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The role of dermal fibroblasts in
autoimmune skin diseases
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Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
Fibroblasts are an important subset of mesenchymal cells in maintaining skin

homeostasis and resisting harmful stimuli. Meanwhile, fibroblasts modulate

immune cell function by secreting cytokines, thereby implicating their

involvement in various dermatological conditions such as psoriasis, vitiligo, and

atopic dermatitis. Recently, variations in the subtypes of fibroblasts and their

expression profiles have been identified in these prevalent autoimmune skin

diseases, implying that fibroblasts may exhibit distinct functionalities across

different diseases. In this review, from the perspective of their fundamental

functions and remarkable heterogeneity, we have comprehensively collected

evidence on the role of fibroblasts and their distinct subpopulations in psoriasis,

vitiligo, atopic dermatitis, and scleroderma. Importantly, these findings hold

promise for guiding future research directions and identifying novel

therapeutic targets for treating these diseases.
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1 Introduction

The skin is a vital organ, the first barrier, protecting the host from external pathogens

and harmful stimuli. It consists of diverse cell types, including keratinocytes, melanocytes,

fibroblasts, and immune cells, which collaborate to maintain skin homeostasis (1). Skin

diseases rank fourth in terms of incidence among all causes of disease, affecting

approximately one-third of the global population. However, the burden of skin diseases,

particularly autoimmune-related diseases, is frequently underestimated despite their

conspicuous nature (2). Autoimmune skin diseases are characterized by an aberrant

immune response within the cutaneous tissue, leading to compromised structural and

functional integrity. This process involves diverse cells, including macrophages, T cells, B

cells, keratinocytes, and fibroblasts (3).
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Fibroblasts, a crucial subset of mesenchymal cells, exhibit

diverse biological functions (4). Within the skin, fibroblasts are

primarily localized in the dermis and play an indispensable role in

maintaining the structural integrity of the skin, regulating immune

responses, and participating in cutaneous damage repair (5). In

recent years, accumulating evidence has revealed the intricate

involvement of fibroblasts in the pathogenesis and progression of

various autoimmune skin diseases in human and mouse models.

For instance, dermal fibroblasts play a pivotal role as a cellular

source for inflammatory cytokines and chemokines, promoting

chronic tissue inflammation through leukocyte recruitment and

exacerbating inflammatory injury (4). Recently, histological

approaches and single-cell RNA sequencing (scRNA-seq) studies

on human skin diseases have revealed fibroblast subsets with

unexpected immuno-modulatory transcriptomes and immune cell

changes, suggesting a potential role of these cells in the pathogenesis

of inflammatory skin disorders (4, 6). Whether skin fibroblasts

contribute to immune homeostasis in skin inflammatory disorders

remains unknown. Understanding the role of fibroblasts in these

diseases may lead to the development of new therapeutic strategies.

In this review, we provide a brief overview of the basic function

of dermal fibroblasts in the skin, as well as their essential role in

pathological conditions. We also present the current knowledge on

the subpopulation of fibroblasts and their function in various

autoimmune skin diseases (Table 1).
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2 Dermal fibroblasts

2.1 Function of dermal fibroblasts

Fibroblasts perform a diverse array of functions within various

tissues and organs, encompassing the secretion and remodeling of

extracellular matrix (ECM), generation of mechanical force,

regulation of tissue metabolism, as well as the secretion of

signaling factors that modulate immune responses and maintain

skin micro-environmental hemostasis (17–19).

The dermis is the most crucial layer of skin in the skin and

harbors fibroblasts as the predominant cell type. The primary

function of fibroblasts is to synthesize and ECM (collagens,

elastin, fibronectin, laminins, et al.) (Figure 1B), contributing to

connective tissue formation that maintains skin structure integrity

and function (20). Meanwhile, fibroblasts modulated the

microenvironment of the dermis and the immune responses by

secreting numerous cytokines, metabolites, and growth factors (21).

The fibroblasts exhibit robust capabilities in proliferation,

differentiation, and migration. In response to detrimental stimuli,

they can differentiate into myofibroblasts and secrete ECM and

cytokines in order to counteract external damage and restore skin

function (Figure 1C). On the contrary, fibroblast dysfunction also

contributes to skin diseases such as psoriasis and atopic dermatitis.
2.2 Heterogeneity and subtypes
of fibroblasts

Fibroblasts are mesenchymal cells that exhibit remarkable

plasticity and can be differentiated from a variety of cells in

response to external stimuli (22). Over past decades, extensive

research has demonstrated that fibroblasts exhibit high

heterogeneity (23). However, in the early stages, the lack of

advanced technological support presents a significant challenge

for distinguishing subpopulations of fibroblasts. Recently,

advancements in single-cell sequencing technology have identified

numerous subtypes within fibroblasts.

Normal dermal fibroblasts are divided into two subgroups,

papillary fibroblasts and reticular fibroblasts (Figure 1A), and the

common markers are COL1A1, COL1A2 et al. Korosec found that

fibroblasts characterized by fibroblast activation protein (FAP)

positive and CD90 negative phenotype are enriched in the

papillary dermis and express both PDPN and NTN1, display

active proliferation, and are relatively resistant to adipogenic

differentiation. On the other hand, FAP-CD90+ fibroblasts

expressed high levels of ACTA2, MGP, PPARg, and CD36 and

possessed a higher adipogenic potential, contributing to features of

reticular fibroblasts (24).

A single-cell RNA sequencing study showed that dermal

fibroblasts can be grouped into two main subpopulations by

SFRP2 and FMO1 (7). However, these two subtypes are not

associated with the papillary and reticular layers. Philippeos et al.

found that CD90, platelet-derived growth factor receptor (PDGFR)

were the hallmarks of fibroblasts, and human dermal fibroblasts
TABLE 1 Summary of vital genes of fibroblast in autoimmune
skin diseases.

Disease
Vital
Gene

Function of gene References

Psoriasis

SFRP2
product pro-

inflammatory cytokines
7

TNC
induce psoriasiform
skin inflammation

8

OVOL1
aggravate psoriasis-like
skin inflammation

9

Vitiligo

CXCL9
CXCL10

recruit T cell 10, 11

CCL2
CCL8

promoted naïve T cell
polarization into Th2 cells,

and attract Th2 cells
12

Atopic
Dermatitis

COL6A51 recruit T cell 13

COL18A11
product type2 inflammation

signal
induced cytokines

13

Scleroderma

Prx1
product pro-

inflammatory cytokines
14

LGR5
coordinate the correct tissue

organization
and homeostasis

15

SFRP2
differentiate

into myofibroblasts
16
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have been divided into four subgroups based on their location in the

dermis (25).
3 The role of dermal fibroblasts in
autoimmune skin diseases

3.1 Dermal fibroblasts in psoriasis

Psoriasis is a worldwide autoimmune skin disease, caused by

immune system malfunction, resulting in red, scaly patches and

excessive skin exfoliation due to increased keratinocyte proliferation

(26, 27). While the involvement of keratinocytes and IL-17-

producing helper T (Th17) cells in psoriasis has been extensively

described (28, 29), limited attention has been devoted to other cell

types involved in psoriasis. Recent studies have focused on the

crucial role of fibroblasts in the development of psoriatic lesions.

Fibroblasts isolated from psoriatic skin possess a distinct gene

expression profile. Kim et al. revealed that ITGA4 expression was

significantly upregulated in psoriatic fibroblasts (30). Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis revealed

that ECM-receptor interaction was the most enriched pathway in

psoriatic fibroblasts, highlighting their crucial role in producing

ECMmolecules. Meanwhile, extra domain A fibronectin (EDA FN),

a sign of dormant chronic inflammation, also had a significant

upregulation in psoriatic fibroblasts (30, 31). In psoriatic mice with

OVOL1 or Vsir deficiency, fibroblasts emerged as one of the major

cell types involved (9, 32). OVOL1 deficiency led to the

upregulation of inflammation-associated genes such as Saa3 and

monocyte chemoattractant Ccl2 in fibroblasts, aggravating

psoriasis-like skin inflammation (9, 33). Fibroblasts in IMQ-
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treated Ovol1-deficient skin lost the capacity to inhibit IL-1

signaling, resulting in hyperactivated inflammation (9). Similarly,

Ptx3, Hsbp1, Cebpb, and Tnfrsf12a were elevated in fibroblasts

from Vsir-deficient psoriatic mouse skin, whereas S100a9 was

downregulated. These genes were enriched for macrophage-

associated genes, inflammatory response, and wound healing (32).

Cai et al. have revealed that the expression of adipogenic, pro-

inflammatory, and chemotactic genes were significantly

upregulated in IMQ-induced fibroblasts and a notable skewing

towards profiles adapted to inflammation (8). Results from

scRNA-seq in IMQ-induced psoriatic skin confirmed the essential

role of fibroblasts in psoriasis pathogenesis.

However, prior studies on the role of fibroblasts have mostly

been limited to the ability of fibroblasts to induce keratinocyte

proliferation and regulate immune responses (34). Following that,

subsequent research has provided detailed insights into the role of

different subsets of fibroblasts in psoriasis pathogenesis, identifying

the fibroblast subpopulations involved in psoriasis.

SFRP2+ fibroblasts have been identified as essential cells in

psoriasis pathogenesis, which impacts other spatially proximate cell

types by producing chemokines (35). SFRP2+ fibroblasts were

divided into two groups: one producing extracellular matrix

components and the other with a pro-inflammatory phenotype.

This study also demonstrated that SFRP2+ fibroblasts are a source of

proteases such as cathepsin S, which activates IL-36g (36).

Meanwhile, expression of pro-inflammatory cytokines in

fibroblast was predominantly localized to the tips of the dermal

papillae, an area within psoriatic skin known for harboring

inflammatory cells and being in close proximity to the overlying

epidermis (37). In murine skin, a population of inflammatory

fibroblasts that shared similarities with SFRP2+ fibroblasts and
A

B

C

FIGURE 1

Schematic graph showing the function and heterogeneity of dermal fibroblasts. (A) Normal dermal fibroblasts are divided into two subgroups:
Reticular fibroblasts and Papillary fibroblasts. (B) Fibroblasts synthesize extracellular matrix to maintain skin structure integrity. (C) Fibroblasts
modulate the microenvironment of the dermis and the immune responses by secreting numerous cytokines, metabolites, and growth factors.
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expressed genes associated with psoriasis-related inflammation was

identified (38). Interestingly, SFRP2+ inflammatory fibroblasts in

psoriasis and COL6A5+ COL18A1+ fibroblasts in atopic dermatitis

express CCL19, which can recruit CCR7+ LAMP3+ type 2

conventional dendritic cell (cDC2) (13). However, only psoriatic

fibroblasts expressed CXCL12 and CXCL1, which contributed to

the recruitment of CXCR4+ Tc17 cells and neutrophils (35). Cai

et al. reported a subpopulation of papillary fibroblasts induced by

inflammation that secrete the extracellular matrix protein tenascin-

C (TNC), facilitating psoriasiform skin inflammation. Specific

ablation of TNC in fibroblasts reduces hyperinnervation and skin

inflammation in male psoriasis mice (8).

Other omics studies have also revealed the important role of

fibroblasts in psoriasis. Gegotek et al. investigated alterations in the

proteomic profile of dermal fibroblasts within psoriasis lesions. The

psoriatic fibroblasts exhibited upregulation of proinflammatory and

antioxidant proteins, signal transduction molecules, and proteolytic

enzymes. Conversely, downregulated proteins in psoriatic

fibroblasts primarily encompassed those involved in transcription

or translation processes, glycolysis/ATP synthesis, and structural

support (39). The findings suggest that alterations in oxidative stress

and protein expression within fibroblasts, along with their

regulatory role in immune response, may contribute to the

pathogenesis of psoriasis. By using the lipidomic method, Łuczaj

et al. have assessed the adaptation of the ceramide profile of

fibroblasts from psoriasis vulgaris patients. The research showed

significant increases in the three ceramide classes (CER[AS], CER

[ADS], and CER[EOS]), which were expressed at higher levels in

psoriasis patients. The most noteworthy change in the fibroblasts

was increased CER[EOS], which included ester-linked fatty

acids (40).
3.2 Dermal fibroblasts in atopic dermatitis

Atopic dermatitis (AD) is a severe autoimmune skin condition

characterized by itching and eczematous lesions. It is distinguished

largely by epidermal barrier failure and immunological changes,

characterized by a predominance of skin-homing Th2 cells that

generate IL-4 and IL-13 (41–43).

The degradation of the skin barrier is the direct cause of AD.

Kwon indicated that HDAC6 and CXCL13 were increased in AD

fibroblasts and enhanced cellular interactions between mast cells,

keratinocytes, leading to impaired skin barrier function (44).

Research showed that IL-22 increased in the skin and blood of AD

patients, and the elevated IL-22 concentrations are highly correlated

with skin barrier defects (41). In the skin, IL-22R is primarily

expressed by fibroblasts, and its interaction with IL-22 results in

increased fibroblast activity, which may lead to skin barrier failure

(45). Thus, IL-22 facilitates the communication between leukocytes

and fibroblasts, thereby breaking the homeostasis in the skin.

Fibroblasts and their communication with immune cells play an

important role in AD. Ghosh et al. discovered that macrophage,

endothelial cell, and fibroblast activation pathways, like the NF-kB
pathway, played a critical role in AD after reviewing multi-omics
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research on the disease (46). Another study found that depletion of

the Ikkb gene in fibroblasts resulted in an atopic dermatitis-like skin

phenotype that exhibits eosinophilia and large numbers of type 2

immune cells (14, 47). This effect is related to fibroblasts aberrantly

expressing CCL11 to initiate an eosinophilic and Th2 inflammation

(14). Fibroblasts-secreted IL-33 also plays an important role in type-

2 innate immunity by activating allergic inflammation-related

immune cells (48). Furthermore, Fibroblast-generated IL-37b

regulates intracellular AMP-activated protein kinase (AMPK) and

mammalian target of rapamycin (mTOR) signaling pathways. This

regulation can potentially reduce the production of pro-

inflammatory cytokines and chemokines associated with atopic

dermatitis (AD) by regulating autophagy (49). In AD lesions,

various cell types express interleukin-15 (IL-15), including

keratinocytes, CD1a+ dendritic cells (DCs), CD11b+ DCs, CD68+

macrophages, and vimentin+ fibroblasts (50). In Clark’s study, it

was observed that regulatory T cells had an increased proliferation

rate when co-cultured with dermal fibroblasts and IL-15, even

without any specific antigen stimulation (51). Such findings

highlight the importance of cytokines in regulating the immune

response in AD and confirmed that targeting cytokines signaling

was a promising therapeutic approach for this condition.

Numerous cell groupings in the skin of AD have been revealed

by the scRNA-seq. Helen et al. revealed that a novel fibroblast

population with COL6A51+ and COL18A11+ was increased in AD

lesions, which expressed inflammatory cytokines induced by type 2

inflammation signal (13). COL6A51+ fibroblasts mainly enriched in

the upper dermis near the dermal-epidermal junction, and these

fibroblasts were adjacent to the CD3+ T cells, which suggests a role

in recruiting T cell (13). Li’s team found that the expression of

interferon-induced genes, like IFITM2 and IFITM3, was enhanced

in AD dermal fibroblasts (52). In this study, POSTN was found in

fibroblasts from patients with severe AD, which was related to the

severity of AD (52, 53). Ko and Merlet uncovered a novel Prx1+

fibroblast subpopulation in which the IKKb-NF-kB axis

disturbance may affect skin homeostasis and induce an

inflammatory condition similar to atopic dermatitis (14).

However, the scRNA-seq technique cannot distinguish the cell

from the epidermis or dermis, and lack of direct evidence to

prove cell–cell interactions that affect proinflammatory and

transcriptional networks inside the tissue.

Spatial transcriptomics analysis was used to solve the problems

mentioned above. Mitamura et al. have shown that in AD skin,

COL6A5, COL4A1, TNC, and CCL19 are increased in COL18A1+

fibroblasts in the leukocyte-infiltrated areas through spatial

transcriptomics analysis (54). Consistent with previous research,

COL18A1+ fibroblasts are grown across the whole dermal. However,

the activated COL18A1+ fibroblasts are particularly localized in the

leukocyte-infiltrated area in lesional skin and colocalized with LAMP3+

DCs (54). In AD lesions, the interaction between CCL19 produced by

the inflammatory COL6A5+ COL18A1+ fibroblasts subpopulation and

CCR7 on T cells and LAMP31 DCs is critical for regulating lymphoid

cell organization and trafficking. The type 2 chemokine CCL2 was

abundantly expressed by inflammatory fibroblasts, which may regulate

macrophages and DC functions. On the contrary, lesional T cells highly
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expressed the key type 2 cytokine IL13, signaling via IL4R and IL13RA1

on fibroblasts (13).
3.3 Dermal fibroblasts in vitiligo

Vitiligo is the most common acquired autoimmune

depigmented skin disorder and affects approximately 0.5–2% of

the population worldwide (55, 56). Thus far, dermal fibroblasts have

been acknowledged for regulating epidermal pigmentation (57) and

regulating CD8+ T cells in vitiligo (10).

Recently, through the use of scRNA-seq on primary human

dermal fibroblasts, Xu has identified a subpopulation of IFNg-
responsive fibroblasts that are uniquely responsible for recruiting

and activating CD8+ cytotoxic T cells by secreting chemokines such

as CXCL9 and CXCL10 (11, 58). Meanwhile, recent evidence

suggests that type 2 cytokines such as CCL2 and CCL8 are pivotal

in shaping the vitiligo microenvironment (59). An in vitro

experiment demonstrated that IFN-g stimulation increased the

expression of CCL2 and CCL8 by activating the JAK-STAT

pathway in vitiligo fibroblasts (12).

Notably, IFN-g elicits varying responses in fibroblasts derived

from distinct skin regions (11). Yokoi et al. noticed that skin tension

in lesional skin was more apparent than in perilesional skin of

vitiligo patients (60). In another study, Rani et al. demonstrated an

increased expression of collagen type 1 in the lesional skin of vitiligo

patients (61). Instead, the expression of collagen type IV,

fibronectin, elastin, and adhesion components was considerably

lower in the lesional skin of non-segmental vitiligo (NSV) patients

(61). Zou et al. found that fibroblasts from vitiligo patients

significantly express occludin, suggesting its potential function in

the continuous retention of CD8+ T cells within the lesions (62).

Consequently, the secretion of ECM by fibroblasts exhibits regional

variations, potentially contributing to the disparate incidence of

vitiligo across different anatomical regions.

Oxidative stress is one of the most essential causes of vitiligo,

which leads to the loss of melanocytes and dysfunction offibroblasts

(63). Recent studies have revealed that fibroblasts were associated

with the occurrence of oxidative stress in the damage of vitiligo.

Yokoi et al. discovered that anti-oxidative action and collagen

production were upregulated and collagen degeneration was

attenuated in the vitiligo dermis. Furthermore, the expression

levels of collagen-related genes and anti-oxidative enzymes were

upregulated in vitiligo-derived fibroblasts (60, 61). Despite available

data indicating a potential association between fibroblast-produced

ECM and vitiligo, further investigation is required.

Indeed, oxidative stress leads to increased metabolic

dysregulation and autophagy in melanocytes and fibroblasts.

Kovacs discovered that non-lesional vitiligo fibroblasts display

increased basal ROS levels associated with the upregulation of the

stress-induced marker p53 (64). The authors proposed that

autophagy in melanocytes and fibroblasts from non-lesional

vitiligo skin is part of a broader metabolic program and may

serve as a compensatory/protective response to intrinsic metabolic

vulnerability. Inhibition of autophagy exacerbates the dysfunction

of vitiligo fibroblasts (65). In addition, Peng has revealed that
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Lycium barbarum polysaccharide (LBP) protected keratinocytes

and fibroblasts against oxidative stress. It was speculated that this

protective effect might be attributed to regulating the STAT3-

Hsp70-CXCL9/CXCL10 pathway (66).
3.4 Dermal fibroblasts in scleroderma

Scleroderma (Systemic sclerosis, SSc) is a chronic multisystem

autoimmune disease with high mortality rates (67). At present,

dysregulation of fibroblast, increasing ECM, and immune system

abnormalities have long been recognized in SSc. Previous studies

have demonstrated diverse fibroblasts in SSc exhibited distinct gene

expression modules and functions (15).

Cytokines secreted by fibroblasts play an important role in SSc

(68). TNF-a stimulation led to an upregulation of MMP-1 secretion

by fibroblasts subsequently reversed upon IL-13 treatment (69). A

recent study showed that IL-22R expression was enhanced in

dermal fibroblasts, and IL-22 treatment enhanced fibroblast

responses to TNF-a and promotes a proinflammatory fibroblast

phenotype by facilitating TNF-induced keratinocyte activation (70).

Meanwhile, type I IFNs enhanced the inflammatory potential of the

dermal fibroblast by upregulation of TLR3 and activated its

downstream responses (71). Experimental evidence demonstrated

that interferon regulatory factor 7 (IRF7), a pivotal regulator of type

I interferon signaling, was upregulated in SSc skin, interacted with

Smad3, and enhanced TGF-b-mediated fibrosis (72). In animal

models of skin fibrosis through TGF-b-dependent pathways, IL-
17A has been implicated as a profibrotic mediator that promotes

collagen deposition (73). In addition, fibroblasts activated by IL-17

support the growth and differentiation of immune cells (74).

Fukasawa has revealed that brodalumab could potentially reduce

dermal fibrosis by directly inhibiting the action of IL-17 on

fibroblasts (75). Interestingly, in the SSc mouse model, IL-23

from topo I-reactive B cell exacerbated fibrosis (76). In clinical

trials, three cases of psoriasis complicated by SSc were treated with

guselkumab, an IL-23 inhibitor, and were found to have therapeutic

effects on both PsV and SSc (77). Thus, biologics targeting IL-17 or

IL-23 may be effective against SSc. Denton showed that endothelial

cells-derived cytokines, such as IL-1 and bFGF, modulated

fibroblast characteristics. Moreover, lesional scleroderma strains

exhibit heightened susceptibility to regulation induced by

endothelial cells compared to control fibroblasts (78).

Since long, a-smooth muscle actin (aSMA) myofibroblast is the

main type of cells promoted fibrosis in SSc (79). Tabib et al. showed

that only a fraction of SFRP2hi SSc fibroblasts differentiate into

myofibroblasts, which expressed SFRP4 and FNDC1 (16). Recently,

Gur and Wang reported a LGR5+ fibroblast subtype which might

be the hub of SSc (15). Like other LGR5-expressing mesenchymal

cells, the SSc-related LGR5+ fibroblast was important for

coordinating the correct tissue organization and homeostasis (80).

In contrast, Clark reported that MGST1+CCN5+ fibroblasts had the

highest expression of LGR5 in healthy control and later stage of

diffuse cutaneous systemic sclerosis (81). Thereby, regulation the

function of different fibroblast subsets holds potential as an

appealing therapeutic target for systemic sclerosis.
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4 Conclusion

The last several decades have seen remarkable progress in

comprehending the role of fibroblasts in both physiological and

pathological conditions within the skin. The field has progressed

from phenotypic studies of cultured cells performed more than a

century ago to complex genetic and functional observations in vivo

that have been facilitated by new methods and techniques. These

advances have revealed unexpected similarities and unique

characteristics of fibroblasts across diverse autoimmune skin

diseases, such as psoriasis, AD, vitiligo, and scleroderma, that are

currently being leveraged for the treatment of these diseases.
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