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Despite significant progress in targeted therapy for acute myeloid leukemia

(AML), clinical outcomes are disappointing for elderly patients, patients with

less fit disease characteristics, and patients with adverse disease risk

characteristics. Over the past 10 years, adaptive T-cell immunotherapy has

been recognized as a strategy for treating various malignant tumors. However,

it has faced significant challenges in AML, primarily becausemyeloid blasts do not

contain unique surface antigens. The preferentially expressed antigen in

melanoma (PRAME), a cancer-testis antigen, is abnormally expressed in AML

and does not exist in normal hematopoietic cells. Accumulating evidence has

demonstrated that PRAME is a useful target for treating AML. This paper reviews

the structure and function of PRAME, its effects on normal cells and AML blasts,

its implications in prognosis and follow-up, and its use in antigen-specific

immunotherapy for AML.
KEYWORDS

PRAME, acutemyeloid leukemia, leukemia-associated antigen, minimal residual disease,
immunotherapy, adoptive T-cell therapy
1 Introduction

In adults, acute myeloid leukemia (AML) is the most common heterogeneous acute

leukemia, and it is typically associated with a poor prognosis (1). For more than 40 years,

the induction of intensified chemotherapy (i.e., “7+3”) based on cytarabine and

anthracycline drugs has been the standard treatment for AML. Since 2017, there has

been a rapid expansion in the utilization of anti-AML medications following years of

limited progress in the approval of new drugs (2). For some patients with specific genetic

mutations, such as those harboring mutations in FLT3, IDH1, and IDH2, targeted drugs

can be chosen for treatment. However, there are still many patients who do not have

relevant molecular mutation targets. One of the most revolutionary treatments is the

combination of azacytidine and venetoclax, which has almost completely replaced

traditional cytotoxic chemotherapy in many cases. However, there is a poor prognosis

for patients who progress on azacytidine/venetoclax, particularly if they have mutations in

TP53. Therefore, it is crucial to develop additional treatment options in clinical practice.
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In the past decade, there have been breakthroughs in adaptive

T-cell immunotherapy for hematologic malignancies and solid

tumors (3). However, immunotherapy for AML is limited by

congenital heterogeneity and the lack of specific surface antigens

on myeloid leukemia cells (4). Due to the high cross-expression of

leukemia cells and hematopoietic stem/progenitor cells (HSPCs),

the use of nonspecific lineage markers as therapeutic targets (e.g.,

CD33) may result in severe bone marrow suppression. The field of

AML immunotherapy is increasingly focusing on specific leukemia-

associated antigens (LAAs), including preferentially expressed

antigen in melanoma (PRAME), CLL-1, TIM-3, and WT1 (5).

Researchers have focused their attention on PRAME because it is

expressed at high levels in AML but is absent from normal HSPCs.

The PRAME gene encodes the restricted antigenic peptide for

the human leukocyte antigen HLA-A24. PRAME, also known as

MAPE (melanoma antigen preferentially expressed in tumors),

CT130 (cancer testis antigen 130), or OIP4 (Opa-interacting

protein 4), was first identified in human melanoma cells by Ikeda

et al. in 1997 (6). In addition to being expressed in melanoma

patients, PRAME has also been found to be overexpressed in AML

patients but not in normal hematopoietic tissues. More importantly,

PRAME is also expressed on leukemic stem/progenitor cells (LSCs/

LPCs), which are self-renewing cells that can produce many

daughter blasts, a major cause of leukemia relapse. In addition, the

PRAME antigen can be recognized by autologous cytotoxic T

lymphocytes (CTLs). These characteristics make PRAME a

promising target for vaccination studies and adoptive antileukemia

immunotherapy for AML. The purpose of this paper is to review the

current advancements in PRAME, its structure and function, its

effects, its expression, and its clinical implications in AML.
2 The structure and function
of PRAME

As a member of the PRAME multigene family, PRAME can be

found in humans and other mammals. The PRAME gene appears to

have replicated multiple times during human evolution, and the
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human genome contains at least 22 PRAME-like genes and 10

pseudogenes (7). The human PRAME gene consists of

approximately 12 kilobases and is located on chromosome

22q11.22 (Figure 1A). It is located in the human immunoglobulin

l gene locus and is crucial for the generation of l light chains

during B-cell development (8). There are several other

nonimmunoglobulin genes at this locus, including ZNF280 and

POM121L1. POM121L1 is adjacent to BCR4, which has been

identified as a breakpoint cluster associated with some

rearrangements on chromosome 22 (Figure 1A).

The PRAME mRNA contains 6 exons and encodes a

membrane-binding protein containing 509 amino acids. The

PRAME protein contains leucine-rich repeat sequences (LRRs),

which consist of approximately 20-30 amino acids, 21.8% of which

are leucine or isoleucine (9). LRRs form a b sheet and then an a-
helix, and the repeating units can induce a curved solenoid fold

(10). Nevertheless, not all LRRs fold in this way. For instance,

PRAME may fold similarly to the LRR domains of Toll-like

receptors (TLRs) 3 and 4 and internalizing proteins (Figure 1B)

(7, 11, 12). Its tertiary structure enables PRAME to interact with

proteins, nucleic acids, and other ligands, thus playing an important

role in cellular immunity, adhesion, and signal transduction.

As a cancer-testis antigen, PRAME is expressed mainly on the

testes, ovaries, and endometrium in normal tissues (13, 14). The

PRAME gene family is actively transcribed in the germline

throughout life. It plays a pivotal role in germline development

and gametogenesis, including maintaining embryonic stem cell

pluripotency and participating in the proliferation and

differentiation of germ cells as well as in the formation of the

acrosome and sperm tail during spermiogenesis (15). PRAME is

also overexpressed in some cancers, such as breast cancer, cervical

cancer, lung cancer, ovarian cancer, melanoma, sarcoma and

hematological malignancies, and its function in these cancers

depends on the tumor type and downstream targets that mediate

cell differentiation, proliferation, apoptosis, growth arrest and

chemotherapy sensitivity (16–25).

PRAME can act as a transcriptional repressor and inhibit

retinoic acid receptor (RAR)-mediated growth arrest and
FIGURE 1

The structure of the PRAME gene and protein. (A) The human PRAME gene is located on chromosome 22q11 and between ZNF280 and POM121.
(B) The PRAME protein contains leucine-rich repeat (LRR) sequences. The LRRs form a b sheet and then an a-helix, and the repeating units can induce a
curved solenoid fold. The three-dimensional conformation of PRAME was computationally modeled by AlphaFold (https://alphafold.ebi.ac.uk/entry/P78395),
which assigns a per-residue confidence score known as pLDDT, ranging from 0 to 100. Residues are color-coded based on their respective pLDDT values
to visually represent the varying levels of prediction confidence.
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differentiation (26). It is well known that RARs play essential roles

in regulating the proliferation and differentiation of hematopoietic

cells (27). As a ligand-dependent corepressor of RAR and RAR-

related signaling, PRAME binds to RARs and prevents receptor

activation and transcription of target genes (Figure 2) (26, 28).

Consequently, it has been suggested that PRAMEmay contribute to

AML disease progression by repressing RAR function (26).

According to Wadelin et al., PRAME binds very weakly to RARs

and other nuclear receptors. Therefore, indirect interactions with

other proteins may facilitate functional interactions between

PRAME and RARs (29). EZH2 is reportedly recruited by PRAME

to suppress RAR signaling (Figure 2) (26). However, another study

showed that PRAME expression does not contribute to the

downregulation of RAR signaling in primary AML cells (30). This

could be partially explained by the findings that PRAME inhibits

myeloid differentiation in a retinoic acid-dependent or retinoic

acid-independent manner (31). Therefore, the effect of PRAME

on RAR signaling in AML cell lines and patients’ needs further

validation. Additionally, PRAME inhibits RAR signaling mediated

by histone deacetylase (HDAC) inhibitors, thereby affecting

downstream gene transcription (Figure 2) (32).

As an intracellular protein, PRAME is found both within the

nucleus and the perinuclear region (16). In accordance with its

ability to localize to the nucleus, PRAME contains several nuclear

localization signal sequences, such as 157-KKRKV-161 and 198-

KVKRKKNV-205. When the PRAME peptide is protease-

processed, HLA-A02:01 is recognized by the T-cell receptor

(TCR) of CTLs after being processed by proteasomal enzymes

(Figure 3). Based on this phenomenon, it is rational to utilize

HLA-A*02–restricted PRAME-peptide to generate PRAME CTLs

from healthy donors or patients, which could release IFNg and lyse
Frontiers in Immunology 03
PRAME peptide–expressing cells in an MHC-restricted manner

and pave the way for AML immunotherapy (33).
3 Expression of PRAME in normal
hematopoietic and AML cells

PRAME is not present or is expressed at extremely low levels in

the majority of normal tissues, such as the testis, ovary, adrenal,

endometrium, placenta, bone marrow, CD34+ hematopoietic

progenitors, unsorted peripheral blood cells, and sorted B and T

lymphocytes (6, 31, 34–38). However, it is highly expressed in

numerous types of human malignancies, including most primary

and metastatic melanomas (6), ovarian cancer (16), breast

carcinoma (39), lung carcinomas (40), neuroblastoma (41),

cervical cancer (25), and head and neck cancers (42).

Furthermore, PRAME is significantly increased in diverse

hematologic malignancies, including acute and chronic leukemias,

non-Hodgkin’s lymphomas, and multiple myeloma, distinguishing

it from the majority of other tumor-associated antigens (TAAs)

(34–36, 43–46).

Kirkey et al. examined the gene expression patterns of more

than 2000 individuals, including children and young adults,

diagnosed with AML in comparison to those with normal

hematopoiesis. PRAME was found to be one of the genes with

the highest level of expression in AML patients, but it was not

detected in normal peripheral blood (PB) CD34+ and bone marrow

(BM) samples (47). Similarly, Mumme et al. employed single-cell

RNA sequencing to examine pediatric AML BM samples during

diagnosis, induction completion, and relapse. Through this analysis,

they discovered PRAME as a 7-gene signature (PRAME, CLEC11A,
FIGURE 2

Mechanism of the PRAME function. As a ligand-dependent corepressor of RAR- and RAR-related signaling, PRAME binds to RARs and prevents
receptor activation and transcription of target genes by recruiting EZH2. Additionally, PRAME inhibits RAR signaling mediated by histone deacetylase
inhibitors, thereby affecting downstream gene transcription.
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AZU1, NREP, ARMH1, C1QBP, and TRH) associated with AML

blasts (48). PRAME is highly expressed in 30–64% of individuals

diagnosed with AML (35–37, 49–54), and its expression level is

linked to particular subcategories of AML. Multiple research studies

have indicated that individuals diagnosed with AML and possessing

t(8;21), del(7q)/-7, or t(15;17) chromosomal abnormalities tend to

have elevated levels of PRAME (35, 36, 49, 50, 54–57). Conversely,

patients with complex karyotypes or inv (16) display comparatively

lower average PRAME levels (57). However, whether the fusion

proteins AML1/ETO and PML/RARa directly or indirectly

promote PRAME expression needs to be investigated. According

to Greiner et al., PRAME expression was decreased in AML patients

with a history of malignancy (P = 0.02) (57). Furthermore, PRAME

expression was additionally recognized as a distinct discriminatory

indicator that differentiates between transient and acute

megakaryoblast leukemia in individuals with Down’s syndrome

(58). In addition, compared to the chronic phase, there was a

correlation between disease progression and heightened PRAME

expression in patients experiencing blast crisis (31, 34, 59). Finally,

the PRAME expression level was increased in relapsed patients

compared to that in newly diagnosed patients (34).

The expression of PRAME is epigenetically regulated by DNA

methylation (60, 61). In normal tissues, the PRAME gene is

hypermethylated, whereas in the majority of malignant cells, this

gene is hypomethylated. Administering the demethylating agent

decitabine leads to a dose-dependent increase in PRAME

expression in PRAME-deficient U937 and THP1 cell lines

exhibiting PRAME hypermethylation, indicating that treatment

with a demethylating agent induces an increase in PRAME

expression in specific cancerous cells (60, 62).
4 Effects of PRAME on leukemia cells
in AML

PRAME is an oncogene in many solid tumors and

hematological tumors. However, the role of PRAME and its

mechanism of action in AML cells remain controversial.
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Several studies have suggested that PRAME is an oncogene in

AML. Bullinger et al. showed that PRAME could inhibit

differentiation mediated by RARs (28). Goellner et al. reported

that apoptosis genes were expressed at lower levels in childhood

patients with no AML who had increased PRAME expression (63).

A study by Tanaka et al. showed that PRAME increased the

proliferation of leukemia cells, promoted cell cycle progression,

and inhibited apoptosis in leukemia cells (64). Additionally,

PRAME inhibition altered the expression of genes involved in

erythroid differentiation (64). Moreover, Oehler et al. showed that

PRAME inhibited myeloid differentiation in HSPCs and LPCs (31).

Finally, Tajeddine et al. showed that PRAME suppression could

cause significantly decreased tumorigenicity in a xenograft mouse

model, suggesting that PRAME could be a target for leukemia

therapy (16).

However, other studies have shown that PRAME is a tumor

suppressor gene in AML. PRAME expression might induce caspase-

independent cell death, inhibit cell proliferation, induce apoptosis,

and cause cell cycle arrest in leukemia cells (16, 65, 66). In addition,

Xu et al. reported that repressing PRAME expression via short

interfering RNA increased the tumorigenicity of K562 leukemic

cells in nude mice (65).

These conflicting results concerning the function of PRAME in

AML cells were similar to the data mentioned above for different

cancer types. One of the possible reasons is that the function of

PRAME is cell lineage dependent. Oehler et al. reported that PRAME

could facilitate proliferation and inhibit ATRA-induced granulocytic

differentiation in the HL60 and NB4 cell lines but could not restrain

differentiation in K562 cells (31). Steinbach et al. showed that

PRAME expression did not downregulate retinoid acid signaling in

primary AML (30). The underlying mechanism related to cell type

needs to be investigated in the future. In addition, different

experimental conditions may also lead to contrary results even

when the same cell line is used. Tanaka et al. and Tajeddine et al.

utilized small interfering RNAs (siRNAs) to knock down PRAME in

the K562 cell line, and tumor inhibition and growth were observed in

vitro and in vivo, respectively (16, 64) Consequently, more studies are

needed to further elucidate the opposing conclusions.
FIGURE 3

Mechanism by which CTLs recognize PRAME-mediated leukemia cells. Protease processing of the PRAME peptide results in recognition of
HLA-A02:01 by the T-cell receptor (TCR) of CTLs.
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5 Prognosis implications

Several studies have indicated that elevated PRAME levels are

linked to unfavorable results, resistance to medication, and disease

progression in individuals with solid tumors (39, 41), chronic

leukemia, Hodgkin’s lymphoma, multiple myeloma, and diffuse

large B-cell lymphoma (17–19, 67). Nevertheless, in cases of

pediatric AML, acute promyelocytic leukemia, and the majority of

adult AML cases, enhanced PRAME expression is linked to

improved prognosis. In a cohort of 28 pediatric AML patients,

PRAME-positive patients (36%) exhibited significantly greater

leukemia-free survival (LFS) than did PRAME-negative patients

(53). In addition, Santamarıá et al. established a molecular

stratification model for prognosis in 121 patients with

cytogenetically normal AML, and high PRAME, low ERG and

low EVI1 were assigned as favorable parameters that were

associated with longer relapse-free survival (RFS) and overall

survival (OS). The 2-year OS and RFS in patients with high

PRAME were 63% and 79%, respectively, while in patients with

low PRAME, they were 51% and 48%, respectively. Patients who

were refractory to induction chemotherapy had lower PRAME

levels than patients who achieved CR after induction

chemotherapy. There was an association between the

overexpression of PRAME and a better response to induction

chemotherapy. Interestingly, this stratification model identified

PRAME patients with longer OS and RFS, even in the FLT3/

NPM1 intermediate-risk/high-risk subgroup (68). Similar results

were also observed in other studies (36, 55).

There are some opinions on why PRAME has a good prognosis.

First, the good prognosis of PRAME may be related to the higher

incidence rates of t(8;21) and t(15;17) in PRAME-positive AML

patients (35, 52, 55). However, it has been argued that PRAME is an

independent good prognostic factor among generally poor prognosis

karyotypes, as indicated by del(7q)/-7 (57). Second, considering that

autologous CTLs recognize PRAME, it can be inferred that the

favorable prognosis and reduced load of leukemia blasts are a direct

result of the immune reaction of PRAME. Third, the positive predictive

value of PRAME in AML may be attributed to the suppression of

S100A4 and the persistent stimulation of P53 activation (66).

Ultimately, the expression of PRAME significantly affects the clinical

outcomes of AML patients who undergo all-trans retinoic acid (ATRA)

therapy. A significant clinical benefit was observed in younger AML

patients with high PRAME expression who received ATRA treatment

in comparison to all other patients (28, 69).
6 Minimal residual disease monitoring

Currently, the molecular minimal residual disease (MRD)

targets applied to AML are restricted to oncogenic fusion

transcripts, such as PML/RARa, RUNX1/RUNX1T1, CBFb/
MYH11, KMT2A/MLLT3 and NPM1 mutations (70–74).

However, more sensitive modalities are lacking for up to 70% of

AMLs, limiting the monitoring frequency (75). Studies have

indicated that in the majority of AML patients, the expression of
Frontiers in Immunology 05
WT1 is notably high, providing an opportunity for MRD

monitoring (76). However, WT1 is expressed by normal

hematopoietic progenitors (77), and it has not been found to be

reliable by some investigators (78), which limits its application. To

enhance sensitivity and specificity, it will be beneficial to explore

alternative genes that can be monitored alongside WT1. Because the

PRAME gene is transcribed in leukemia cells and LSCs (79) but not

in normal BM or PB mononuclear cells, quantitative real-time PCR

(qPCR) using PRAME-specific oligonucleotides may be a valuable

tool for detecting leukemia cells.

The PRAME could be used to determine the response to

induction chemotherapy, evaluate the remission rate, detect

MRD, and predict relapse. The high expression of PRAME in

diagnosis and recurrence provides a foundation for monitoring

MRD and predicting recurrence in PRAME-positive AML patients.

Previously, studies confirmed that PRAME expression was suitable

for monitoring MRD status by simultaneously assessing the

quantitative expression of AML1/ETO or PML/RARa and

PRAME (52, 55). The sensitivity of PRAME detection can reach 1

in 105 patients (36). Multiple studies have demonstrated that

PRAME levels decrease during remission and increase during

relapse (49, 51, 54, 80). The results indicate that PRAME serves

as a reliable indicator for identifying MRD status and detecting

relapse prior to both morphologic and molecular relapse,

particularly in individuals lacking identifiable genetic markers (49,

80, 81). In addition, some studies have shown that PRAME, along

with other LAAs, can serve as a tool for monitoring MRD and

predicting recurrence (38, 82). In addition to providing AML

patients with either a positive or a more sensitive molecular

marker for MRD monitoring, simultaneous detection of PRAME

and other LAAs could also prevent false negatives (54). Steinbach

et al. determined the prognostic relevance of monitoring MRD

status via seven genes (including PRAME) in a prospective

multicenter setting. Patients who reached normal expression of all

seven genes by day 15 had excellent prognoses. Patients with a

combination of cytological nonremission on day 28 and high-risk

MRD (elevated expression of at least one marker on day 28) had an

extremely poor prognosis (83). Furthermore, the timing of donor-

lymphocyte infusions (DLIs) is crucial due to the absence of

dependable indicators for posttransplant relapse status.

Monitoring PRAME in the posttransplant phase can provide

valuable insights into identifying the most suitable time for

DLI administration.
7 Adoptive immunotherapy

The effectiveness of immunotherapeutic approaches, including

monoclonal antibodies, cytokines, immunomodulatory agents,

cellular immunotherapies such as vaccination, dendritic cell (DC)

therapy, and T-cell activating antibodies such as immune

checkpoint inhibitors, bispecific antibodies and chimeric antigen

receptor T cells (CAR-T cells), is becoming increasingly evident

(84). AML patients, however, do not have a widely expressed

surface antigen that can be targeted by antibodies and CAR-T-cell
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1378277
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1378277
treatments. The high expression of PRAME in leukemia cells and its

silencing in normal hematopoietic cells have opened new

possibilities for immunotherapy in AML.
7.1 Preclinical studies

7.1.1 PRAME-specific T cells
The application of adaptive immunotherapy in AML is

relatively limited to posttransplant donor-derived natural killer

cells and CTLs (85), which identify antigens on leukemia cells.

These antigens include minor histocompatibility antigens and

LAAs (86). The PRAME protein is antigenic in vitro and

stimulates the proliferation and activation of specific CD8+ CTLs

in AML (87). PRAME-specific T cells can be generated either by

stimulating T cells with PRAME and other TAAs or by transferring

TCRs specific for PRAME to T cells (TCR-T), followed by ex vivo

expansion and selection.

Expanding PRAME-specific T cells ex vivo requires the

utilization of antigen-presenting cells (APCs), such as DCs or

artificially engineered APCs (88, 89). AML-DCs expressing

PRAME can elicit T-cell responses (90). The challenge of

obtaining a large number of DCs for large-scale leukemia-specific

T-cell generation has limited its clinical application. A method of ex

vivo rapid expansion of T cells expressing the activation marker
Frontiers in Immunology 06
CD137 (4-1BB) was developed by Lee et al. after exposure to

overlapping PRAME peptides (91). In addition, Koukoulias et al.

proposed a unique “circular economy”model that generates billions

of DCs through the repeated use of nontransplantable umbilical

cord blood units, followed by the production of clinically relevant

quantities of third-party, bivalent leukemia-specific T cells to target

the PRAME (92). Moreover, exercise can enhance the ex vivo

expansion of PRAME-specific CTLs from healthy adults without

compromising cytotoxic function (93, 94). Currently, research has

reported the in vitro and in vivo effects of amplified PRAME-

specific CTLs, and we have summarized the relevant preclinical data

in Table 1.

PRAME-specific CTLs can lyse PRAME-positive leukemia cell

lines and fresh leukemia cells (49, 57, 95, 96). In addition, PRAME-

specific T cells also protect against LSCs/LPCs, which have been

implicated in leukemia relapse (97). In a xenotransplant mouse

model, PRAME-stimulated CTLs were shown to target AML stem

cells, as reflected by delayed engraftment of leukemia cells (79).

Interestingly, these PRAME-directed CTLs do not affect normal

hematopoietic progenitors.

PRAME-specific T-cell responses can be enhanced by

combination with other drugs. Hashimoto et al. reported that

PRAME-specific TH1 cells induced senescence and cell cycle

arrest in AML cell lines and fresh patient-derived AML blasts

through the combination of IFN-g and TNF-a (98). Yao et al.
TABLE 1 Preclinical data of adoptive PRAME-specific T cells for AML.

Study Treatment In vitro efficacy Animal
model

In vivo efficacy

Matsushita
2001 (49)

PRAME-
specific CTLs

Killing PRAME-positive leukemia cell line K562 and fresh leukemia cells from
AML patient

N/A N/A

Greiner
2006 (57)

PRAME-
specific CTLs

Killing PRAME–peptide pulsed T2 cells and primary AML blasts with
PRAME expression

N/A N/A

van den
Ancker
2013 (95)

PRAME-
specific CTLs

Against AML cell lines K562 and patient-derived leukemia cells in a dose-
dependent manner

N/A N/A

Amir
2011 (96)

PRAME-specific
allo-HLA
restricted CTLs

Clearing primary AML cells N/A N/A

Quintarelli
2011 (97)

PRAME-
specific CTLs

Against leukemic blasts and leukemic progenitor cells, do not affect normal
hematopoietic progenitors

N/A N/A

Schneider
2015 (79)

PRAME-
specific CTLs

Against AML cell lines OCI-AML2, OCI-AML3, and patient-derived leukemia cells Mice Targeting AML
stem cells

Hashimoto
2022 (98)

PRAME-specific
TH1 cells

Induce cell-cycle arrest and senescence in AML cell lines Nomo-1, Kasumi, and fresh
patient-derived AML blasts through combinative IFN-g and TNF-a

N/A N/A

Yao
2013 (99)

PRAME-
specific CTLs

Killing AML cells THP-1 and enhanced by chidamide alone or combined
with decitabine

N/A N/A

Greiner
2022 (100)

PRAME-
specific CTLs

Enhancing the effect of PRAME stimulated CTLs on LPC/LSC by nivolumab N/A N/A

Kirkey
2023 (47)

PRAME
mTCRCAR-T

Target-specific and HLA-mediated in vitro activity in OCI-AML2 and THP-1 cell lines,
HLA-A2 cell lines expressing the PRAME antigen, and against primary AML
patient samples

Mice Potent leukemia
clearance and
improved survival
PRAME, preferentially expressed antigen in melanoma; CTLs, cytotoxic T lymphocytes; N/A, not available; AML, acute myeloid leukemia; IFN-g, interferon gamma; TNF-a, tumor necrosis
factor a; LPC/LSC, leukemic progenitor/stem cells; mTCR, TCR mimic; CAR-T, chimeric antigen receptor T cells.
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showed that PRAME-specific CTLs exhibited enhanced cytotoxicity

to leukemia cells in vitro following treatment with either the HDAC

inhibitor chidamide alone or in combination with the

hypomethylating agent decitabine. These effects were achieved

through mechanisms involving the upregulation of PRAME and

CD86 in AML cells (99). Greiner et al. showed that T cells from

AML patients could respond to LAAs (PRAME, WT1 and

RHAMM) after stimulation. The presence of an anti-PD-1

blocking antibody improved T-cell-mediated antitumor responses

against LPCs/LSCs (100). These studies provide a rationale for

combining drugs with adoptive cell therapy to improve efficacy in

clinical circumstances.

For PRAME specific TCR-T cells, Sailer et al. reported

transducing a chimeric PD1-41BB receptor can enhance IFN-g
secretion, improve cytotoxic capacity, and prevent exhaustion in

vitro without changing safety. Moreover, the addition of PD1-41BB

could eradicate refrectory melanoma in mice that was resistant to

TCR-T cells without PD1-41BB (101). The study supports the

development of similar PRAME specific TCR-T cells for AML.

7.1.2 Antibodies and CAR-T cells
The treatment of B-cell malignancies has significantly advanced

with the success of CAR-T-cell therapy. Nevertheless, the

application of CAR-T-cell therapy in AML is currently at an early

stage and faces constraints due to the inherent diversity linked to

AML and the absence of specific targets for therapeutic

advancement. The present approaches employ lineage indicators

such as CD33 and CD123 as targets for therapy, which, if successful,

may result in myeloablation (102, 103). PRAME is highly expressed

in AML and is absent in normal hematopoietic cells, which provides

an effective target for CAR-T-cell therapy in AML. Unfortunately,

PRAME is an internal protein, making it inaccessible to

conventional CAR-T cells, which are limited to antigens on the

cell surface. However, PRAME can be processed by the proteasome

into four HLA-A*02:01–restricted epitopes, including the

PRAME100-108 peptide VLDGLDVLL, the PRAME142-151 peptide

SLYSFPEPEA, the PRAME425-433 peptide SLLQHLIGL and the

PRAME300–309 peptide ALYVDSLFFL (ALY) (104). Rezvani et al.
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revealed that all four PRAME-derived peptides were immunogenic

in HLA-A*0201-positive patients with AML, ALL and CML, but

only ALY induced CD8+ T-cell responses (87). Chang et al.

designed Pr20, an afucosylated Fc form of a TCR mimic (mTCR)

human IgG1 antibody that can specifically recognize the cell surface

ALY-HLA-A2 complex in PRAME+HLA-A2+ leukemia. Pr20

mediates antibody-dependent cellular cytotoxicity against PRAME

+HLA-A2+ leukemias in vitro and is effective against AML

xenograft models in mice, making Pr20 a potential therapeutic

agent (13). Using the Pr20 monoclonal antibody sequence, Kirkey

et al. created PRAMEmTCRCAR-T cells to target the PRAME

antigen in AML, and the scFv of CAR-T cells could specifically

recognize and bind the ALY/HLA-A2 complex in PRAME+HLA-

A2+ AML but not in PRAME-HLA-A2+ or PRAME+HLA-A2-

AML (Figure 4). These cells showed specific activity against the

target and were effective in vitro in OCI-AML2 and THP-1 cell

lines, as well as in HLA-A2 cell lines expressing the PRAME antigen

and primary AML patient samples. PRAMEmTCRCAR-T cells

effectively eliminated leukemia and enhanced survival in in vivo

cell-derived xenograft models. Moreover, the cytolytic function of

the PRAMEmTCRCAR-T cells was enhanced through the

application of interferon gamma to the targeted leukemia cells

because interferon gamma can increase PRAME antigen

expression (47). This study describes a novel adoptive cell therapy

involving the use of PRAME with mTCRCAR-T cells for the

treatment of AML, which warrants further evaluation in clinical

trials. In addition, further development of mTCRCAR to target other

intracellular AML-specific antigens in an HLA-restricted manner

is needed.
7.2 Clinical trial

Relapse after intensified induction chemotherapy or allogeneic

hematopoietic stem cell transplantation (allo-HSCT) is the main

cause of death in AML patients. Unselected DLIs are used as rescue

or maintenance therapies for AML patients due to the efficacy of

graft-versus-leukemia (GVL). However, as DLIs are not leukemia
FIGURE 4

Mechanism of interaction between PRAME mTCRCAR-T cells and PRAME+ leukemia cells. ScFv from Pr20 is used to construct PRAME mTCRCAR-T
cells, which can specifically recognize the ALY-HLA-A2 complex after intracellular PRAME is processed into ALY by proteasomal enzymes.
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specific, GVL frequently manifests as perilous graft-versus-host

disease (GVHD) resulting from the simultaneous transmission of

alloreactive lymphocytes. LAA-specific CTLs can selectively target

leukemia cells, thereby exerting GVL effects without causing GVHD

(88). PRAME specific T cells and PRAME vaccines are currently

being extensively studied.

7.2.1 PRAME-specific T cells
Several trials utilized PRAME specific T cells targeting multiple

TAAs showed good safety and feasibility. To create a secure and

efficient cellular treatment for individuals experiencing recurring

AML/MDS, Lulla and colleagues developed a T-cell treatment that

focuses on numerous LAAs, aiming to replicate the GVL effect

caused by T cells from a donor while minimizing the chance of

triggering GVHD. T cells with inherent TCRs targeting LAAs

(PRAME, WT1, Survivin, and NY-ESO-1) were amplified from

the PB of HSCT donors (NCT02494167). Products were

successfully produced from 29 HSCT donors and have been

proven to have multileukemia antigen specificity (mLST). Unlike

DLIs, mLSTs specifically identify and eliminate leukemia antigen-

expressing cells but exhibit no effect on normal cells derived from

the recipient in vitro. Twenty-five participants in the trial who had

AML/MDS after HSCT were given increasing amounts of these

mLSTs (ranging from 0.5 to 10×107 cells/m2). Infusions were well

tolerated with no grade >2 acute or extensive chronic GVHD. The

median LFS and OS were not reached after 1.9 years of follow-up

(105). Kinoshita et al. assessed the safety and clinical results of

3 LAAs (PRAME, WT1, and Survivin) after administering a new

T-cell treatment to patients with acute leukemia who experienced

relapse or were at a high likelihood of relapse following allogeneic

bone marrow transplantation (BMT) (NCT02203903). LAAs were

targeted using lymphocytes obtained from BMT donors. LAA

lymphocytes were administered to patients at doses ranging from

0.5 to 4×107/m2. There were 23 recipients of BMT with relapsed/

refractory (n = 11) and high-risk (n = 12) AML (n = 20) or acute

lymphoblastic leukemia (n = 3). There were no instances of

cytokine release syndrome or neurotoxicity observed among the

patients, with only 1 patient experiencing grade 3 GVHD. Relapsed

individuals demonstrated a 36% 1-year OS rate and a 27.3% 1-year

LFS rate following LAA lymphocyte infusion. Patients with the

worst prognosis who relapsed 6 months after the transplant had a

postrelapse 1-year OS rate of 42.8% (n = 7). In 12 high-risk patients

who received preemptive LAA infusion, the median survival was

not reached. Furthermore, LAA lymphocytes remained detectable

for a minimum of 12 months following infusion (106). Another trial

with T cells targeting the same 3 LAAs (PRAME, WT1, and

Survivin) enrolled 11 patients with AML or MDS after HSCT.

The study has been terminated and no results were released

(NCT04679194). In addition, Monzr et al. reported preliminary

results of donor-derived CD8+ T cells targeting WT1, PRAME, and

Cyclin A1 (NCT04284228) in relapsed AML after allogeneic HSCT.

Five of 7 patients enrolled received three different dose levels: 50,

100 and 200 million. No GVHD, cytokine release syndrome (CRS)

and neurotoxicity were observed while GVL effects were indicative,

including decrease in blood transfusion, blast burden, myeloid

sarcoma volume and increase in donor chimerism. Adoptive
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CD8+T cells proliferated rapidly and can be detected in blood

and bone marrow (107).

However, clinical trials with PRAME specific TCR T cells are

not going smoothly. Due to the sponsor’s discretion, 2 related phase

I/II trials had terminated in the first stage. One trial involved 9

patients with relapsed or refractory AML(n=6), myelodysplastic

syndrome and myeloproliferative neoplasm (MDS) (n=1) and

multiple myeloma (n=2). The patients received one of three

escalating dose levels (0.1,1,5) million PRAME TCR-transduced T

cells/kg. One AML patient treated with 0.1 million achieved

complete remission at week four, but disease progressed at week

twelve. One patient with MDS/MPN treated with 5 million

maintained stable during the 12-month study. Furthermore, TCR-

T cells were detectable in peripheral blood of 6 of 8 patients in the

first four weeks and persistent in the MDS/MPN patient at twelve

months. Two patients experienced controllable CRS of Grade 1 and

Grade 2, respectively. No neurotoxicity or dose-limiting toxicities

were observed((NCT03503968) (108). Another trial involved 4

patients with relapsed AML and previously treated MDS. The

patients received PRAME TCR-transduced T cells with 1.25 x 106

cells/kg. Two patients reported one of following adverse events,

including neutropenic fever, tachypnea, CRS, neurotoxicity,

bacteremia, infection and orthostatic hypotension. No more

information was posted in ClinicalTrials.gov (NCT02743611).

CRS seems to be only in PRAME specific TCR T cells therapy

rather than in PRAME specific T cells targeting multiple TAAs

treatment. More studies with PRAME specific TCR T cells are

needed to clarify its safety. The relevant clinical data of PRAME

specific T cells was briefly summarized in Table 2.

7.2.2 PRAME vaccination
PRAME overexpression in AML provides a target for vaccine

strategies. Steger et al. studied the expression of PRAME, WT1 and

PR3 (proteinase 3) in AML. High expression was found in 87%,

81% and 55% of the patients with AML, respectively.

Approximately 70% of the AMLs had overexpression of PRAME

and WT1, and 45% of the AMLs had overexpression of all 3 TAAs.

Furthermore, PRAME expression increased during the course of

AML persistence. Consequently, it is reasonable to cover different

peptides for AML immunotherapy with vaccines (109).

Currently, PRAME vaccination for AML are mainly DC-based.

DCs effectively display antigens to CD8+ and CD4+ T lymphocytes

via major histocompatibility complex (MHC) class I and II

molecules, respectively. Li et al. isolated DCs from 5 AML

patients and generated PRAME expressing DCs. The cells were

infused four times at a biweekly interval and were well tolerated. A

significant increase of granzyme B releasing CD8+ T cells

specifically recognizing ALY was detected. In addition, elevation

in Th1 cytokines and interferon gamma production was also

observed (110). FDC101, a vaccine consisting of mature DCs

(mDCs) loaded with autologous RNA and expressing two LAAs

(PRAME and WT1), was administered to 20 AML patients in CR1

who were not eligible for allo-HSCT. Throughout the 24-month

research duration, every administration included 2.5–5×106 mDCs

per antigen, given on a weekly basis until the fourth week, at the

sixth week, and subsequently monthly. The treatment was well
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tolerated, with mild and temporary grade 1 reactions at the injection

site. CR was achieved in 11 of the 20 patients (55%), and CR2 was

achieved in 4 of the 6 relapsing patients (67%) who received allo-

HSCT after salvage therapy. The OS rate at 5 years was 75%

(111).Lichtenegger et al. performed a phase I study utilizing

TLR7/8-mDCs that were transfected with RNA encoding PRAME

and WT1 along with CMVpp65. AML patients with a high

likelihood of recurrence who successfully achieved CR received 10

vaccinations within a span of 26 weeks. In 11/12 patients, a

sufficient number and quality of DCs were generated, and 10
Frontiers in Immunology 09
patients were vaccinated. The management was secure and led to

regional inflammatory reactions. A significant increase in antigen-

specific CD8+ T cells was observed for PRAME (4/10), WT1 (2/10),

and CMVpp65 (9/10). The median RFS was 3 years, and the median

OS was not achieved within a period of 3 years. In addition,

immune responses can be enhanced through the combination of

TLR7/8-mDCs and immunomodulatory agents such as

hypomethylating agents or checkpoint inhibitors (112).

One trial involved synthetic peptides containing NY-ESO-1,

MAGE-A3, PRAME and WT-1 for MDS and AML patients. Five
TABLE 2 Clinical data of PRAME-specific T cells for AML.

Study
Trial
status

Clinical
phase

Patient
number

Age
(years)

Disease Target Treatment Dose Outcome
Adverse
events

NCT02494167
(Lulla
2021) (105)

Recruiting I 25 16–73

AML or
MDS
after
HSCT

PRAME/
WT1/
Survivin/
NY-
ESO-1

Multi-TAA-
specific T cells

0.5–
10x107

cells/
m2

Not yet
reached
median LFS
and OS at 1.9
years of
follow-up

No grade >2
acute or
extensive
chronic
GVHD

NCT02203903;
(Kinoshita
2022) (106)

Recruiting I
23
(20 AML)

1–70
AL
after
HSCT

PRAME/
WT1/
Survivin

LAA-T

0.5–
4x107

cells/
m2

One-year OS
in patients
who relapsed
early post-
BMT was
42.8% post-
relapse,
whereas 88.9%
of evaluable
high-risk
patients were
alive at 1 year

One patient
developed
grade
3 GVHD

NCT04284228
Active,
not

recruiting
I/II 5 N/A

Relapsed
AML or
MDS
after
HSCT

PRAME/
WT1/
Cyclin
A1

Multi-TAA-
specific CD8+
T cells

1–
2×108

improve
GVL effect

No GVHD,
CRS
and
neurotoxicity

NCT04679194 Terminated I 11 N/A

AML or
MDS
after
HSCT

PRAME/
WT1/
Survivin

Multi tumor-
associated
antigen T cells

N/A N/A N/A

NCT02743611 Terminated I/II 4 39-72

Relapsed
AML,
previously
treated
MDS or
metastatic
uveal
melanoma

PRAME
PRAME TCR
gene modified
T cells

1.25-
5x106

cells/kg
N/A

2 patients
reported one
of followings:
neutropenic
fever,
tachypnea,
CRS,
neurotoxicity,
bacteremia,
infection,
orthostatic
hypotension

NCT03503968 Terminated I/II

9(6 AML,
2 MM, 1
MDS/
MPN)

N/A

Relapsed/
refractory
myeloid
and
Lymphoid
Neoplasms

PRAME
PRAME TCR
gene modified
T cells

0.5-10
x106

cells/kg

1 AML
achieved CR at
week 4 and
progressed at
week 12. 1
MDS/MPN
remained
stable

2 patients
exhibited
grade1-2 CRS,
no
neurotoxicity.
PRAME, preferentially expressed antigen in melanoma; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; HSCT, hematopoietic stem cell transplantation; TAA, tumor associated
antigen; LFS, leukemia free survival; OS, overall survival; GVHD, graft versus host disease; LAA-T, T-cell therapeutic targeting 3 Leukemia associated antigens; GVL, graft versus leukemia; CRS,
cytokine release syndrome; N/A, not available; MM, multiple myeloma; MDS/MPN, myelodysplastic syndrome and myeloproliferative neoplasm; CR, complete remission.
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MDS patients were actually enrolled. The peptides were injected

subcutaneously after 6 cycles of azacitidine. No serious adverse

events occurred. However, vaccine-specific immune response was

also not detected. All patients progressed to AML after a mean time

of 4.9 months from inclusion. Due to lacking immune response and

potential benefit, the trial was terminated early (NCT02750995)

(113). The relevant clinical data of PRAME vaccination was briefly

summarized in Table 3. Overall, PRAME vaccination for AML

demonstrates good safety profile, DCs-based strategies may play a

role in triggering immunological responses. More prospective trials

are needed to evaluate the efficacies for AML.
8 Conclusion

PRAME is highly expressed in leukemia cells and LPCs/LSCs but

not in HSPCs, suggesting that it is a preferred target for AML treatment.

PRAME is a useful molecular marker for detecting remission and

monitoring MRD in AML patients. During the posttransplant period,

monitoring PRAME levels will indicate the optimal timing for DLIs.

Although the cellular mechanism of action of PRAME requires further

investigation, a deeper understanding of its function is expected to

provide a new perspective on adaptive T-cell immunotherapy for AML.

An increasing number of studies on PRAME-specific immunotherapy,

especially in combination with demethylating agents, HDAC inhibitors

or allo-HSCT, are expected to emerge.
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Study
Trial
status

Clinical
phase

Patient
number

Age
(years)

Disease Target Treatment Dose Outcome
Adverse
events

Li. 2006 (110) N/A N/A 5 54-71

AML in
a
palliative
setting

TAAs
including
PRAME

Autologous
AML-DCs

4 injections
with
5×106,
biweekly

Three patients remained
stable condition for 5.5-
13 months, 2 patients
died from AML,
increase in granzyme B
releasing CD8+T cells
and Th1 cytokines and
CD4+ derived
interferon gamma

Mild and
transient
injection
site
reactions

NCT02405338
(Fløisand.
2023) (111)

Completed I/II 20 23–72
De novo
AML
in CR1

PRAME/
WT1

RNA-
loaded DC
vaccine
(FDC101)

2.5–5×106

DCs/antigen

Maintain CR: 55%;
achieved CR2: (4/6); 5-
year OS: 75% (95% CI:
50–89)

Mild and
transient
injection
site
reactions

NCT01734304
(Lichtenegger
2020) (112)

Completed I 13 44–79
AML
in CR

PRAME/
WT1/
CMVpp65

TLR 7/8-
matured
RNA-
transduced
DCs

10
vaccinations
over
26 weeks

Median OS: 1057 days;
RFS: 1084 days

One grade
3: pyrexia

NCT02750995
(Staffan
2020) (113)

Completed I 5 (MDS)
MDS,
AML

NY-ESO-
1, MAGE-
A3 and
PRAME.
WT-1

Azacitidine
followed by
peptides
injection

N/A
No vaccine-specific
immune response

One grade
4:
neutrophil
count
decrease; 2
grade 3:
platelet
and
neutrophil
count
decrease
fro
PRAME, preferentially expressed antigen in melanoma; AML, acute myeloid leukemia; N/A, not applicable; TAA, tumor associated antigen; DCs, dendritic cells; CR, complete remission; TLR,
Toll-like receptor; OS, overall survival; MDS, myelodysplastic syndrome.
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