progression (30). As professional antigen-presenting cells, B cells also

engage in the presentation of antigenic peptides and can facilitate the

activation of both CD4+ and CD8+ T cells, ultimately enhancing

antitumor immunity (31). In summary, B cells can be associated with

both tumor-promoting or antitumor properties, which may

contribute to contradictory results regarding the prognostic value

of tumor-infiltrating B cells, describing either a positive, negative, or

no effect on survival (32, 33).

NeoTx has become the standard of care for PDAC patients with

borderline resectable and locally advanced tumors. Importantly,

cytotoxic treatment regimens like chemo- and radiotherapy also

affect the composition of the TME (34). By inducing immunogenic

cell death, chemotherapeutic agents can enhance the antitumor

immune response, enable an increased infiltration by T and B cells,

and potentially drive the formation of TLS (25). For example, we

reported a higher proportion of CD8+ T cells and an increased

production of proinflammatory cytokines by PDAC-infiltrating T

cells in NeoTx patients (15, 23). On the other hand, DNA-damaging

agents also affect immune cells and may thus attenuate their

frequency and functional properties (35). To gain novel insights

into the effect of NeoTx on the B cell compartment, we compared

the frequency, composition, and spatial distribution of PDAC-

infiltrating B cells in primary resected (PR) and NeoTx-treated

PDAC patients. Therefore, we established a novel multiplex

immunohistochemistry (mIHC) panel to identify T and B cells,

GC B cells, plasmablasts, and plasma cells. We further uncovered

the spatial organization of PDAC-infiltrating B cells in intra- and

peritumoral areas, both scattered in the fibrotic stroma and

organized within TLS. In addition, we analyzed immune-related

transcriptomic changes in PDAC patients treated with NeoTx, with

a specific focus on B cell immune responses and signaling pathways.
Materials and methods

Patient cohort

Tissue samples for mIHC were obtained from PDAC patients

who underwent surgical resection with curative intent at Klinikum

rechts der Isar (Munich) between 2008 and 2015. In this study, 30

NeoTx patients were matched according to age, sex, and tumor
Frontiers in Immunology 03
stage with 28 PR cases. NeoTx was administered to patients with

radiographically borderline resectable or locally advanced disease.

Clinical characteristics and details of the neoadjuvant treatments

are outlined in Tables 1, 2, respectively. All patients were informed

and provided written consent. This study was approved by the

Ethics Committee of the Technical University of Munich (Munich,

Germany; Nr. 549/16s).

Clinical information about the cohorts used for bulk RNA-

sequencing (RNAseq) and the manual counting of TLS in H&E-

stained sections can be found in Supplementary Tables 1–3.
Whole transcriptome sequencing from
bulk fresh frozen PDAC samples

We conducted a bulk RNAseq analysis using 45 patient-derived

PDAC fresh frozen samples. Tissue specimens were finely minced

and then subjected to RNA extraction using a Trizol reagent. The

extracted RNA was further purified utilizing the Qiagen RNeasy

Mini Kit, with subsequent assessment of concentration and quality

through NanoDrop and Agilent Bioanalyzer, respectively.

Following this, first-strand cDNA synthesis was performed, and

libraries were prepared using the Illumina TruSeq Stranded mRNA

Library Prep Kit (Novogene®). The resulting libraries underwent
TABLE 1 Clinicopathological characteristics of PDAC patients for the 7-
color B cell panel.

PR (n=28) NeoTx (n=30)

Sex
Male
Female

14 (50%)
14 (50%)

16 (53.3%)
14 (46.7%)

Age (year) 63 (47–84) 72 (48–83)

Tumor size (mm) 40 (22–80) 33 (2-60)

T Status
T1-2
T3-4

15 (53.6%)
13 (46.4%)

12 (60%)
18 (40%)

N Status
N0
N1
N2

5 (17.9%)
13 (46.4%)
10 (35.7%)

15 (50%)
15 (50%)

M Status
M0
M1

27 (96.4%)
1 (3.6%)

26 (86.7%)
4 (13.3%)

Grading
G1
G2
G3

1 (3.6%)
13 (46.4%)
14 (50%)

0 (0%)
14 (53.8%)
12 (46.2%)

Resection Status
R0
R1

12 (42.9%)
16 (57.1%)

11 (42.3%)
15 (57.7%)

Tumor Localization
Head
Body
Tail

23 (82.1%)
5 (17.9%)
0 (0%)

23 (76.7%)
5 (16.7%)
2 (6.6%)
For continuous variables, the median is displayed with the range in brackets. For categorical
variables, the number of patients with the percentage of all patients in brackets is shown.
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sequencing on the Illumina platform for comprehensive RNA-

quality control and whole transcriptome sequencing analysis.

All statistical analyses were performed using the statistical

software R (36). Count data was imported into the DESeq2

workflow to normalize data and analyze differentially expressed

genes (37). Gene set enrichment analysis was performed using the

clusterProfiler package (38).
Multiplex immunohistochemistry

To detect, identify, and quantify PDAC-infiltrating B cell subsets,

formalin-fixed paraffin-embedded (FFPE) tissue sections were stained

on a Ventana Discovery Ultra platform (Ventana Medical Systems,

Basel, Switzerland) as described previously (39). The tyramide signal

amplification-based Opal technology (Akoya Biosciences,

Marlborough, MA, USA) enables simultaneous imaging of up to six

markers in addition to DAPI. Upon deparaffinization and rehydration

of FFPE sections, antigen retrieval was performed using Cell

Conditioning Solution (CC) 1 (Ventana Medical Systems, pH 9).

The staining is then carried out by sequential rounds of primary

antibody binding, horse radish peroxidase-coupled secondary antibody

incubation, detection by Opal reagent, and heat-mediated antibody

stripping. Individual dilutions, incubation times, temperatures, and

antibody suppliers are listed in Supplementary Table 4. Finally, slides

were counterstained with DAPI, mounted in Fluoromount-G®
medium (SouthernBiotech, Birmingham, Alabama, USA), and stored

at 4°C until image acquisition.
Image acquisition

Upon whole slide scanning with the Vectra 3.0 Automated

Imaging System (Akoya Biosciences) at 100x magnification, regions

of interest were defined in Phenochart software (Akoya Bioscience)

based on H&E-stained sections. Then, multispectral images (MSIs)

were acquired at 200x magnification, spectrally unmixed using

inForm software (Akoya Biosciences) and a previously built

spectral library, and exported as multi-channel TIFF files.
Manual TLS counting in H&E-stained
tissue sections

For assessment of TLS numbers in H&E-stained sections, slides

were scanned at 400x magnification using a Leica autoscanner.
Frontiers in Immunology 04
Tumoral and peritumoral regions were defined by a trained

pathologist and transferred to the scanned slides. TLS were

defined as dense lymphocyte accumulations, and GC status was

evaluated by the presence of characteristic centroblast aggregates.
Image analysis and quantification

Quantification of distinct tissue areas, subsequent cell

segmentation, and cell type detection were performed using

QuPath software (40). Initially, single MSIs were stitched to

create spectrally unmixed whole slide images. Then, intra- and

peritumoral regions were defined in a pathologist-assisted manner

based on standard H&E-stained sections. To distinguish non-tissue,

TLS, stromal, and intraepithelial areas, a pixel classifier was trained

on a composite training image comprised of 100 individual MSIs

and validated on a set of additional 100 regions of interest

(Supplementary Figure 1). Following, cell segmentation was

performed using the StarDist QuPath extension with adjusted

parameters (41). Then, object classifiers were trained for either

single markers (CD3, CD20, Ki67, CD38) or complex cell types

(CD20+Ki67+Bcl6+CD38- GC B cells, CD20+Ki67+CD38+CD138-

plasmablasts, and CD20-Ki67-CD38+CD138+ plasma cells) and a

composite classifier was created. Finally, the trained pixel classifier,

StarDist cell segmentation, and composite object classifier were

applied to all 58 stitched whole slide images. For representative

images, unmixed multi-channel TIFFs were processed in ImageJ

software (42). To enable a larger field of view, separate MSIs were

stitched using the grid/collection stitching plugin (43).

For manual counting of TLS in the multiplex-stained cohort,

the stitched, unmixed whole-slide images were used. Thus, dense

accumulations of CD3+ T cells and CD20+ B cells with a clearly

defined delineation edge from other stromal tissue were identified

as TLS. GC+ TLS were classified as TLS with a dense accumulation

of CD20+Ki67+Bcl6+ B cells.
Data analysis

Upon image analysis, exported data was analyzed using RStudio

and R v4.2.1 (36). Thus, cell numbers, densities, and proportions

were calculated for all tissue compartments (combined, TLS,

stromal, epithelial), and both analyzed tissue regions (peri- and

intratumoral) using packages from the tidyverse collection (44). In

addition, the survival and survminer packages were used for

univariate and multivariate survival analysis by the Kaplan-Meier

method or Cox proportional hazards (ph) models (45–47).
Results

Characterization of the PDAC-infiltrating B
cell composition

To analyze the frequency, phenotype, and localization of tumor-

infiltrating B cells in PDAC, a novel 7-color mIHC panel including
TABLE 2 Neoadjuvant therapy regimen of PDAC patients for the 7-color
B cell panel.

CTx only (n=25) Additional RTx (n=5)

Gemcitabine 11 (44%) 2 (40%)

FOLFIRINOX 10 (40%) 2 (40%)

Others 1 (4%) 1 (20%)

No information 3 (12%) 0 (0%)
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the markers CD3, CD20, Ki67, Bcl6, CD38, and CD138 was

established. Besides CD3+ T cells and CD20+ B cells, GC B cells

were characterized as CD20+Ki67+Bcl6+CD38-, plasmablasts as

CD20+Ki67+CD38+CD138-, and plasma cells as CD20-Ki67-

CD38+CD138+. Figure 1A displays a multicolor image and single

channels of a TLS and surrounding tissue featuring the major cell

types. A detailed view of specific B cell subsets, including the

relevant markers, is shown in Figure 1B.

To improve the understanding of the spatial organization of the

PDAC TME, we analyzed different tissue compartments by training

pixel classifiers in QuPath. The epithelial compartment consists of

epithelial cells, which may be either non-malignant or malignant.

The TLS compartment is defined as dense accumulations of T and B

cells with a sharp delineation edge from the stromal area. Thus, the
Frontiers in Immunology 05
stromal tissue class encompasses all areas that are neither epithelial

nor TLS, and the combined class integrates all three tissue

compartments. An illustration showing all tissue classes is

displayed in Supplementary Figure 1. In addition to the

microarchitecture of the tumor, we analyzed both intra- and

peritumoral regions, which were annotated manually based on

H&E-stained sections. The whole tissue region comprises a

combination of both areas.

To grasp an overview of the spatial distribution of all analyzed cell

types, cell densities (cells/mm²) were compared between different tissue

classes and regions in the entire patient cohort (n=58) (Figure 2). In the

combined compartment of the whole tissue region, PDAC-infiltrating

CD3+ T cells were generally more abundant than CD20+ B cells, with

median cell densities of 457.9 cells/mm² and 37.2 cells/mm²,
A

B

FIGURE 1

Multiplex immunohistochemistry (mIHC) staining of B cell subpopulations and T cells in a tertiary lymphoid structure (TLS) in pancreatic
adenocarcinoma (PDAC) tissue. (A) Representative multicolor and single channel images of the B cell panel, including DAPI (blue), CD3 (green),
CD20 (purple), Bcl6 (cyan), Ki67 (orange), CD38 (red), and CD138 (yellow). The scale bar is 100 μm. (B) Detailed views of germinal center (GC) B
cells, plasmablasts, and plasma cells. Scale bars equal 10 μm for GC B cell and plasmablast and 25 μm for plasma cell image.
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respectively. When investigating the spatial distribution, infiltrating

lymphocytes were more frequent in the peritumoral region, with CD3+

T cells displaying a median cell density of 701.1 cells/mm² in the

peritumoral region and 371.1 cells/mm² in the intratumoral area.

Similarly, CD20+ B cells displayed median densities of 90.5 cells/

mm² and 19.8 cells/mm² in the peritumoral and intratumoral

regions, respectively, when analyzing the combined compartment

which includes TLS. This observation still held true when focusing

on non-TLS-associated B cells in the stromal compartment, with

median peritumoral CD20+ B cell densities of 26.6 cells/mm² and

intratumoral densities of 10.8 cells/mm². In general, CD3+CD38+ T
Frontiers in Immunology 06
cells, plasmablasts, and GC B cells were extremely rare and only found

in few PDAC tissues. Strikingly, the overall infiltration of the epithelial

region was low for CD3+ T cells and even lower for CD20+ B cells.

Consequently, this region was not further considered during the

subsequent analysis. As expected, the TLS compartment displayed

the highest density of both T and B cells in all tissue regions, while

plasma cells preferentially resided within stromal areas.

In addition to the analysis on the single cell level, TLS were

counted manually and categorized into GC+ and GC- TLS

(Figure 3). While GC- TLS were present in most of the tissues,

GC+ TLS were observed only in seven patients (Figure 3B).
FIGURE 2

Quantification of T and B cell subtypes in PDAC in different tissue regions (whole tissue, intratumoral, peritumoral) and tissue classes (combined,
intraepithelial, stromal, TLS). Cell densities (cells/mm²) were evaluated for T cells, B cells, proliferating T and B cells, CD38+ T cells, GC B cells,
plasmablasts, and plasma cells in the mixed therapy cohort (n=58). Median values are displayed.
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Neoadjuvant chemotherapy is associated
with a significant reduction of PDAC-
infiltrating B cells and TLS frequency

Next, we compared the composition of the PDAC-infiltrating

lymphocyte landscape between patients who received NeoTx

(n=30) and patients who underwent PR (n=28). Figure 4A shows

the cell density in the combined tissue class and the whole tumor

region for both treatment groups. While the overall cell density of

CD3+ T cells did not differ between both groups, all other analyzed

cell types displayed a striking reduction in the NeoTx group. For

CD20+ B cells, a significant disparity was observed, with median cell

densities of 54.8 cells/mm² and 17.84 cells/mm² in the PR and

NeoTx groups, respectively. Representative images of a NeoTx

patient with low B cell densities and a PR patient with high B cell

infiltration are illustrated in Supplementary Figure 2. In addition,

proliferating lymphocytes displayed highly significant differences,

as the median frequency of both CD3+Ki67+ T cells as well as

CD20+Ki67+ B cells was over 10-fold lower in neoadjuvant-treated

patients (Figure 4A). Similar results were observed for activated
Frontiers in Immunology 07
CD3+CD38+ T cells, GC B cells, plasmablasts, and plasma cells.

Importantly, these differences were also present in the stromal

region, which excludes TLS (Supplementary Figure 3A).

In addition to cell densities, proportions were calculated to assess

the functional composition of PDAC-infiltrating lymphocytes. In

Figure 4B, proportions of the parent population are displayed for the

combined and TLS compartments in the whole tissue region. In

concordance with cell densities, the proportion of proliferating T and

B cells was significantly lower in NeoTx patients, both in the TLS and

the combined tissue class (Figure 4B). For example, 7.12% of CD3+ T

cells expressed Ki67 in the PR group, while only 0.33% of CD3+ T

cells were Ki67+ in the NeoTx group. The same trend was observed

for activated CD3+CD38+ T cells and GC B cells. These findings were

also detected when excluding TLS, as shown by the separate analysis

of the stromal tissue class (Supplementary Figure 3B).

To assess whether this may be accompanied by a differential

abundance of TLS, we compared the number of TLS between the PR

and NeoTx groups in all tissue regions (Figure 5A). A significant

reduction of both GC+ and GC- TLS numbers in NeoTx patients was

observed in the whole tissue and peritumoral region. In the
A

B

FIGURE 3

Presence of GC- and GC+ TLS in the peritumoral, intratumoral, and whole tissue regions of PDAC tissues. (A) Representative multicolor images of a
GC- and GC+ TLS stained for the B cell panel, including DAPI (blue), CD3 (green), CD20 (purple), Bcl6 (cyan), Ki67 (orange), CD38 (red), and CD138
(yellow). The scale bar is 100 μm. (B) TLS were counted manually based on CD3 and CD20 staining, differentiated into GC+ and GC- by the presence
of Bcl6 and Ki67, and compared between tissue regions in the mixed therapy cohort (n=58).
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intratumoral region, the difference was significant only for GC+ TLS.

Strikingly, not a single tissue containing GC+ TLS was found in the

NeoTx group, while seven samples in the PR group contained at least

one GC+ TLS. To confirm this observation in an independent cohort,

we took advantage of the multicenter PREOPANC phase III trial

patient collective. In this study, resectable and borderline resectable

PDAC patients were randomly assigned to PR (n=44) or NeoTx

followed by resection (n=40) (48). Using routine H&E-stained

sections, we assessed both peritumoral and intratumoral tissue

regions for the number of GC+ and GC- TLS and compared the

number of TLS between treatment arms (Figure 5B). Also in this

randomized cohort, patients who underwent PR displayed significantly

higher TLS abundance compared to the NeoTx group. These

differences were especially pronounced in the peritumoral region and

highly significant for both GC+, GC-, and all TLS combined.

To further elucidate potential underlying mechanisms of the

reduced TLS and B cell presence, we explored bulk RNAseq data in
Frontiers in Immunology 08
an additional cohort of 30 PR and 15 NeoTx patients (Figure 6). We

identified 999 upregulated and 259 downregulated genes in the

NeoTx group compared to PR patients (Figures 6A, B).

Interestingly, the 20 most strongly suppressed pathways were

dominated by immune-related pathways, including the humoral

immune response (Figure 6C). This prompted us to further

investigate B cell-associated pathways, which revealed that besides

the B cell receptor signaling, also pathways of B cell proliferation,

activation, and differentiation were negatively regulated in NeoTx

patients (Figure 6D). Figure 6E displays exemplary geneset

enrichment plots for B cell-mediated immunity, B cell

proliferation, and the humoral immune response, illustrating the

detrimental effect of NeoTx on the B cell compartment.

In summary, we observed a significantly reduced abundance of

PDAC-infiltrating B cells, diminished presence of TLS, and

suppressed immune-related and B cell-associated pathways in

NeoTx patients.
A

B

FIGURE 4

Comparative analysis of T and B cell frequencies and composition in primarily resected (PR) and neoadjuvant-treated (NeoTx) patients. (A) Cell
densities (cells/mm²) in the combined compartment of the whole tissue region were assessed for the main cell types and compared between the PR
(n=28) and NeoTx (n=30) groups. (B) Proportion of marker-positive cells is shown in TLS and combined tissue class for the whole tissue region.
Median values are displayed, and significant differences were determined using the unpaired Wilcoxon test and are shown as * ≙ p-value ≤ 0.05,
** ≙ p-value ≤ 0.01, *** ≙ p-value ≤ 0.001, and **** ≙ p-value ≤ 0.0001.
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Plasma cells accumulate in CXCL12-rich
areas around tumor-associated TLS
in PDAC

In contrast to pan B cells, GC B cells, and plasmablasts, which

are mainly located within TLS, plasma cells were preferentially

located in stromal regions outside TLS. It is known that TLS can

harbor the differentiation of B cells into antibody-producing plasma

cells, encouraging us to explore a potential link between TLS

presence and plasma cell abundance. Interestingly, we observed

that CD38+CD138+ plasma cells frequently formed aggregates,

which are often located in close proximity to TLS (Figure 7A).

We further found that plasma cells were significantly more frequent

in TLS+ tissues than in TLS- tissues in the PR group (Figure 7B).

This held true for the overall presence of TLS, as well as the specific

abundance of GC+ or GC- TLS. While NeoTx patients lacked GC+

TLS, a similar trend was observed for GC- TLS, although not

reaching statistical significance. We thus hypothesized that the

presence of TLS might favor the differentiation of B cells into Ig-

producing plasma cells. Since plasma cells are known to migrate

along CXCL12+ fibroblastic tracks (49), we conducted a co-staining

of CD38, CD138, CD20, CD3, the fibroblast and pericyte marker

alpha smooth muscle actin (aSMA), and CXCL12. TLS-associated

CXCL12 displayed a perivascular and fibroblastic staining pattern,

partly positive for aSMA (Figure 7C). Notably, aggregates of

CD38+CD138+ plasma cells were often surrounded by prominent

CXCL12 staining. In addition, CXCL12+CD38+CD138+ plasma

cells were also observed, displaying a granular, endosomal

CXCL12 staining pattern, potentially indicating an uptake of

receptor-bound CXCL12.
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PDAC-infiltrating CD20+ B cells are
associated with improved overall survival in
PR patients

Subsequently, we examined a potential link between the

frequency of PDAC-infiltrating lymphocytes and OS in both the

PR and NeoTx groups (Figure 8). We first assessed the association

of CD3+ T cell and CD20+ B cell frequencies in the combined

compartment of all tissue regions. A higher frequency of

intratumoral CD3+ T cells in the combined tissue compartment

was associated with significantly longer OS in upfront resected

patients (Figure 8A, p=0.023). While there was a similar trend in the

whole tissue region of the PR group (p=0.074), no prognostic value

of peritumoral CD3+ T cells was observed. In NeoTx patients, no

association with survival was observed in any of the tissue regions.

In addition, a higher frequency of CD20+ B cells in the intratumoral

region was linked to significantly prolonged OS of the PR group

(Figure 8B, p=0.035). Importantly, this finding remained true when

focusing on non-TLS-associated B cells by analyzing the stromal

compartment without TLS (Supplementary Figure 4, p=0.016).

Interestingly, no prognostic significance of CD20+ B cells was

found in the NeoTx group (Figure 8B).
Proliferating CD20+Ki67+ B cells as an
independent prognostic factor in
NeoTx patients

In addition, we investigated whether actively replicating

immune cells, indicative of a restorative tumor immune
A

B

FIGURE 5

Comparative analysis of TLS abundance between the PR and NeoTx groups. (A) TLS were counted manually in the intratumoral, peritumoral, and
whole tissue region based on the mIHC staining, differentiated by the presence of a GC, and compared between the PR (n=28) and NeoTx (n=30)
groups of our cohort. (B) H&E-stained sections of the PREOPANC study were evaluated for TLS presence and compared between treatment arms.
Significant differences were determined using the unpaired Wilcoxon test and are shown as * ≙ p-value ≤ 0.05, ** ≙ p-value ≤ 0.01, *** ≙ p-value ≤

0.001, and **** ≙ p-value ≤ 0.0001.
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microenvironment following NeoTx, were associated with OS

(Figure 9). A higher frequency of CD20+Ki67+ B cells in the

combined compartment was linked to significantly improved OS

in all tumor regions of the NeoTx group (Figure 9A). Furthermore,

a higher proportion of Ki67+ of all CD20+ B cells was significantly

associated with longer OS in the combined tissue class of the

peritumoral region (Figure 9B, p=0.017). Analyzing the stromal

compartment and thus excluding TLS-associated B cells, this effect

was significant in the intratumoral region (p=0.047) and displayed a
Frontiers in Immunology 10
strong trend in the peritumoral region (p=0.058). Interestingly,

when focusing on the TLS compartment, the proportion of Ki67+ B

cells held no prognostic value. To account for the effects of other

covariates, we performed a multivariate Cox ph analysis

(Figure 9C). With patient age, sex, tumor grading, and UICC

stage as covariates, a higher frequency of intratumoral

CD20+Ki67+ B cells in the stromal tissue compartment was

significantly and independently correlated to a lower risk of death

(HR=0.009, p=0.021).
A B

C

E

D

FIGURE 6

Bulk RNA sequencing analysis of NeoTx and PR PDAC patients. (A) Heatmap illustrating differentially expressed genes in PR (n=30) and NeoTx (n=15)
patients. (B) Volcano plot displaying genes significantly up- or downregulated in NeoTx patients. (C) A bar chart visualizing the top 20 most
suppressed pathways in NeoTx patients. (D) A bar chart displaying suppression of B cell-associated pathways in the NeoTx group. (E) Exemplary
gene set enrichment plots for key B cell immunity pathways, including B cell-mediated immunity, B cell proliferation, and humoral immunity.
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Discussion

The frequency and spatial distribution of tumor-infiltrating

lymphocytes, as well as the presence of TLS, emerged as pivotal

prognostic and predictive factors for the survival and treatment

response of cancer patients (8, 9, 18, 25). Thus, uncovering the

underlying mechanisms and their modulation by NeoTx regimens

became increasingly relevant to harness existing antitumor immune

responses. While the T cell compartment, both in the context of TLS

and in general, is relatively well characterized in PDAC, studies

investigating B cells are very limited and mainly relied on CD20 as a
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pan B cell marker so far (21, 23). Therefore, we investigated the

effect of NeoTx on the frequency, spatial distribution, and clinical

significance of different B cell subsets and TLS using a newly

established 7-color mIHC panel and bulk RNAseq.

Since the immunoscore was established in colorectal cancer, the

spatial distribution of tumor-infiltrating immune cells quickly

emerged as a critical determinant of clinical outcomes in various

cancers (50). Thus, we first assessed the densities of PDAC-

infiltrating lymphocyte subsets in different tissue compartments

(stromal, intraepithelial, TLS, and combined) and tissue regions

(intratumoral, peritumoral, and whole tissue). Interestingly, we
A B

C

FIGURE 7

Association of TLS and CD38+CD138+ plasma cell presence in PDAC patients. (A) Representative images of plasma cell aggregates located in close
proximity to TLS in PDAC patients. Tissues were stained for DAPI (blue), CD3 (green), CD20 (purple), Bcl6 (cyan), Ki67 (orange), CD38 (red), and
CD138 (yellow). The scale bar is 100 μm. (B) Patients were stratified based on the presence of TLS and plasma cell frequencies in the stromal
compartment of the intratumoral region were compared between TLS+ and TLS- patients for both the PR and the NeoTx group. Significant
differences were determined using the unpaired Wilcoxon test and are shown as * ≙ p-value ≤ 0.05 and ** ≙ p-value ≤ 0.01. (C) Representative
image of PDAC tissues stained for DAPI (blue), CD3 (green), CD20 (purple), CXCL12 (cyan), aSMA (white), CD38 (red), and CD138 (yellow), including
zoom-ins showing CXCL12 staining pattern in relation to plasma cell location. CXCL12+CD38+CD138+ plasma cells are marked by arrow-heads. The
scale bar is 100 μm for the overview image (left) and 20 μm for the zoom-ins (right).
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observed a higher T and B cell density in the peritumoral region

compared to the intratumoral area. This is typically seen in

immune-excluded tumors and was previously described for T

cells and macrophages in PDAC (51–53). Various factors may

impact the effective infiltration of lymphocytes, including physical

barriers such as a dense stroma or functional barriers like gradients

of chemo-repulsion (54). In a PDAC mouse model, Ly6Clow F4/80+

extratumoral macrophages were shown to restrict the infiltration of

T cells into the tumor core and may thus function as gatekeepers

(55). We further observed that the number of lymphocytes

infiltrating the tumor epithelium was low, as most cells located in

stromal regions and TLS. While the proportion of immune cells

residing in the stroma is naturally higher, this effect seems especially

pronounced in PDAC, as previously shown for T cells and

macrophages (14, 56). This may be explained by the PDAC-

characteristic dense, fibrotic desmoplastic stroma and extensive

extracellular matrix, leading to lymphocytes sequestering within

the stromal compartment (10).

Although B cells were described in PDAC before, to the best of

our knowledge, a distinct and spatial analysis of B cell subsets, as
Frontiers in Immunology 12
well as their modulation by NeoTx, has not been reported so far.

Using a novel mIHC panel, we identified proliferating B cells, GC B

cells, plasmablasts, and plasma cells in PDAC tissues. As expected,

both GC B cells and plasmablasts displayed extremely low average

densities, detected only in about half of the cohort and preferentially

located within TLS. In contrast, plasma cells were detected in most

of the patients and resided within the stromal compartment. The

analysis of TLS revealed that while many tissues harbored GC- TLS,

only 7 out of 58 patients presented with GC+ TLS, which matches

the observation of very few GC B cell- and plasmablast-containing

tissues. TLS, as specialized areas of B and T cell activation, are

associated with improved survival in various cancer entities,

including PDAC, and as shown by Gunderson et al., GC+ TLS are

further associated with neoantigen burden and humoral immunity

in PDAC (57). A recent study by Kinker et al. provided further

evidence that a GC TLS signature is associated with improved

survival in PDAC (58).

As NeoTx is the dominant treatment option for primarily non-

resectable PDACs, several studies explored its effect on the immune

contexture of PDAC, although with a strong focus on T cells and
A

B

FIGURE 8

Association between tumor-infiltrating lymphocytes and overall survival (OS) of PDAC patients. Kaplan-Meier survival analysis of OS stratified by
densities of (A) CD3+ T cell and (B) CD20+ B cells in the combined tissue class, all three tissue regions (whole tissue, intratumoral, peritumoral), and
different treatment groups (PR, NeoTx). Patients were stratified by the median cell density. A log-rank test was performed, and p-values ≤ 0.05 were
considered significant.
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myeloid cells. We previously showed that although the total number

of CD45+ cells per field of view was reduced, the NeoTx group

displayed an increased proportion of CD8+ cells and decreased

regulatory T cell proportions, suggesting an enrichment of

antitumor immune cells following NeoTx (23). We further

demonstrated that NeoTx patients displayed increased expression
Frontiers in Immunology 13
of proinflammatory cytokines produced by PDAC-infiltrating T

cells (15). Regarding CD20+ B cells, absolute numbers, as well as the

percentage of CD45+ cells, were reduced in the NeoTx group,

although not significantly (23). Two studies relying on

transcriptomic data further reported that B cell presence and

function were reduced in neoadjuvant-treated patients (21, 22).
A

B

C

FIGURE 9

Clinical association of PDAC-infiltrating proliferating CD20+Ki67+ B cells in neoadjuvant-treated patients. Patients of the NeoTx group were stratified
by the median of (A) CD20+Ki67+ B cell density in the combined tissue class and (B) Ki67+ proportion of CD20+ B cells in all three compartments
(combined, stromal, TLS) and subjected to Kaplan-Meier survival analysis. A log-rank test was performed, and p-values ≤ 0.05 were considered
significant. (C) Forest plot of Cox proportional hazard regression model for the risk of death including the density of CD20+Ki67+ B cells in the
stromal compartment of the intratumoral tissue region, patient age, sex, grading, and UICC stage. Hazard ratios (HR) and 95% confidence intervals
(CI) are shown. A log-rank test was performed, and p-values ≤ 0.05 were considered significant.
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Another recent study investigating TLS in PDAC described a lower

frequency of CD20+ B cells in neoadjuvantly treated patients, but

only in the TLS+ group (59). In our cohort, we observed that NeoTx

patients displayed significantly lower numbers of pan B cells,

proliferating B cells, GC B cells, plasmablasts, and plasma cells,

while pan T cell frequencies were unaffected. Importantly, this effect

persisted when focusing on B cells residing in the stroma outside

TLS. Additionally, we demonstrated a significantly diminished

proportion of proliferating B cells and GC B cells within the pan

B cell population. This observation implies not only a quantitative

alteration but also a shift in the functional properties of B cells after

NeoTx. Furthermore, a striking reduction in the quantity of tumor-

associated TLS was observed, which was especially pronounced for

GC+ TLS, as not a single patient in the NeoTx group presented with

GC+ TLS. We further validated these findings using the

PREOPANC patient cohort as an independent study with

randomized treatment arms. While the results were similar for

both regions, the effect was more distinct in the peritumoral area.

Our observations are further supported by Kuwabara et al., who

reported a lower TLS area in neoadjuvant-treated patients, and two

more studies that described a lower proportion of patients with TLS

in the NeoTx group (59–61). In addition, Zou et al. showed that TLS

in the NeoTx group were less abundant, smaller in size, and had

lower maturation levels (59). A recent study by Kinker et al.

revealed that tumor-reactive T cells exposed to TGF-b produce

the B cell chemoattractant CXCL13, which may drive TLS

formation (58). Utilizing bulk RNAseq data, we demonstrated

that most of the 20 most suppressed pathways in NeoTx patients

are immune response related, including the humoral immune

response. Other B cell-associated pathways were also

downregulated, further supporting our mIHC-based findings of B

cell suppression in NeoTx patients. In addition, employing single

cell RNAseq analysis may reveal altered gene expression profiles of

B cells still present in tumors of NeoTx patients. While

conventional anticancer treatments like chemotherapy harbor the

potential to induce and improve tumor-specific immune responses,

the cytotoxic properties also affect the present immune architecture.

To further assess this effect, a matched cohort of pre-treatment

biopsies and post-treatment resected tumors would be required, as

results based on unmatched groups may be influenced by other

factors. Additionally, immune cell subsets may differ in their

susceptibility to DNA-damaging agents, as we found that T cells

were not affected as strongly as B cells. Studies focusing on

peripheral blood of chemotherapeutically treated cancer patients

reported that B cells were the most dramatically affected immune

cell subset, while T and natural killer cells were less susceptible (62–

64). However, analyses of peripheral blood may not properly reflect

intratumoral events. A PDAC study based on transcriptomic data

also indicated that other immune cell subsets, such as CD8+ T cells,

DCs, and macrophages, are not as strongly affected by

chemotherapy as B cells or regulatory T cells (22).

One of the main antitumor properties of B cells is mediated by

antibody-producing plasma cells, which have been associated with

improved survival in multiple tumor entities, including triple-

negative breast cancer, esophageal squamous cell carcinoma,

ovarian, bladder, and gastric cancer (65–69). Interestingly,
Frontiers in Immunology 14
previous studies suggested that TLS can foster B cell

differentiation into plasma cells (49, 66). In PDAC, several studies

indicated the presence of plasma cells based on transcriptomic data

and also reported a link between a plasma cell signature and

improved survival (58, 70–72). In this study, we first reported the

presence of PDAC-infiltrating CD38+CD138+ plasma cells, which

were markedly reduced in neoadjuvant-treated patients and located

mainly outside of TLS. We further discovered that in the PR group,

patients with TLS displayed a significantly higher frequency of

plasma cells and that clusters of plasma cells were often located in

close proximity to TLS, suggesting that TLS can drive plasma cell

differentiation in PDAC. Similar results were reported by Kroeger

et al., who showed that ovarian cancer patients with TLS presented

with higher plasma cell scores and that those plasma cells often

resided in clusters close to tumor-associated TLS (66). A recent

study in renal cell cancer uncovered that plasma cells disseminate

from TLS along fibroblastic tracks containing CXCL12 (49).

Furthermore, Ig-producing plasma cells were associated with IgG

bound to tumor cells and an improved response to immunotherapy.

By staining for CXCL12 and aSMA, we showed that plasma cell

accumulations often colocalized with CXCL12+ fibroblasts near

TLS, supporting the evidence of renal cell cancer. As suggested by

Meylan et al., these CXCL12+ fibroblasts may resemble

mesenchymal stromal cell-like fibroblasts in the bone marrow or

follicular reticular cells, which promote the survival of both early

and memory plasma cells (73–75). Interestingly, a significant

proportion of plasma cells also displayed a distinct granular,

endosomal staining pattern of CXCL12. Since plasma cells do not

characteristically express CXCL12 themselves, this may be

attributed to internalization of receptor-bound CXCL12. Upon

binding to its cognate receptor CXCR4 and/or CXCR7 (ACKR3),

the ligand-receptor complex is internalized and CXCL12 is

delivered to lysosomes for degradation (76). This finding further

supports our hypothesis of CXCL12-mediated plasma cell

migration in proximity of TLS in PDAC.

Based on the drastic effects of NeoTx on the immune landscape

of PDAC, we further explored the differential association of

lymphocyte frequencies with OS in NeoTx and PR patients. So

far, contradictory results regarding the prognostic value of CD20+ B

cells in PDAC have been published, with several studies describing a

positive impact on survival (20, 24, 77, 78), while one report

observed a negative association (79). A meta-analysis integrating

multiple studies reported no link between B cell frequencies and

survival in PDAC (80). In our study, high intratumoral CD3+ T cell

and CD20+ B cell frequencies were linked to significantly longer OS

in the PR cohort but harbored no beneficial effects in the NeoTx

group. This suggests that not only the number of infiltrating

lymphocytes is reduced, but that also their functional properties

are impaired upon NeoTx. Additionally, spatial analyses revealed

that extra-TLS B cells also provided a survival benefit in the PR

group. This contradicts findings from Castino et al., who reported

that B cells were only associated with improved survival of PDAC

patients when organized in TLS (24). However, their cohort of 104

patients included both NeoTx and PR patients without a subset

analysis of treatment groups. Another study described a positive

effect of B cell aggregates on the survival of primary resected PDAC
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patients but only in the tumor infiltration zone (20). In contrast, we

did not observe any link between peritumoral B cell frequencies and

survival in either of the treatment groups.

When exploring potentially prognostic B cell subsets in the

NeoTx cohort, we found that increased frequencies of proliferating

CD20+Ki67+ B cells were significantly associated with longer OS.

Furthermore, the proportion of these cells in the total B cell

population correlated with improved OS in the stromal

compartment of the intratumoral region and the combined tissue

category in the peritumoral region. Of note, these findings lacked

statistical significance when analyzing only the TLS compartment,

suggesting a TLS-independent mechanism. A multivariate Cox ph

analysis including patient age, sex, tumor grading, and UICC stage

as covariates validated the density of CD20+Ki67+ B cells as an

independent prognostic factor for a reduced risk of death in the

NeoTx cohort. While proliferating CD8+Ki67+ T cells have been

associated with improved survival in various tumor entities, less is

known about the role of proliferating intratumoral B cells (81).

Mostly, CD20+Ki67+ B cells are used to identify mature TLS and are

not analyzed independently of TLS. However, one glioblastoma

study reported that CD20+Ki67+ B cells were linked to improved OS

(82). Interestingly, we observed this correlation only in the NeoTx

group, which exhibited significantly lower B cell frequencies

compared to PR patients. The presence of actively replicating B

cells might reflect a restorative post-therapy immune

microenvironment with a flourishing adaptive antitumor

immune response.

In conclusion, we found that neoadjuvant-treated patients

displayed significantly lower numbers of all B cell subsets in

comparison to the PR group, suggesting a detrimental effect of

NeoTx on the B cell compartment. Importantly, not only the

frequency but also the functional composition was altered,

displayed by lower proportions of proliferating B cells and GC B

cells. While this was accompanied by a drastically lower number of

TLS in the NeoTx group, non-TLS-associated B cells were also

affected. Additionally, transcriptomic analyses validated

significantly suppressed B cell-associated pathways in the NeoTx

group. We further showed that PDAC-infiltrating plasma cells were

significantly more frequent in TLS+ tissues. These plasma cells are

often aggregated in clusters, found in the vicinity of TLS and

accompanied by CXCL12+ fibroblastic tracks, suggesting that TLS

can foster plasma cell differentiation in PDAC. Lastly, increased

frequencies of PDAC-infiltrating B cells were associated with

improved OS only in the PR group, suggesting also a loss of

functional properties in the NeoTx group. However, proliferating

CD20+Ki67+ B cells emerged as an independent prognostic factor in

neoadjuvant-treated patients, possibly reflecting a re-induction of B

cell immunity after therapy. While these findings revealed a

markedly suppressed B cell-mediated immune response in NeoTx

patients, accurately matched pre- and post-therapy paired samples

are necessary to track the effect of NeoTx on different B cell subsets

in a longitudinal manner. Additionally, a more detailed analysis is

required to understand the molecular mechanisms of TLS-induced

plasma cell differentiation and their role in antitumor immunity.

For example, BCR and Ig sequencing may be leveraged to reveal
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whether TLS-associated plasma cell-derived IgG is relevant for

tumor cell apoptosis and linked to clinical outcomes. In addition,

further studies investigating potential effects on the efficacy of

immunotherapies are required. An improved understanding of

the immunomodulatory effects of NeoTx is crucial to overcoming

the immunosuppressive pancreatic TME, selecting patients for the

most effective treatment modalities, and improving the

devastatingly low survival of PDAC patients.
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