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Bouherrou, Tonon, Pommier, Ferrari, Klein,
Wencker, Baud, Cassier and Grinberg-Bleyer.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 05 March 2024

DOI 10.3389/fimmu.2024.1379777
The NF-kB RelA transcription
factor is not required for CD8+
T-cell function in acute viral
infection and cancer
Allison Voisin1, Maud Plaschka1,2, Marlène Perrin-Niquet1,
Julie Twardowski1, Insaf Boutemine1, Baptiste Eluard3,
Guilhem Lalle1, Pierre Stéphan1, Khaled Bouherrou1,
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CD8+ T cells are critical mediators of pathogen clearance and anti-tumor

immunity. Although signaling pathways leading to the activation of NF-kB
transcription factors have crucial functions in the regulation of immune

responses, the CD8+ T cell-autonomous roles of the different NF-kB subunits,

are still unresolved. Here, we investigated the function of the ubiquitously

expressed transcription factor RelA in CD8+ T-cell biology using a novel

mouse model and gene-edited human cells. We found that CD8+ T cell-

specific ablation of RelA markedly altered the transcriptome of ex vivo

stimulated cells, but maintained the proliferative capacity of both mouse and

human cells. In contrast, in vivo experiments showed that RelA deficiency did not

affect the CD8+ T-cell response to acute viral infection or transplanted tumors.

Our data suggest that in CD8+ T cells, RelA is dispensable for their protective

activity in pathological contexts.
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Introduction

NF-kappaB (NF-kB) is a family of transcription factors with

pleiotropic functions in inflammation and immunity. The family

comprises 5 subunits that share a Rel-homology domain. RelA (also

known as p65, encoded by Rela), c-Rel and NF-kB1 are activated

upon stimulation of the canonical signal transduction pathway,

whereas RelB and NF-kB2 are the terminal effectors of the non-

canonical (or alternative) pathway (1).

The canonical NF-kB pathway can be activated in T cells

following engagement of T-Cell Receptor (TCR)/CD28, different

members of the Tumor Necrosis Factor Receptor Superfamily

(TNFRSF) and CD28 families, as well as several cytokine

receptors, that all lead to the formation of the activating Inhibitor

of KappaB Kinase (IKK)a/b/g complex, allowing degradation of the

inhibitor IkBa/b and subsequent nuclear translocation of NF-kB
subunits (2). NF-kB dimers then bind to DNA to repress or activate

transcription. The canonical pathway has been implicated in

various aspects of T-cell biology, ranging from thymic

development to effector functions (3).

Among T-cell subsets, cytotoxic CD8+ T cells which are critical

mediators of anti-tumor and anti-pathogen immunity, have been

proposed to rely on NF-kB activity at different levels, including

activation, survival, proliferation, or cytokine expression (3–7).

Nevertheless, the CD8+ T-cell-autonomous roles of NF-kB
subunits, are incompletely understood. Indeed, whereas RelA is

ubiquitously expressed and known as a quick and critical mediator

of gene expression following stimulation, knowledge on its

functions in CD8+ T cells is scarce. This is largely due to the

embryonic lethality of mice with germline ablation of Rela (8). In

mice, overexpression of a dominant-negative mutant form of Rela

impaired CD8+ T-cell survival, as well as EOMES expression in

memory T-cells (9, 10). Elegant studies have also demonstrated a

direct function of RelA in IFNg production and proliferation, in

mouse and human CD8+ T-cells, respectively (11, 12). In patients

with heterozygous, dominant negative loss-of-function (LOF)

mutations in RELA, decreases in circulating central memory

CD8+ T cells were reported (13, 14), although this was not

confirmed in another cohort of patients (15). However, whether

RelA is intrinsically required to orchestrate CD8+ T-cell gene

expression and function in vivo, is unknown. Herein, we

selectively ablated Rela in CD8+ T cells using a novel mouse

model and engineered human cells, in order to investigate its

putative roles ex vivo and in disease contexts.
Materials and methods

Mice

Rela-Floxed (B6.129S1-Relatm1Ukl/J) mice were previously

described (16). CD8cre (C57BL/6-Tg(Cd8a-cre)1Itan/J) were a gift

from Ichiro Taniuchi (RIKEN Center for Integrative Medical

Sciences, Japan) (17). CD4cre (Tg(CD4-cre)1Cw1) on a C57Bl/6 J

background were purchased from the Jackson Laboratory. Rag2–/–
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and C57Bl/6 CD45.1 (Ptprca Pepcb/BoyJ) mice were purchased from

Charles River Laboratories France. Mice were bred and used in

specific-pathogen-free (SPF) conditions at the CRCL animal facility

(P-PAC) or the Ecole Normale Supérieure de Lyon BSL-2 facility

(PBES, for LCVM experiments only). Animals were housed in

individually ventilated cages with temperature-controlled

conditions under a 12-h-light/dark cycle with free access to

drinking water and food. Adult (6- to 30-week-old) male or

female mice were used for all experiments. Studies were

conducted in accordance with the animal care guidelines of the

European Union and French laws. Protocols were validated by the

local Animal Ethics Evaluation Committee (C2A15). Project

references were #16772, 30346 and 43605.
Human subjects

Blood samples from healthy volunteers were obtained through

the Etablissement Français du Sang (EFS) (French Blood

Transfusion Society).
Tumor cell lines, transplantation
and immunotherapy

MC-38 cells were a gift from Benoit Salomon (Paris, France).

B16-F10 cells were purchased from the American Tissue Culture

Collection (ATCC, catalog ##6475). BrafV600EPten-/- (Braf-Pten)

cells were a gift from Julie Caramel (CRCL, Lyon, France). Cell lines

were maintained in DMEM (Gibco, catalog #61965059)

supplemented with 10% Fetal Bovine Serum (FBS, Thermo Fisher

Scientific, catalog # 10437028) and Penicillin/Streptomycin (Gibco,

catalog #15140-122). 2×105 MC38 or B16-F10 or 4×105 Braf-Pten

cells diluted in 50 µL sterile PBS1X were injected subcutaneously

into the shaved flank back of each mouse. After seven days, tumor

size was monitored every two or three days with a Caliper. Tumor

volume was obtained by using the formula: Width2 x Length. Anti-

PD-L1 (Clone: 10F.9G2, catalog #BP0101) and isotype control

mAbs (catalog #BP0090) were obtained from BioXCell. Mice

received intraperitoneal injections of 200 µg of mAb diluted in

PBS1X at D7, 9 and 11.
Mixed bone marrow chimeras

Bone marrow cells were retrieved from tibia and femur of donor

mice. Red blood cells were lysed with Ammonium-Chloride-

Potassium lysis Buffer and enumerated. 1/3 WT CD45.1 bone

marrow and 2/3 CD45.2 bone marrow of interest (CD4cre or

CD4cre Relaflox/flox) were mixed to prepare bone marrow

solutions. After sub-lethal irradiation (7 Gy), recipient mice were

transplanted intravenously (retro orbital sinus) with 10×106 bone

marrow cells. Mice were given Neomycin (200 ng/mL, Sigma

catalog #N6386) in drinking water for ten days. 8 weeks after

reconstitution tissues were harvested for subsequent analyses.
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LCMV Armstrong infection and
measurement of viral titers

Mice were infected via intraperitoneal injection of 2x105 PFU

LCMV Armstrong (a gift from Julien Marie, CRCL, France). Virus

stocks were prepared using BHK21 cells, and titrated on Vero.E6

cells, following published protocols (18). Animals were weighed

every other day and euthanized 10 days post infection. Spleens and

livers were harvested and snap frozen in liquid nitrogen. Tissues

were dissociated using ceramic beads (CK14, Ozyme catalog

#OZYME003-100) and a PreCellys homogenizer, directly in lysis

buffer from the Nucleospin RNA kit (Macherey-Nagel, catalog

#740955.250). RNA was subsequently extracted following the

manufacturer’s protocol. cDNA was synthesized using the iScript

cDNA synthesis kit (BioRad, catalog #1708891). qPCR was done

using a SybrGreen iTAQ kit (BioRad, catalog #1725124) on a

CFX96 instrument (Biorad). The following primers were used:

LCMV NP-F: CAGAAATGTTGATGCTGGACTGC; LCMV NP-

R: CAGACCTTGGCTTGCTTTACACAG; LCMV GP-F: CAGA

CCTTGGCTTGCTTTACACAG, LCMV GP-R: GCAACTGCTG

TGTTCCCGAAAC; RPLPO-F: GGACCCGAGAAGACCTCCTT;

RPLPO-R: GCACATCACTCAGAATTTCAATGG (19).
CRISPR/Cas9 gene editing in human T cells

Peripheral blood mononuclear cells were separated using Ficoll

density gradient centrifugation (Eurobio, catalog #CMSMSL0101),

and red blood cells were eliminated using Ammonium-Chloride-

Potassium lysis buffer. Naive CD8+ T cells were isolated with the

EasySep Human Naive CD8 T cell Isolation kit II (Stemcell, catalog

#17968), following the manufacturer’s instructions. After

enumeration, cells were cultured for 3 days at a concentration of

1x106 cells/mL in complete RPMI 1640 W/HEPES W/

GLUTAMAX-I (supplemented with 10% FBS, Penicillin/

Streptomycin, Non-Essential Amino Acids, Sodium Pyruvate, and

b-Mercaptoethanol, all from Gibco, catalog #72400054, 15140-122,

11140035, 11360039, 31350010, respectively), along with human IL-

2 (50U/mL, Proleukin, Novartis Pharma) and Dynabeads CD3/

CD28 (Thermo Fisher, catalog #11131D, at a ratio of 1 bead for 2 T

cells). Ribonucleoprotein (RNP) complexes were prepared by

combining crRNA (IDT, catalog #1072544), ATTO550-tracrRNA

(IDT, catalog #1075928), CAS9 (TrueCut v2 cas9, Thermo Fisher,

catalog # A36499), and electroporation enhancers (IDT, catalog

#1075916) at equimolar concentrations in a final solution of 7.5

nmol/mL. crRNA sequences: RELA#1: TGCCAGAGTTTCG

GTTCACT, RELA#2: AGCTGATGTGCACCGACAAG. The

crRNA and tracrRNA were incubated at 95°C for 5 min followed

by 15 min at 37°C before adding CAS9. The solutions were then

incubated for 15 min at 37°C. Finally, an electroporation enhancer

was included in the mix. Dynabeads were removed, cells were

washed, and then suspended at 14x106 cells/mL in Buffer T (Neon

transfection system, Thermo Fisher, catalog #MPK10096). Cells

were combined with RNP complexes so that 1.3x106 cells could be

electroporated in a 100 mL Neon Tip with 50 pmol of RNP.
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Electroporation was performed using the Neon transfection

system with the following parameters: 1600V, 10 ms, 3 pulses.

Subsequently, cells were transferred into 1.9 mL complete RPMI

with IL-2 (20 U/mL) and Dynabeads CD3/CD28 (1 bead for 4 T

cells). Cells were cultured for 3 days, washed, and stained with

DAPI (Cell Signaling Technologies, catalog #4083S) in FACS buffer.

DAPI- ATTO550+ cells were sorted using a FACS ARIA II

cytometer and used for subsequent assays.
In vitro culture assays

Human T cells
Following sorting, human CD8+ T cells were left to rest for 2

days in complete RPMI with IL-2 (Proleukin, Novartis Pharma, 50

U/mL). Cells were then labeled using the CellTrace Violet Cell

Proliferation Kit (CTV; Thermo Fisher Scientific, catalog

#C34557A) and 2x104 cells were stimulated with Dynabeads anti-

CD3/CD28 (1 bead:4 T cells, Thermo Fisher Scientific) in complete

RPMI with IL-2 (25 U/mL). After 4 days of culture, supernatants

were harvested and stored at -80°C until further use and

proliferation and cytokine expression were assessed by FACS.

Murine T cells
Naïve CD8+ T cells were negatively isolated using the Naïve

CD8+ T Cell Isolation Kit (Miltenyi Biotec, catalog #130-096-543)

according to the manufacturer’s instructions. Cells were labeled

using the CellTrace Violet Cell Proliferation Kit (CTV; Termo

Fisher Scientifc) and 5x104 cells were stimulated with coated

aCD3 (0.2 to 5 µg/mL, BioXCell clone 145-2C11, catalog

#BE0001-1) and aCD28 (0.08 to 2 µg/mL, BioXCell clone 37.51,

catalog #BE0015-1) antibodies in complete RPMI with murine IL-7

(2.5 ng/mL, Peprotech, catalog #217-17) +/- murine IL-2 (5 ng/mL,

Miltenyi Biotec, catalog #130-120-332). After 4 days of culture,

supernatants were harvested and stored at -80°C until further use

and proliferation and cytokine expression were assessed by FACS.
Preparation of cell suspensions

Single cell suspensions from LN, thymus and spleens were

obtained by mechanical dilaceration in FACS Buffer (PBS 1X +

2% FBS, 2 mM EDTA) with glass slides, strained and washed in

complete RPMI.

After being sliced in small pieces tumors were digested in RPMI

1640 (Gibco) supplemented with 1 mg/mL collagenase type IV

(Sigma-Aldrich, catalog #C2674) and 250 µg/mL DNase I (Sigma-

Aldrich catalog #DN25) for 25 min at 37°C followed by mechanical

dissociation. Reaction was stopped by the addition of 15 mL PBS1X

containing 5 mM EDTA. The solution was filtered through a 70 mm
cell strainer, and any remaining solid pieces were mechanically

disrupted. After centrifugation, cell pellets were resuspended in 8

mL of Percoll 40% (Sigma-Aldrich, catalog #17-08-91-01) and then

carefully layered onto 4 mL of Percoll 80% in a 15 mL

polypropylene tube. Tubes were centrifuged at 2,500 rpm for 20
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min at RT. Mononuclear cells were retrieved from the interface of

the 40:80% Percoll gradient and washed in complete RPMI.
Flow cytometry

Cells were washed in PBS1X and incubated with purified anti-

CD16/CD32 (Biolegend, catalog #101302) and a viability marker

for 10 min at RT in the dark. After a wash in PBS1X cells were

incubated with the surface marker antibody mix in FACS Buffer

(PBS1X, 2% FBS, 2 mM EDTA) for 20 min at 4°C in the dark. Cells

were then washed in FACS buffer and fixed and permeabilized using

the eBioscience Foxp3/Transcription Factor Staining Buffer Set

(Thermo Fisher Scientific, catalog #00-5523-00) according to the

manufacturer’s instructions. Cells were washed in permeabilization

buffer and incubated with the intracellular marker antibody mix for

20 min at 4°C in the dark. Cells were then washed in

permeabilization buffer and resuspended in FACS buffer. At

times, biotin-coupled antibodies were employed. In such

instances, an additional stage of staining with fluorochrome-

coupled streptavidin was required (in FACS buffer for cell surface

labeling or wash buffer for intracellular labeling).

For intracellular cytokine analyses, cell suspensions were

incubated 3 h with 50 ng/mL PMA (Sigma, catalog #P8139), 1

mg/mL ionoymycin (Sigma, catalog #I0634) in the presence of 1X

Protein Transport Inhibitor containing Brefeldin A (BD GolgiPlug,

catalog #555029) prior to staining, as mentioned above.

NP396-404 PE and GP33-41 APC class I tetramers were

obtained through the NIH tetramer facility. The complete list of

antibodies can be found in Supplementary Table 1. Acquisition was

performed on a LSR Fortessa (BD Biosciences) or an Aurora

spectral cytometer (Cytek Bioscience). Data were analyzed with

FlowJo software v10.9.0.
RNA-sequencing and analyses

RNA from 0.25 to 1x106 CD8+ T cells was isolated with

Nucleospin RNA extraction kits (Macherey Nagel, catalog

#740955.250); libraries were prepared using an Illumina TruSeq

Library Kit and sequenced with an Illumina NovaSeq instrument.

Reads were aligned on reference genomes (mm10 for mouse data,

GRCh38 for human data) using the STAR universal RNA-seq

aligner; DEGs were calculated with DESeq2. Heatmaps were

created with Morpheus (Morpheus (broadinstitute.org)). For

functional enrichment analyses, we used the enricher function

(default parameters) from the clusterProfiler package v4.2.2 to

perform hypergeometric tests for functional enrichment analysis.

Only down-regulated genes were used as the input, and the

universe/background was defined as all detected genes in our

RNA-Seq. The human hallmark, C2 and GOBP (C5:BP) gene sets

were retrieved from the Molecular Signatures Database [MSigDB

(20)] using the msigdbr function and package v7.4.1 Finally, we

applied the Benjamini-Hochberg method to control false

discoveries in multiple hypothesis testing.
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ELISA

ELISA were performed using “Mouse IL-2 ELISA MAX Deluxe

Set”, “Mouse IFN-g ELISA MAX Deluxe Set”, “Mouse TNF-a

ELISA MAX Deluxe Set”, “Human IL-2 ELISA MAX Deluxe Set”,

“Human IFN-g ELISA MAX Deluxe Set”, “Human TNF-a ELISA

MAX Deluxe Set” (Biolegend, catalog #431004, 430804, 430904,

431815, 430104 and 430204) and “mouse GZM-B DuoSet ELISA”,

“human GZM-B DuoSet ELISA” (R&D Systems, catalog # DY1865-

05 and DY2906-05) following the manufacturer’s instructions.
Western blot

Total lysates were extracted using RIPA buffer (Invitrogen,

catalog #89900) supplemented with protease and phosphatase

inhibitors. Proteins were denatured for 5min at 95°C in Laemmli

buffer (containing 9% SDS and 9% b-mercaptoéthanol), loaded on

10% polyacrylamide gel (Biorad, catalog #456-1035) and transferred

onto PVDF membranes (Biorad, catalog #1704157) using a

TransBlot Turbo apparatus (BioRad, catalog #1704150).

Membranes were blocked with TBS1x-Tween 0.1% - milk 5% for

1 h at room temperature (RT) and then incubated overnight at 4°C

with primary antibodies (see Supplementary Table 1). Membranes

were washed 3 times for 10 min in TBS 1x-Tween 0.1% and

incubated with corresponding HRP-coupled secondaries

antibodies for 1 h at RT. Finally, membranes were washed 3

times for 10 min in TBS 1x-Tween 0.1% and detection was

performed using the Immobilon Classico Western HRP substrate

or the Immobilon Forte Western HRP substrate (Merck, catalog

#WBLUC0500 and WBLUF0500).
Statistics

Statistical analyses were performed using GraphPad Prism

Software v9 (https://www.graphpad.com/scientific-software/prism/).

For FACS data and tumor weights, two-tailedMann-Whitney tests or

paired T-tests (when 2 groups) and Kruskall-Wallis followed by

Dunn’s post-test (when more than 2 groups) were used to calculate

statistical significance. For tumor volume 2-way ANOVA followed by

Bonferroni-Dunn’s post-test (when more than 2 groups), and two-

tailed Mann-Whitney test (when only 2 groups) were used.
Results

RelA orchestrates mouse CD8+ T cell
activation and gene expression at
steady-state

To investigate the T-cell autonomous functions of RelA, we used

mice carrying floxed alleles of Rela, which we crossed with CD4cre

mice, resulting in the deletion of the gene across all T-cell subsets and

the concomitant expression of green fluorescent protein (GFP) (16).
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In order to avoid indirect perturbations in CD8+ T cells that may rely

on a role of RelA in other T-cell subsets, and thus specifically study

the intrinsic functions of Rela within CD8+ T cells, we conducted

mixed bone marrow (BM) transfer experiments of WT CD45.1+ cells

and CD4cre (control) or CD4creRelaF/F (Rela-cKOT) CD45.2+ cells

(Figure 1A). Flow cytometry analyses performed 8 weeks after BM

transfer, showed that the distribution of thymocyte subsets was

similar regardless of the genotype (Figure 1B). Interestingly,

analysis of secondary lymphoid organs unveiled a slight

competitive disadvantage for Rela-cKO CD8+ T cells (Figure 1C).

Among CD8+ T cells, a decline in CD44high activated cells was

detected in the absence of RelA compared to controls; however,

proliferation, illustrated by Ki67 expression, remained unchanged
Frontiers in Immunology 05
(Figure 1D). As NF-kB signaling has been linked to the production of

inflammatory cytokines by immune cells, we explored cytokine

expression upon PMA-ionomycin restimulation in vitro. We

observed a dramatic decrease in the proportion of IFNg, TNFa and

IL-2-expressing Rela-deficient CD8+ T cells, in the spleen and, to a

lesser extent, in LN compared to controls. In contrast, Granzyme B

expression was similar between groups (Figure 1E). These data were

corroborated by measuring cytokine levels in culture supernatants of

sorted CD8+ T cells showing decreased concentrations of IFNg,
TNFa and IL-2 (Figure 1F).

Seeking deeper insights into the role of RelA in regulating global

gene expression, we conducted RNA-sequencing analyses on both

control and mutant CD8+ T cells that were stimulated with anti-CD3/
A B D

E

F G

I

H

C

FIGURE 1

RelA shapes the transcriptome of mouse CD8+ T cells at steady-state. (A) Schematic representation of the experimental mixed bone-marrow
chimera model used. (B-E) Thymus, spleen and LN cells were analyzed by flow cytometry. (B) Proportion of CD4-CD8- (DN),CD4+CD8+ (DP), CD4-

CD8+ (CD4SP), and CD4-CD8+ (CD8SP) among live CD45.2+ cells. (C) Proportion of CD45.2+TCRb+CD4-CD8+ T cells among total live cells.
(D) Proportion of CD44high and Ki67+ in CD45.2+TCRb+CD4-CD8+ T cells (E) Proportion of cytokines positive cells among CD45.2+ CD8+ T cells
after PMA-ionomycin restimulation. (F) ELISA analysis of supernatants from FACS-sorted CD45.2+ CD8+ T cells after 24 h of anti-CD3/CD28
stimulation (G-I) RNA-seq analysis of CD45.2+ CD8+ T cells sorted from spleen and LN and stimulated for 4 h with anti-CD3/CD28 and IL-2.
(G) Volcano Plot of differentially-expressed genes (DEGs). Number of DEGs up- or downregulated with a 1.5- and 2-fold change are indicated
(q<0.005). (H) Functional enrichment analysis on down-regulated genes in Rela-KO CD8+ T cells. Representative signatures are shown. (I) Heatmaps
of selected DEGs. FACS and ELISA data are shown as mean ± SEM of 2 independent experiments; each dot represents a mouse; Mann-Whitney tests
were used. RNA-seq data are from 4 independent samples.
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CD28 and IL-2 for 4 h. Differential gene expression analyses

highlighted substantial changes in the transcriptome of Rela-cKOT

CD8+ T cells, with 293 genes significantly up- or down-regulated when

applying a fold change cut-off of 2. This number increased to 493 genes

when the cutoff was reduced to 1.5 (Figure 1G, Supplementary

Table 2). Of note, most differentially expressed genes (DEGs) were

underrepresented in Rela-deficient conditions, supporting a

transcription-promoting function of this NF-kB subunit. Functional

enrichment analysis of down-regulated genes with Gene Ontology

Biological Processes (GOBP), Hallmarks and canonical pathways

revealed a number of differentially enriched pathways, including NF-

kB-related pathways as well as T-cell activation or response to virus

(Figure 1H). When looking at specific gene expression, we found

massive down-regulation in NF-kB pathway-related transcripts,

including negative regulators (Nfkbia, Tnfaip3), but also NF-kB
subunits themselves (with the exception of Rel), establishing the apex

function of RelA in the regulation of NF-kB-driven genes.

Furthermore, genes involved in T-cell function (Ifng, Il2) or

maturation (Tbx21, Eomes) were down-regulated in Rela-deficient

cells. Surprisingly, the top enriched pathways were related to IFN

signaling, as the expression of many Interferon-Stimulated Genes

(ISGs) was dampened in the absence of Rela (Figure 1I). Although it
Frontiers in Immunology 06
cannot be excluded that this phenotype stems from the reduced

expression of Ifng itself, this confirms that, as proposed in other cell

types, the NF-kB and IFN pathways are strongly interconnected.

Taken together, these observations establish RelA as a critical

regulator of the CD8+ T-cell phenotype and transcriptome

following polyclonal stimulation.
T-cell distribution is unaffected in mice
with CD8+ T-cell-restricted ablation
of Rela

Next, to explore with greater specificity the CD8+ T-cell-

autonomous functions of RelA, we crossed mice carrying Rela-foxed

alleles withmice expressing Cre recombinase driven by a combination

of the core E8I enhancer and the Cd8a promoter (called CD8cre in the

manuscript) (17). This allowed the conditional ablation of Rela and

concomitant expression of GFP in peripheral CD8+ T cells (hereafter

named Rela-cKOCD8 for conditional knock-out mice) (Figure 2A).

Flow cytometric analyses performed on adult control and cKO

animals revealed that the distribution of CD8+ T cells in the

thymus, spleen and peripheral lymph nodes was similar between
A B

D

E

C

FIGURE 2

T-cell homeostasis in mice with CD8+ T-cell restricted ablation of Rela. (A) Western blot validation of RelA ablation in Rela-cKOCD8 CD8+ T cells.
(B-E) Spleen and peripheral LN from control and Rela-cKOCD8 mice were analyzed by flow cytometry. (B) Proportion of live TCR-b+CD8+ cells in
peripheral tissues (right) and CD4-CD8-(DN), CD4+CD8+ (DP) CD4+CD8- (SP CD4) and CD4-CD8+ (SP CD8) in the thymus (left) among live cells.
(C) Proportion of Ki67+ in CD8+ T cells. (D) Representative dot plots in the spleen and cumulative data of CD44 and CD62L expression in spleen and
LN CD8+ T cells. TCM: T central memory; TEM: T effector memory. (E) Cytokine expression by CD8+ T cells following PMA/ionomycin restimulation,
measured by FACS. Data are shown as mean ± SEM of 3-5 independent experiments; each dot represents an individual mouse; Mann-Whitney tests
were used.
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genotypes (Figure 2B). Moreover, levels of in vivo activation and

proliferation, assessed by the expression of Ki67, CD44 and CD62L,

were unaltered upon Rela ablation (Figures 2C, D). Following

polyclonal stimulation with PMA and ionomycin, the percentage of

IFNg-producing CD8+ T-cells (but not TNFa, GzmB or IL-2) was

reduced in Rela-cKOCD8 mice (Figure 2E). Hence, CD8+ T-cell-

restricted Rela ablation did not strongly impact steady-state

homeostasis and function of T cells, suggesting that the strong

impairment in T-cell homeostasis detected in Figure 1 likely relied

on the competitive environment of mixed BM chimeras.
Cytokine expression following in vitro
culture of CD8+ T cells is altered in the
absence of RelA

Next, we assessed the impact of Rela ablation on CD8+ T cell

responses in vitro. Naïve CD8+ T cells isolated from the spleen and LN

of control and Rela-cKOCD8 mice, displayed similar levels of

proliferation following 4 days of CD3/CD28 stimulation, in the

presence or absence of IL-2 (Figures 3A, B). In contrast, we observed

a dramatic impact of Rela ablation on the ability of CD8+ T cells to

produce inflammatory cytokines, as illustrated by the reduction in the

percentage of IFNg- and TNFa-expressing cells as well as the quantity
of secreted IFNg, TNFa and GzmB in Rela-deficient cells compared to

control (Figures 3C, D). RelA thus appears to exert critical functions in

cytokine expression upon long-term TCR/CD28 engagement.
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RELA contributes to human CD8+ T-cell
identity and functions in vitro

Although a few patients with RELA loss-of-function mutations

have been reported, its cell-autonomous roles within human CD8+

T cells are unknown. We established a CRISPR-Cas9

Ribonucleoprotein electroporation protocol to ablate RELA in in

vitro stimulated primary human CD8+ T cells from healthy donors

(Figure 4A). RELA (encoded by RELA) ablation was verified by

Western blotting and exceeded 80% (Figure 4B). We first analyzed

the gene expression profiles of both normal and KO cells through

RNA-sequencing after 4 h of re-stimulation with anti-CD3/CD28

and IL-2. Loss of RELA resulted in significant changes in the

expression of 322 genes (Fold change >1.5, q-value <0.005)

(Figure 4C, Supplementary Table 2). Consistent with mouse cells,

enrichment analyses on down-regulated genes showed that RELA

governed, in human CD8+ T cells, the expression of genes

associated with the NF-kB pathway (NF-kB subunits and

negative regulators of the pathway), markers of function, and

cytokines, especially the response to type I and type III IFNs

(Figures 4D, E). Thus, RELA controlled different aspects of

human CD8+ T cell biology, suggesting a CD8+ T-cell-intrinsic

role for RELA in the immunodeficiency features detected in patients

with RELA LOF (13–15). After 4 days of stimulation with anti-CD3/

28, a similar level of proliferation was observed in control and

RELA-deficient cells, in accordance with our data from mouse

experiments (Figure 4F). Flow cytometry and ELISA analyses
A B
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FIGURE 3

In vitro features of Rela-deficient CD8+ T cells. Naïve CD8+ T cells isolated from spleen and LN of control and Rela-cKOCD8 were stained with the
CellTrace Violet Cell Proliferation Kit (CTV) and cultured with the indicated doses of anti-CD3/CD28 mAbs supplemented with IL-7 or IL-7 + IL-2 for
4 days and their phenotype was analyzed by FACS and ELISA. (A, B) Representative CTV profile (left) and cumulative proliferation index of live cells
(right). (C) Representative CTV profile (left) and cytokine expression after PMA-ionomycin restimulation (right), measured by FACS. (D) ELISA analysis
of culture supernatants. (A, B) Data are shown as mean ± SEM of 4 experiments; Mann-Whitney tests were used. (C, D) each dot represents an
individual mouse from 4 independent experiments; multiple paired t-tests were used. (D) Rela-cKO samples are normalized against control samples
from the same experiment.
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showed a reduction in the expression of IFNg-producing cells in

RELA-deficient cells compared to control, while the expressions of

TNF-a- or GZMB remained unaltered (Figures 4G, H).

These results reinforce the role of RELA in shaping the

transcriptome and functions of CD8+ T cells both in humans

and mice.
Rela is dispensable for CD8+ T-cell
responses during acute LCMV infection

Our RNAseq data suggested altered expression of genes related

to the response to viral infections in both mouse and human Rela-
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deficient CD8+ T-cells. To directly assess the contribution of RelA

to CD8+ T-cell-directed antiviral responses, we infected control and

Rela-cKOCD8 mice with the Armstrong strain of lymphocytic

choriomeningitis virus (LCMV) that induces a strong, acute and

well-defined T-cell response. Ten days post infection, the viral load,

assessed by qPCR quantification of LCMV-glycoprotein (GP) and

nucleoprotein (NP) encoding mRNAs, in the spleen and liver of

infected mice was comparable between genotypes (Figure 5A). We

also assessed the accumulation and phenotype of LCMV-specific

CD8+ T cells in the spleen, using tetramers against both GP33-41
(GP33) and NP396-404 (NP396), by flow cytometry. The proportion

of CD8+ T cells with either specificity, was unaltered in the absence

of Rela (Figure 5B). Accordingly, the gross distribution of naïve/
A
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FIGURE 4

The roles of RELA in human CD8+ T cells. (A) Schematic representation of the experimental protocol. Created with BioRender.com (B) Western blot
validation of gene editing efficacy after sorting of ATTO550+ live cells (C-E) RNA-seq analysis of 6 independent donors following 4 h stimulation
with anti CD3/CD28 and IL-2. (C) Volcano Plot of 322 DEGs (log2 fold change >1.5, q < 0.005). (D) Heatmaps of selected DEGs. (E) Functional
enrichment analysis on down-regulated genes. Representative signatures are shown. (F-H) RELA-edited CD8+ T cells were sorted and left to rest for
two days and then labeled with CTV and stimulated 4 days with anti-CD3/CD28 and IL-2. (F) Representative CTV profile (left) and proliferation index
of live cells from 11 donors/independent experiments. (G, H) Cytokines were analyzed by FACS after PMA-ionomycin restimulation (G) or in culture
supernatant by ELISA (H). In F-H, each dot represents an individual donor. Multiple paired T-tests were used. Data are from 8 donors (FACS) and 6
donors (ELISA) analyzed in independent experiments.
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TCM/TEM compartments was similar between groups, as well as

their proliferation levels (Figure 5C). Rather counter-intuitively, the

proportion of GzmB and PD-1-expressing GP33-specific T cells was

slightly increased in Rela-cKOCD8 spleens. Nevertheless, the

proportion of TNFa- and IFNg-expressing cells was not altered

(Figures 5D, E). Altogether, these data suggest that Rela is

dispensable for the establishment of optimal CD8+ T-cell

responses during acute LCMV infection.
Rela is not required for CD8+ T-cell anti-
tumoral function and response to immune
checkpoint-blockade

As CD8+ T cells are known to be critical actors of anti-tumor

immunity, we wondered whether Rela was required in this context.

To address this, control (CD8cre) and Rela-cKOCD8 mice were

inoculated with B16-F10 melanoma cells. Intriguingly, Rela

deletion had no impact on tumor growth (Figures 6A, B). These

results were confirmed in the MC38 colon carcinoma cells

(Figures 6C, D). Using spectral cytometry 19 days after MC38

transfer, we observed that the proportion of CD8+ T cells in the

tumors was similar between strains (Figure 6E). Furthermore, the

activation level of tumor-infiltrating CD8+ T cells was unchanged in

the absence of Rela (Figure 6F), leaving the proportion of cytokine-

producing cells following PMA-ionomycin restimulation unaltered,

with the exception of a slight increase in GzmB+ CD8+ T cells in

Rela-cKOCD8 mice (Figure 6G).

Given the role of CD8+ T cells in the response to checkpoint-

blockade cancer immunotherapies, we subsequently investigated

whether Rela activity might be a requisite for optimal response.

Control (CD8cre) and Rela-cKOCD8 mice were transplanted with

BrafV600E-Pten-/- melanoma cells and injected with anti-PD-L1 or

isotype control mAb at D7, 9 and 11. As with the B16-F10 and

MC38 models, the ablation of Rela did not affect tumor growth

compared to control littermates treated with an isotype antibody
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(Figures 6H, I). Furthermore, PD-L1 blockade was equally efficient at

inducing tumor regression in control and Rela-cKO mice (Figures 6H,

I). Thus, our data indicate that Rela does not support antitumor

immunity in CD8+ T cells or response to immunotherapy.
Discussion

RelA has long been established as a master regulator of

inflammation and immunity-especially through its roles in

dendritic cells or macrophages. Although evidence also suggested

a prominent role in shaping the CD8+ T-cell compartment, our

study is, to the best of our knowledge, the first to directly investigate

the cell-autonomous functions of RelA in vivo.

We show that RelA is required for the expression of numerous

genes following TCR/CD28 stimulation in vitro, including as

expected many members of the NF-kB pathway and CD8+ T-cell

maturation drivers such as Tbx21 or Eomes. In line with previous

reports (11, 21), Ifng expression was largely down-regulated in the

absence of RelA. Intriguingly, numerous IFN signaling-related

genes and IFN-stimulated genes (ISGs) were also strongly

impaired in mouse Rela-deficient CD8+ T cells. This critical

function of RelA was further consolidated in human T cells. This

link between NF-kB and IFN pathways is documented in innate

immune cells (22) and our data now establish its existence in T cells.

As type I and type II IFN signaling impact T-cell function (23–25),

this crosstalk may have consequences on the outcome of

pathological conditions. This conclusion is in stark contrast to the

observations made in patients with germline RELA haplo-

insufficiency (loss-of-function mutations), who suffer from

various autoimmune or inflammatory conditions and are

characterized by enhanced IFNs and ISG expression (13–15). This

suggests that these phenotypes mostly relied on CD8+T-cell

extrinsic functions of RELA.

These in vitro observations led us to explore whether viral

infections, whose clearance largely relies on IFNs, might be impaired
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FIGURE 5

Unaltered CD8+ T-cell response to LCMV in the absence of RelA. CD8cre (ctrl) and Rela-cKOCD8 mice were infected with 2x105 PFU LCMV
Armstrong (A) qPCR quantification of LCMV in spleen and liver 10 days after infection. (B-E) FACS analysis at day 10 in spleens without (B-D) or with
(E) PMA-ionomycin restimulation. Each dot represents a mouse; data are shown as mean ± SEM. Mann-Whitney tests were used.
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in Rela-cKOCD8 animals. However, Rela ablation did not modify

LCMV loads or the priming of LCMV-specific CD8+ T cells. This

was in line with a report showing that the absence of Rela in all T cells

(Lckcre RelaF/F mice) led to similar responses to LCMV as those

observed in control animals (26). Because complete ablation of the

canonical pathway in T cells in Cd4cre Ikk2F/F mice, was shown to

impair CD8+ T-cell cytotoxic function in cancer, resulting in enhanced

tumor growth (27), we also challenged our Rela-cKOCD8 mice with

different types of tumors. However, we observed that RelA was

completely dispensable for CD8+ T-cell priming, accumulation and

function in melanoma and colon adenocarcinoma. Whereas PD-1

inhibition was shown to increase NF-kB activation (28), and CD8+ T-

cells are critical mediators of the clinical response to checkpoint-

blockade cancer immunotherapies (29, 30), we also show that tumor

regression induced by PD-L1 blockade is entirely maintained in Rela-

cKO CD8 animals.

Thus, at odds with our in vitro observations, CD8+ T-cell-

restricted ablation of Rela did not drive observable phenotypes in

disease contexts. This was in accordance with data from patients

with RELA haploinsufficiency, in which no increased susceptibility

to infections or cancer was reported. This could rely on different
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mechanisms. First, while in vitro T cells were stimulated with

optimal levels of TCR/CD28 and IL-2/IL-7 engagement, their in

vivo function may rely on other stimulators such as TNFSF

members, which may lead to the activation of other pathways or

other NF-kB subunits (31, 32). Second, it is possible that the

absence of RelA in vivo could be compensated by other NF-kB
subunits, in particular c-Rel, as shown in other contexts (33, 34). In

fact, the different subunits appear to share their DNA-binding

sequence and might thus be, to some extent, interchangeable in

vivo (35–37). In this context, it would be interesting to develop

mouse models that lack other NF-kB subunits in CD8+ T cells and

even mice fully devoid of canonical NF-kB subunits, such as c-Rel

and RelA-double deficient mice.
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FIGURE 6

RelA in CD8+ T cells is dispensable for anti-tumor immunity. (A, B) CD8cre (ctrl) and Rela-cKOCD8 mice were inoculated with B16-F10 melanoma
cells. (A) Tumor volume over time (n= 16-21/group) (B) Tumor weight at day 19. (C-G) CD8cre (ctrl) and Rela-cKOCD8 mice were inoculated with
MC38 colon adenocarcinoma cells. (C) Tumor volume over time (n= 16-19/group) (D) Tumor weight at day 19. (E, G) FACS analysis at D19 in tumors
without (E, F) or with (G) PMA-ionomycin restimulation. (H, I) Ctrl and Rela-cKOCD8 mice were transplanted with BrafV600E-Pten-/- melanoma cells
and injected with anti-PD-L1 or isotype control mAb at D7, 9 and 11 (H) Tumor volume over time (n= 7-10/group) (I) Tumor weight at day 15. Data
are shown as mean ± SEM from 6 (A, B), 4 (C-G) and 3 (H, I) independent experiments; each dot represents a mouse. For tumor volumes, two-tailed
Mann-Whitney tests (A, C) or 2-way ANOVA followed by Bonferroni-Dunn’s post-tests (H) were used; for tumor weight and FACS data Mann-
Whitney (B, D-G) and Kruskal-Wallis followed by uncorrected Dunn’s post-test (I) were used.
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2024.1379777
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Voisin et al. 10.3389/fimmu.2024.1379777
Ethics statement

The studies involving humans were approved by French Blood

Bank, agreement 22-093. The studies were conducted in accordance

with the local legislation and institutional requirements. The human

samples used in this study were acquired from a by- product of

routine care or industry. Written informed consent for

participation was not required from the participants or the

participants’ legal guardians/next of kin in accordance with the

national legislation and institutional requirements. The animal
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