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Historically, the central nervous system (CNS) was regarded as ‘immune-

privileged’, possessing its own distinct immune cell population. This immune

privilege was thought to be established by a tight blood-brain barrier (BBB) and

blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of

peripheral immune cells and their secreted factors into the CNS parenchyma.

However, recent studies have revealed the presence of peripheral immune cells

in proximity to various brain-border niches such as the choroid plexus, cranial

bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging

evidence suggests that peripheral immune cells may be able to infiltrate the brain

through these sites and play significant roles in driving neuronal cell death and

pathology progression in neurodegenerative disease. Thus, in this review, we

explore how the brain-border immune niches may contribute to the

pathogenesis of neurodegenerative disorders such as Alzheimer’s disease (AD),

Parkinson’s disease (PD), and multiple sclerosis (MS). We then discuss several

emerging options for harnessing the neuroimmune potential of these niches to

improve the prognosis and treatment of these debilitative disorders using novel

insights from recent studies.
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1 Introduction
For over a century, a fundamental principle in neurological

research has been the understanding that the central nervous system

(CNS) functions as a highly impermeable and immune-privileged

organ system. This concept originated from a series of

groundbreaking discoveries by Elrich (1885) (1), Bield and Kraus

(1898) (2), and Lewandowsky (1900) (3), who showed that arsinine

dyes, cholic acids or sodium ferro-cyanide, when administered

intravenously, penetrate all organs except the brain. In 1900,

Lewandowsky proposed the concept of a blood-brain barrier (BBB)

but was met with criticisms regarding the specificity of the injected

substrates used, as the substrates were thought to bind to plasma

proteins in the blood. However, further evidence for the presence of a

BBB was presented in 1913, when Goldmann systemically injected the

acidic dye trypan blue into several species, including dogs and

monkeys, and found that the brain remained unstained, although the

choroid plexuses were stained (4, 5). In contrast, the entire parenchyma

was stained when trypan blue was injected directly into the brain

ventricles. This led Goldmann to postulate that the CNS is segregated

from the blood circulation by a very selective barrier and that the

choroid plexus is the host of this barrier that modulates substance entry

into the CNS (6). Goldmann further proposed that cerebrospinal fluid

(CSF) was the agent of substance transport for the CNS (7).

The concept of an immune privilege in the brain began to gain

prominence after the discovery of the physical BBB and blood-

cerebrospinal-fluid barrier (BCSFB). In 1921, Japanese scientist

Shirai observed that transplanted rat sarcoma cells proliferate

when implanted in the mouse brain parenchyma, but not when

implanted into the muscles or skin (8). Shortly after in 1923,

Murphy and Sturm reported that tumoral growth was inhibited

when mouse tumours were co-transplanted into the brain with

homologous spleen tissue (9), suggesting that peripheral immune

cells were not present within the brain. Around the same time, in

1920–1921, Spanish neuroscientist Rio-Hortega described the brain

as containing specialised ramified phagocytes that can self-

proliferate (10), indicating that the CNS evolved to have its own

unique innate immune system. Nevertheless, the term ‘immune

privilege’ was only officially coined in 1948, when Brazilian-British

biologist Sir Peter Medawar reported the lack of immune response

to skin allografts transplanted to the brain and anterior chamber

eyes of rabbits (11). At this time, the consensus was that peripheral

immune cells were ‘absolutely’ restricted from the brain

parenchyma due to the presence of a tight BBB and BCSFB

preventing peripheral immune cell infiltration into the CNS.

However, the perception of this ‘absolute’ barrier between the

peripheral system and the CNS began to shift in the 2000s with the

discovery that activated peripheral immune cells, such as T cells and

B cells, successfully enter and closely localise with the brain

parenchyma at the borders of the CNS (12). Meningeal gd T cells

have even been suggested to play pivotal roles in secreting factors to

maintain normal neural functions such as synaptic plasticity (13).

In addition, it was previously believed that microglial major

histocompatibility complex II (MHC-II) was solely responsible for

causing neuroinflammation seen in neurodegenerative disease.
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However, it is becoming increasingly apparent that the microglial

MHC-II is not essential for neuroinflammation in various

neurodegenerative conditions (14, 15). Moreover, peripheral

immune cell types, such as border-associated macrophages

(BAMs) at brain-border niches, and infiltrating dendritic cells

from the CSF are known to express MHC-II and can migrate to

cervical lymph nodes to initiate adaptive responses (14, 16).

Collectively, these observations aid in redefining our current

understanding of a ‘relative’ immune privilege within the CNS.

Although numerous excellent reviews regarding the brain-

border immune niches have been published previously (17, 18),

the precise functions of these niches in neurodegenerative diseases

remain unknown. Therefore, in this review, we will provide an

overview of the immune niches and their functions, before updating

the current understanding of the roles of the different niches

relating to the progression of Alzheimer’s disease (AD),

Parkinson’s disease (PD) and multiple sclerosis (MS) by

referencing recent articles. We will discuss how these findings

may improve or influence the future direction of the diagnosis,

prognosis, and therapy of these progressively debilitating diseases.
2 Brain-border immune niches

2.1 Choroid plexus

The choroid plexus is a highly vascularised tissue that lines the

pia mater within each ventricle of the brain, functioning to separate

CSF from the blood. The choroid plexus consists of tightly bound

epithelial cells with their basolateral surface surrounding a network

of fenestrated capillary cores and loose stromal tissues. The apical

surfaces of these cells contact the CSF within the brain ventricles

and facilitate CSF production and secretion of signalling factors.

The choroid plexus epithelium accounts for most of the BCSFB

through maintaining tight junctions between epithelial cells (19).

Away from the choroid plexus, ependymal cells continuously line

the rest of the epithelium on the remaining walls of the CSF cavities.

However, unlike choroid plexus epithelial cells, ependymal cells are

held more loosely by desmosomes, and thus do not restrict

movement between the CSF cavity and the parenchyma (20).

The choroid plexus stroma is a heterogenous, and dynamic

immune environment located between the choroid plexus

epithelium and the capillaries. It consists primarily of arachnoid

cells, reticular fibroblasts, pericytes, and smooth muscle cells (21).

Resident lymphoid and myeloid populations such as CD4+ T helper

cells (Th1, Th2, Tregs) (22), CXCR3+ dendritic cells, and

macrophages (23), are sparsely distributed within the stroma, but

still in close proximity to stromal elements. This unique apposition

allows the choroid plexus to respond to antigen-presenting cells

(APCs) or inflammation factors that may present either from the

CSF or the systemic circulation.

Recent research has shed light on the complex immunological

interactions within the choroid plexus stroma (Figure 1). In septic

mouse models induced by intravenous lipopolysaccharide (LPS)

administration, activated APCs such as M1 macrophages can

infiltrate the choroid plexus and release interleukin (IL)-1b (21).
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Stromal cells expressing IL-1 receptor type 1 (IL-1R1) and IL-1

receptor accessory protein (IL-1RAcP) can respond to IL-1b and

subsequently secrete proinflammatory factors such as IL-6, CCL2,

CXCL1, and CXCL2 (21). Additionally, when stimulated by

cytokines such as interferon-gamma (IFN-g) and IL-17 from

CD4+ Th cells, the choroid plexus epithelium expresses unique

trafficking molecules and releases chemoattractant ligands such as

CCL20, which promote the transmigration of preactivated B cells

and T cells into the CSF in experimental autoimmune

encephalomyelitis (EAE) mouse models for MS (24, 25).

Neutrophils have also been shown to infiltrate the choroid plexus

from the bloodstream following traumatic head injury, before

accumulating in the CSF around the site of injury (26).

As individuals age, the composition of the choroid plexus

stroma undergoes gradual changes due to local and peripheral

senescence (27). The tight junctions of the choroid plexus

epithelium are greatly compromised (28), and there is an increase

in stromal leukocyte proportion, particularly T helper and cytotoxic

T cells (29). Consequently, there is a shift in the cytokine profile,

marked by elevated levels of inflammatory cytokines such as IL-1b,
tumour necrosis factor-alpha (TNF-a), and IFN-g (22, 27, 30),

contributing to a progressively inflammatory brain.
2.2 Meninges

The meninges are a series of membranes covering the brain and

spinal cord, forming a continuous barrier between the CNS and

periphery. The primary roles of the meninges are to protect the CNS

from trauma and to provide structural support for nerves,
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vasculatures and lymphatics that supply the CNS (31).

Conventionally, the meninges are divided into three distinctive

structural layers: the outermost dura mater, the arachnoid mater,

and the innermost pia mater, which forms direct contact with the

brain parenchyma. Fluid-filled cavities between the arachnoid and

pia mater are termed subarachnoid spaces and those between the

pia mater and parenchyma are called subpial spaces (32). The pia

mater, subarachnoid space and arachnoid mater are collectively

referred to as the leptomeninges (33).

The thickest and outermost lining of the meninges is known as

the dura mater. This fibrous membrane covers the interior of the

skull, and receives its own innervation and vascular supply at the

apical surface from branches of the external carotid arteries (34).

Histologically, the dura mater is further characterised into three

major layers: the periosteal layer, which lines the inner surface of the

cranium; the meningeal layer, which consists of a dense, fibrous

membrane that lies underneath the periosteal layer; and the

flattened dural border cell (DBC) layer which attaches to the

arachnoid mater. Large cavities between the periosteal and

meningeal layers are known as the dural venous sinuses. These

provide an avenue for CSF to empty from the subarachnoid space

through lymphatic channels into the internal jugular veins. In a

healthy brain, there is no subdural space between the dura mater

and the arachnoid mater (34).

The arachnoid mater is the middle layer of the meninges and

comprises a thin layer of web-like connective tissue. The arachnoid

mater is less densely vascularised compared to the dura mater and

does not receive any innervation. However, the subarachnoid space

that lies beneath the arachnoid mater contains CSF as well as

vasculature, including arteries and veins. Lymphatic vessels have
FIGURE 1

Dynamic neuroinflammatory responses at the choroid plexus. The choroid plexus is an active immune niche that monitors immune factors from the
blood and the CSF. During the inflammatory response, surveilling CD4+ T cells infiltrate the choroid plexus and are presented with antigen-loaded
MHC-II by resident macrophages. This triggers their differentiation into various T helper cell subtypes. Th17 cells secrete IL-17, which promotes
choroid plexus epithelial CCL20 expression, therefore allowing for the adhesion of lymphocytes to the choroid plexus epithelium and aiding their
transmigration into the CSF. Macrophages within the stroma secrete IL-1b due to interactions with activated CD4+ T cells. IL-1 b interacts with
stromal cells, which in turn secrete pro-inflammatory cytokines and chemokines such as IL-6, CCL2, CXCL1, and CXCL2. Tight junctions between
choroid plexus epithelial cells become compromised following inflammation, which may lead to increased movement of immune cells across the
epithelium. Additionally, neutrophils from the blood stream accumulate in the choroid plexus stroma, allowing them to infiltrate the CSF. Figure
created with BioRender.
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also been reported to reside adjacent to the subarachnoid space (35).

Parts of the subarachnoid mater project into the dural venous

sinuses as arachnoid granulations, allowing drainage of CSF from

the subarachnoid space into the dural sinuses (36).

Though the dura and arachnoid mater can easily be separated

from the parenchyma, the pia mater attaches strongly to the

convoluted surface of the brain as the innermost layer of flattened

cells, forming a thin fibrous tissue (37). Lacking tight junctions, the

pia mater is permeable to small solutes such as urea (35), and is

highly vascularised, with many vessels permeating the membrane

into the brain (38). The pia mater shields the parenchyma from the

CSF at the subarachnoid space and, at the cortex, coats the

penetrating arterioles (but not venules) of the parenchyma (36).

However, as vessels become smaller, the pial lining becomes more

discontinuous (39), resulting in capillaries having direct contact

with glia limitans. The fluid-filled cavities that form between the

vessels and glia limitans of the brain parenchyma are called

perivascular spaces, also known as Virchow-Robin spaces. These

form the glia-lymphatic (glymphatic) system that drains most of the

CSF from the subarachnoid space (40).

Recently, a fourth meningeal layer, defined as the subarachnoid

lymphatic-like membrane (SLYM), has been proposed (41).

Resembling mesothelium, this comprises only a sparse layer of

Prox1+ lymphatic endothelial cells and loosely organised collagen

fibres that encase pial vessels, separating the subarachnoid space into

two distinct compartments; a superficial and a deep compartment

(41, 42). Functionally, the SLYM restricts the passage of molecules

smaller than 3 kDa, and therefore serves as a physical filter regulating

material exchange between subarachnoid space compartments (41).

Furthermore, it facilitates the direct exchange of small solutes

between the CSF and venous blood, due to its proximity to the

endothelial lining of the meningeal venous sinus (41). Notably, a

significant accumulation of CD45+ cells has been observed near the

pial vessels on the brain surface, and this increases following the

induction of inflammation with LPS, as well as with ageing (41).

Macrophages expressing LYVE1, CD206, and CD68, as well as

CD11c+ dendritic cells have also been reported to reside in the

SLYM (41). The presence of immune populations within this

membrane may suggest that the SLYM is an active immune niche

that functions as an assembly point for immune cells and regulates

immune exchanges between the blood stream and the CSF between

superficial and deep compartments of the subarachnoid space.

Further investigation is necessary to understand the functional

interplay of the SLYM with other meningeal layers, and its

modulation of neuroinflammation in the brain parenchyma.

Another recent study unveiled multiple lymphoid-like

structures within the dura of mice that closely associate with the

infiltrating venous plexus (43). These tissues comprise a rich

network of PV1+ fenestrated blood vessels and LYVE1+ lymphatic

vessels, intertwined in a stroma of fibroblastic reticular cells. This

network harbours germinal centre-like hubs, and contains CD11c+

myeloid cells, CD3+ T cells, B cells, neutrophils, macrophages,

dendritic cells and (to varying degrees) their immature

progenitors (43). The largest of these clusters was found mainly
Frontiers in Immunology 04
surrounding the rostral-rhinal confluence of the sinuses, located

superior to the olfactory bulb (43). With their proximity to the

cranium, these lymphoid tissues, especially those in the rostral-

rhinal hubs, are in contact with small, ossified channels through a

recess in the bone, and potentially derive their progenitor

populations from the cranial bone marrow (CBM) (43). The same

study suggested that, in addition to sampling CSF from within the

dura, lymphoid hubs can detect antigens and mount responses to

infections originating from the olfactory tract, CSF, and peripheral

blood circulation. This is due to the presence of fenestrated blood

vessels and the proximity of lymphoid hubs to the olfactory tract.

When vesicular stomatitis virus (VSV) was introduced intranasally,

the cytokine milieu and cellular compositions of dural-associated

lymphoid tissues (DALTs) were altered, characterised by increased

IL-12 expression and enhanced distribution and activation of B cells

into plasma cells (43), thereby triggering a humoral response.

Additionally, microbeads were observed to localise within these

DALTs following their intravenous injection (43). This evidence

indicates that the meningeal hubs actively contribute to preventing

external infections from breaching the CNS.

The composition of lymphoid hubs along the dura appears to

change with increasing age and disease progression (44, 45).

Interestingly, while B cells were found to be derived from the

CBM, lineage tracing of the cells did not reveal an increase in CD4+

T cell populations in the CBM, suggesting that the enhanced

localisation of CD4+ T cells within the meninges may be derived

from systemic circulation (46). An overview of the immune niches

within the skull-meninges-brain axis is shown in Figure 2.
2.3 Perivascular spaces

Perivascular spaces are fluid-filled cavities that lie between

penetrating arterioles and the brain parenchyma. At the basal section

of arterioles, perivascular spaces are continuous with the subarachnoid

space (and therefore CSF) of the meninges and separated from the

brain parenchyma by the pia mater (47). As vessels enter the cortex

through the pia mater, the vascular endothelium and its basal

membrane are in direct contact with the end feet of the glia limitans,

forming the primary structure of the BBB (48). Perivascular spaces are

established between tight junctions of the vascular endothelium and the

astrocytic end feet and contain interstitial fluid from the outflow of

blood from vessels, and CSF from the subarachnoid space. Although

small in diameter, perivascular spaces together form an extensive

network of glymphatic channels that function to drain CSF from the

subarachnoid space (40) and remove neurometabolic waste from the

brain, particularly during sleep (49, 50).

Pericytes and native innate immune cells are the primary cell

types found within perivascular spaces. Pericytes play crucial roles in

maintaining the structure of the BBB by regulating vascular

development, angiogenesis, extending glial limitans end feet, and

mediating inflammatory processes associated with immune cells. To

fulfil this diverse range of functions, pericytes exhibit stem cell-like

properties, enabling them to differentiate into angioblasts, neural
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progenitor cells, endothelial cells, and even microglia-like phenotypes

(51, 52).

Regarding perivascular innate immune cells, those found at

basal parts of the arterioles have been identified as BAMs (also

called perivascular macrophages) positive for CD45, CD11b,

CX3CR1, Ly6C and CD38, while CD119+ microglia are present in

perivascular spaces of capillaries (53). Conversely, lymphocytes

such as CD8+ tissue resident memory T cells and B cells are

typically found in relatively low numbers in the perivascular

spaces of the corpus callosum under normal physiological

conditions (54), and are likely recruited to these spaces only

during pathological states. Interestingly, these observations

collectively suggest that perivascular spaces may harbour their

own distinct population of self-proliferating immune cells (55).

The identification of perivascular spaces via magnetic resonance

imaging (MRI) scans may serve as an important diagnostic and

prognostic criterion. In both neonates and adult humans,

perivascular spaces that are <2 mm in diameter are considered

normal (47). Dilation of perivascular spaces has been associated

with various conditions including old age (40), hypertension,

vertigo, cysts (56), neuroinflammatory disorders such as

dementia, MS (57), secondary PD, mega-encephalopathy,

hydrocephalus (58), and autism spectrum disorder (ASD) (59).

Currently, the cause of perivascular space dilation is not fully
Frontiers in Immunology 05
known but may be linked to obstruction of glymphatic flow.

Interestingly, sleep (a processes commonly disrupted in old age

and neurodegenerative disease) was recently reported to promote

glymphatic clearance of metabolic waste by inducing rhythmic

oscillations at delta (0.5–4 Hz), theta (6–10Hz), spindle (12–

15Hz), and ripple (140–200Hz) wavelengths by synchronising

neuronal activity (60). Moreover, aquaporin 4 (AQP4) proteins at

astrocytic end feet also appear to have pivotal roles in regulating

interstitial fluid pressure at the perivascular spaces (61).

Additionally, arterial pulsation (62, 63), and peptide signalling

(64), have been suggested to contribute to CSF dynamics and

glymphatic clearance. Based on these findings, several hypotheses

have been proposed surrounding the cause of perivascular space

dilation, and include mechanical stress arising from impaired CSF

pulsations (65, 66), increased vascular permeability (67),

obstruction of downstream lymphatic drainage, and atrophy of

the parenchyma (68, 69), all of which may lead to increased fluid

exudation into the perivascular space. In hypertensive rat models,

microglia that release inflammatory cytokine IL-1b have been

observed to trigger the overexpression of prostaglandin E2

(PGE2) (70) and affect pericyte-endothelial cell interactions,

resulting in vascular destabilisation and increased vascular

permeability (71). However, the precise extent of immune cell

involvement in the dilation of perivascular spaces is not clear.
FIGURE 2

Summary of the neuroimmune niches within the skull-meninges-brain axis. (A) The cranial bone marrow (CBM) provides a source of haematopoietic
stem cells, which supply lymphoid and myeloid cells to the dural sinuses during inflammatory events. (B) Germinal-like centres in the dural-
associated lymphatic tissues (DALTs) contain lymphocytes. T cell populations in the meninges are most likely derived from the blood or CSF. T
helper cells can be activated by MHC-II-presenting macrophages within the dura mater, and subsequently activate B cells and cytotoxic T cells.
Immune cell activity within lymphoid hubs may help prevent the entry of external infection into the brain. (C) T cell clusters and MHC-II-presenting
macrophages are also found at the subarachnoid lymphatic-like membrane (SLYM), closely associated with pial blood vessels. The SLYM may
therefore serve as an active immune niche that regulates immune exchanges between the blood stream and the CSF. (D) Perivascular spaces house
resident immune cells, such as perivascular macrophages, as well as a smaller population of B cells and T cells. Figure created with BioRender.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1380063
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tan et al. 10.3389/fimmu.2024.1380063
2.4 Cranial bone marrow

Bone marrows are immune reservoirs for cells of various

haematopoietic lineages. In normal physiology, the bone marrows

house and deliver cells from myeloid and lymphoid lineages to the

peripheral blood and surrounding tissues (72). The CBM is no

exception; it has a distinct molecular composition and provides a

direct source of immune cells to the CNS, thus shaping

neuroimmune responses (73). The proximity of the CBM to the

brain allows for the penetration of diploic veins from the meninges

into the cranial marrow cavities through small micro-osseous

channels, particularly at the frontal, parietal, and occipital

cranium (74). These channels establish a route for direct

communication between the CBM and the CSF, facilitating the

exchange of immune cells, signalling molecules, or even pathogens

(75), that may exacerbate wider immune responses.

In healthy mice, the CBM is responsible for maintaining the

meningeal lymphocyte populations. For example, early B cells have

been suggested to migrate from the CBM through miniature skull-

meninges channels into the dural stroma (46), likely settling within

DALTs (43). The lack of adaptive immune reactivity in the CBM

suggests that clonal selection and full development of B cells could

occur within the germinal-like centres in DALTs (43, 46), although

this is not yet certain. Interestingly, cells that migrated from the

CBM to the dura were not reported to express any T cell markers,

suggesting that T cell localisation within the meninges is derived

either from the blood or from the CSF (76). This indicates that

blood-based or meningeal-based tracing is somewhat specific to

lymphocyte populations at the meninges, and that T cells may be

important for the prognosis of neurological diseases that arise from

peripheral inflammation.

Recently, several groups have attempted to shed light on the

conditions required to promote haematopoietic stem cell

differentiation and migration from the CBM. CSF has been

suggested to transport CSF-derived factors through skull

meningeal channels of the cranium (77). This process activates

signalling pathways crucial for inducing myelopoiesis and

migration to the underlying dura (77). In EAE mice, induction of

the CXCL12-CXCL4 axis was shown to promote T cell activation

and migration into the CBM, leading to myeloid differentiation of

haematopoietic stem cells into Ly6b+ or Ly6C+ macrophages and

neutrophils that subsequently invade the CNS (78).

Additionally, the CBM composition appears to change with age

(73, 79). Single-cell sequencing has revealed upregulation of

senescence markers in mesenchymal cells within cranial stem cell

niches and immune cells closely associated with inflammation (79).

In adult humans, imaging techniques such as MRI have been utilised

to correlate age-related changes with alterations in bone marrow

composition. Analysis of apparent diffusion coefficient (ADC) values

from MRI scans of five hundred subjects demonstrated significant

alterations in the parietal and occipital bone marrow with increasing

age (80), indicating changes to cell density (81–83). These

inflammatory and age-related changes suggest a potential link

between the CBM composition and brain health, although further
Frontiers in Immunology 06
research is required to determine the relationship between these

alterations and age-related neurodegenerative diseases.
2.5 Brain-border lymphatics

In most peripheral tissues, interstitial fluid (ISF) is drained from

organs by perforating lymphatic vessels. The lymphatic system also

functions as an active immune surveillance system, with

downstream lymph nodes housing germinal centres for pathogen

recognition, and endothelial cells that secrete specific cytokines and

express membrane adhesive factors for leukocytic diapedesis into

the surrounding tissues (84). Although the CNS does not possess

perforating lymphatics, recent advancements in high-resolution

imaging techniques have revealed the presence of lymphatic

channels coursing in a specific manner within the dura mater of

transgenic Prox1-EGFP-expressing mice stained for LYVE1 (85).

Additionally, leptomeningeal lymphatic endothelial cells (LLECs)

have been suggested to reside in non-lumenised lymphatic

endothelium within the leptomeninges (86). These brain-border

lymphatic vessels and LLECs are now being increasingly recognised

as crucial players in modulating CNS immunity, by facilitating the

drainage of CSF from the meninges and clearance of metabolic

waste products, whilst also serving a potential role in immune

cell surveillance.

CSF from the brain parenchyma is generally known to flow

through one of two different lymphatic routes. At the caudal end of

the brain, CSF is drained from the sigmoid sinus through basolateral

lymphatics at the dura, passing through the jugular foramen to lateral

deep lymphatics, before directly arriving at the lateral cervical lymph

nodes (85). In contrast, at the rostral parts of the brain, particularly

the cavernous sinus and olfactory bulb, lymphatics pass through the

cribriform plate to the olfactory epithelium adjacent to the olfactory

neurons (87). From the olfactory epithelium, the fluids are drained

into olfactory lymphatics which travel posteriorly to the nasopharynx

into the deep medial lymph nodes (87).

A recent study has shown that, in both mice and macaques, the

olfactory lymphatics link posteriorly to a lymphatic plexus superior

to the nasopharynx bone at the skull base (85). This plexus

structure, termed the nasopharyngeal lymphatic plexus (NPLP),

subsequently merges with the medial cervical lymphatics, which

ultimately connect to the deep cervical lymph nodes (85).

Structurally, the plexus consists of a flattened network of

unicellular capillaries characterised by button-like and zipper-like

junctions, numerous unique valves, as well as the absence of a

smooth muscle layer (85). These unique histological features allow

the NPLP to be classified as a form of precollecting lymphatics, with

extensive valvular structures to ensure the unidirectional flow of

CSF towards the deep cervical lymph nodes.

In addition to its role in regulating CSF flow, emerging research

suggests that the extensive nasal lymphatic microenvironment

responds dynamically to inflammatory signals from the brain. In

an induced EAE mouse model, significant lymphangiogenesis and

dilation were observed at both the dorsal and ventral ends of the
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cribriform plate (88). Furthermore, CD11c-expressing cells and

immune cells from the brain parenchyma were found to have

drained at the cribriform plate in response to neuroinflammation

(88). Notably, atrophy of the NPLP was observed in aged mice,

hindering CSF flow and drainage, with transcriptomic profiling

revealing elevated expression of genes involved in type I interferon

signalling and the leukocyte response, such as Il3, Mcl1 and MHC

genes (85). These results suggest an involvement of lymphangiocytes,
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or the potential accumulation of immune cells within the nasal

lymphatics, in modulating neuroimmune responses. Further

research is required to characterise the immune profiles within this

unique structure, and to determine whether it contains an active

immune niche, like the DALTs, which can modulate immune

responses in the brain. An overview of the brain-border lymphatics

in mouse, alongside the impact of age and inflammatory insult on

these processes, is shown in Figure 3.
A B

FIGURE 3

The impact of age and auto-immune insult on brain-border lymphatics in Mus musculus. Brain-border lymphatics are integral for the removal of
metabolic waste and immune cells from the CSF. However, their function can diminish with advancing age or inflammatory insult. Top panel: a
schematic of the mouse brain displaying the locations of the olfactory lymphatics (A) and nasopharyngeal lymphatic plexus (NPLP) (B). (A) In healthy
mice (left), lymphatics at the olfactory bulb drain CSF from the meninges and olfactory bulb. Mice with experimental autoimmune encephalomyelitis
(EAE) display significant dilation of the lymphatic vessels with increased drainage of immune cells from the CSF (right). (B) The NPLP is a recently
discovered anastomotic plexus found posterior to the olfactory lymphatics, present in both mice and humans. In healthy mice (left) the NPLP
primarily serves to collect CSF that is drained from the ventral regions of the brain, before it is sent to the cervical lymphatics, which travel to deep
cervical lymph nodes. During ageing (right), atrophy of the NPLP occurs, which can result in poorer drainage of lymphatic fluid that is likely to impair
CSF flow. This age-related impaired lymphatic flow may contribute to the pathology of various neurodegenerative diseases. Figure created
with BioRender.
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3 Contribution of brain-border
immune niches to
neurodegenerative diseases

3.1 Alzheimer’s disease

AD is the most common neurodegenerative disease, observable

by the formation of amyloid beta (Ab) plaques and tau

neurofibrillary tangles (NFTs). During early disease stages,

neuronal atrophy is more significant within the temporal brain

regions such as the hippocampus, resulting in dementia (89, 90).

AD is thought to occur largely because of Ab misfolding and tau

hyperphosphorylation, which result in the accumulation of

pathological Ab plaques and tau NFTs. These are widely regarded

as major contributors towards neuronal dysfunction and synaptic

loss underlying neurodegeneration (91, 92). Additional hypotheses

suggest a role for environmental factors, such as prolonged

exposure to heavy metals, pesticides, and air pollution (93–96), in

AD presentation, further complicating investigations into disease

pathology. The exact underlying aetiology of sporadic AD remains

unknown, and thus, current treatment options are limited. First-line

treatments (donepezil, galantamine, rivastigmine and memantine)

aim to treat cognitive symptoms by increasing cholinergic

neurotransmission or, in the case of memantine, reducing

glutamatergic neurotransmission to attenuate excitotoxicity.

Recently, research has focused more on targeting the clearance of

pathological Ab, which is the mechanism of action of the FDA-

approved drugs aducanumab and lecanemab. Although these

improve on older treatments by targeting what is believed to be

the main driver of pathology, as opposed to downstream effects on

cognition, their use remains controversial due to their significant

side effects and failure to halt disease progression (97, 98). This is

likely due to the complex, multifactorial nature of AD.

Immune system interference has been observed in the AD brain

since the disease was first described, when Alois Alzheimer noted

reactive gliosis in patient autopsy samples (99–101). Since then,

neuroinflammation has been regarded as a key manifestation

associated with disease progression. Observations in human

patient brain tissue and amyloid mouse models indicate that

activated microglia colocalise with Ab plaques, proposing an

important role for glia in the clearance of Ab from the brain

(102–104). Variants of the Trem2 gene, which encodes for the

triggering receptor expressed on myeloid cells-2, have been strongly

associated with the presentation of late-onset Alzheimer’s disease

(LOAD) (105, 106). Studies using cultured neurons and Trem2

knockout mice have suggested that the activation of TREM2

receptors promotes microglial phagocytosis and proliferation

(107, 108), enabling the uptake and degradation of, and thus

protection against, Ab oligomers (109, 110). However, reactive

microglia and astrocytes which interact with Ab have been shown

to release inflammatory cytokines, such as IL-1b, IL-6 and TNF-ɑ,
across a number of experimental models, including primary mouse

microglia culture and APP/PS1 mice, as well as in AD patient brain

samples (111–113). These processes have been suggested to seed

initial inflammation, triggering a cascade that results in the
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amplification of the neuroinflammatory response over time. This

points to a possible fundamental role for the sustained immune

response in the onset of AD (114). Therefore, the precise function of

glia, including whether they are protective and the extent to which

they contribute to disease progression, remains uncertain, making

their targeting for therapeutic advances challenging.

Studies have suggested that dysregulation of the peripheral

immune system, in addition to that of the CNS, may also

contribute towards AD progression (101), due to the observation

that AD patients present with significantly higher levels of

peripheral pro-inflammatory cytokines than healthy subjects (115,

116). However, studies that attempt to link peripheral cytokine

levels with disease severity in AD patients have so far yielded mixed

results (117, 118). Elucidating mechanisms that underlie crosstalk

between peripheral and central immune processes throughout

disease progression, and specifically the role played by brain-

border immune niches in neuroinflammation and pathology

progression, is therefore of significant research interest. The

presence of Ab in human cervical lymph nodes suggests that it is

cleared via the glymphatic system (119). In mice, CD163- and

LYVE1-expressing macrophages in perivascular spaces have been

reported to regulate arterial motion which drives the flow of CSF,

thereby influencing the rate of Ab clearance from the brain (70).

The glymphatic system is most active during sleep, and its declining

function with age has been linked with sleep disturbances and

neurodegenerative disease progression (120). The brain-border

immune niches and glymphatic system may therefore play an

important role in the propagation of late-stage inflammation

observed in AD. The increased presence of Ab aggregates within

meningeal vessels and the choroid plexus has been evidenced in AD

patients (121), indicating that age-related impairments in

meningeal lymphatic vessel drainage may be a key underlying

mechanism of Ab accumulation (122, 123). In addition, an

increased number of neutrophils has been found to adhere to the

choroid plexus and vasculatures and infiltrate into the hippocampus

and cortex of patients (124). Furthermore, in mouse models of AD,

neutrophil adhesion to endothelial cells at perivascular spaces has

been shown to impair blood flow, resulting in diminished memory

function (125). Deficiencies in meningeal lymphatics associated

with aging are therefore highly likely to amplify Ab aggregation in

both the meninges and parenchyma, contributing to cognitive

dysfunction in AD (126, 127).

Recent studies have identified a potential role for the CBM in

enhancing the progression of AD. During neuroinflammation in

mice, monocytes and neutrophils from the bone marrow are

recruited into the meninges through small osseous channels. A

similar role for these channels in humans has been suggested,

although this has yet to be confirmed (74, 76, 128). Positron

emission tomography (PET) imaging using radioligands for

translocator protein (TSPO) signal has revealed significant

inflammation, specifically within the frontal and parietal regions

of the CBM, in AD patients (73). In the calvaria, TSPO readings

were positively correlated with decreased Ab42 concentration in the

CSF, but not decreased Ab40 concentration. This is particularly

significant when considering the specific role of Ab42 in AD

pathogenesis. Ab40 and Ab42 are products of the differential
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1380063
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tan et al. 10.3389/fimmu.2024.1380063
cleavage of Ab, with 40 and 42 amino acid residues, respectively.

Despite being derived from the same precursor, these isoforms

possess significant differences in their physicochemical and

biological properties. In particular, the Ab42 isoform is more

prone to aggregation, and thus to the formation of Ab plaques,

and is more neurotoxic than Ab40 (129, 130). As a result, Ab42 is

generally considered to play a greater role in AD pathology.

Consequently, the observed correlation between increased TSPO

readings in the calvaria and decreased Ab42 concentration in the

CSF suggests a potential link between cranial inflammation and AD

pathology, which may contribute towards increased fibrillar Ab42
deposits in the brain (73). Given these insights it is likely that a dual

approach for targeting both immune niches and underlying

amyloid plaques may be beneficial for the treatment of AD.
3.2 Parkinson’s disease

Like AD, PD is a progressive neurodegenerative disease that is

caused by aberrant aggregates of misfolded proteins within the brain.

PD is characterised by physical symptoms such as uncontrolled

shaking, stiffness, bradykinesia, and a loss of balance. The disease

can also present with several psychological symptoms including sleep

problems, anxiety and depression and cognitive impairment (131).

The main pathological hallmark of PD is the presence of Lewy Body

formations, which begins in the substantia nigra of the midbrain and

causes dopaminergic neuronal death (132). As the disease progresses,

neurodegeneration and tissue damage spread to the rest of the brain.

The formation of Lewy bodies is attributed to the misfolding of alpha-

synuclein (ɑ-synuclein), resulting in the accumulation of synuclein

fibrils (133). The reason for this occurrence in patients with sporadic

PD is unclear, but evidence suggests it is likely due to complex

interplay between genetic and environmental factors. Multiple gene

variants have been linked with the misfolding of ɑ-synuclein and

presentation of sporadic PD (134–136), whilst studies have suggested

that overexposure to environmental toxins (137) and pesticides (138)

could lead to gut microbiota changes that increase PD susceptibility

(139). Disease presentation has also been associated with levels of

exercise (140), caffeine intake, smoking (141) and traumatic brain

injury (142). As with AD, the apparent multifactorial nature of PD

makes it extremely difficult to treat effectively. Drugs currently

approved for PD treatment include levodopa and dopamine

agonists to increase dopaminergic transmission, and monoamine

oxidase-B inhibitors to reduce the breakdown of dopamine in the

synapse, thereby increasing binding to receptors. Although drugs

targeting dopaminergic neurotransmission are initially effective at

improving motor symptoms that manifest early in PD presentation,

they are known to lose therapeutic efficacy as the disease progresses

(143). No drugs currently exist to address the underlying pathology of

PD to halt disease advancement.

Multiple inflammation-related genes have been identified as

risk factors in the presentation of PD (144), and as such

neuroinflammation has been suggested to exacerbate its

progression (145, 146). The role of the inflammatory response in

PD has been studied since observations that postmortem patient

samples contain reactive microglia expressing MHC-II cell surface
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receptors (147). This leads to the excessive release of

proinflammatory cytokines in the striatum, ventricular CSF and

spinal CSF (148). The lentiviral-mediated overexpression of ɑ-
synuclein in mouse microglia has been reported to result in

neurodegeneration of dopaminergic neurons before the

aggregation of endogenous ɑ-synuclein, suggesting that microglial

activation may be a primary driver of disease pathology in the CNS

(149). As well as dopaminergic degeneration, the accumulation of

ɑ-synuclein in microglia also leads to the excessive release of pro-

inflammatory and oxidative molecules. A proposed mechanism for

microglial activation by ɑ-synuclein, characterised in microglial cell

lines, primary cultured cells, and mouse models, depends on the

binding of the protein to microglial CD11b. This activates NADPH

oxidase (NOX2) via the initiation of RhoA pathway signalling

(150). The activation of NOX2 increases the production of

hydrogen peroxide (H2O2), which diffuses into the cytoplasm and

directs microglial migration via the activation of Lyn, a tyrosine

protein kinase (151). If this mechanism also occurs in human

patients, the interaction of ɑ-synuclein with microglia, as opposed

to its accumulation in dopaminergic neurons, may be a key

component of the initial immune response driving degeneration

of the dopaminergic system in PD. The exacerbation of the immune

response and excessive release of pro-inflammatory molecules leads

to further activation of microglia, in turn contributing towards the

increased accumulation of ɑ-synuclein and dopaminergic

degeneration in a feedforward cycle of neurodegeneration and

inflammation (149, 152).

Braak’s hypothesis of PD suggests that the disease arises because

of the presence of a pathogen in the gut and nasal cavity, before

spreading towards and within the CNS (153–156). Mechanisms of

neuroimmune crosstalk and the prevention of PD progression from

the periphery into the brain are therefore essential components of

research into improved therapeutic outcomes. The progression of the

peripheral immune response into the brain during PD occurs due to

the damaged integrity of the BBB, which leads to its increased

permeability. This may be induced by ɑ-synuclein facilitated by

astrocytic signalling (157, 158), or as a result of peripheral

inflammation (159). A recent study has shown that the infiltration

of lymphocytes into the brain parenchyma is mediated by BAMs

residing in the choroid plexus and meninges, indicating a role for

brain-border immune niches in facilitating neuroinflammation (14).

In mice overexpressing ɑ-synuclein, BAMs were also observed to

interact with ɑ-synuclein fibrils, present MHC-II complexes, and to

colocalise with CD4+ T cells in the perivascular spaces. These

processes have been suggested to initiate T cell antigen recruitment

and parenchymal entry, providing a possible mechanism for immune

cell entry into the brain during the early stages of PD that precedes

neurodegeneration facilitated by ɑ-synuclein. Critically, this study

also reported the presence of BAMs in close proximity to T cells in

postmortem PD brain samples, suggesting that processes occurring in

perivascular spaces are consistent in both animal models of the

disease and human patients. Targeting these regions to prevent

central neuroinflammation may therefore be a promising route of

therapeutic intervention for PD.

Recently, diffusion tensor imaging (DTI) analysis in human PD

patients has provided strong evidence that glymphatic system
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dysfunction occurs with PD progression (160, 161), and reduced

meningeal lymphatic vessel flow has also been observed in

idiopathic PD patients via MRI (162). Studies have looked to

explore whether these changes to the glymphatic system amplify

PD pathology. The accumulation of ɑ-synuclein in human patients

has been shown to result in delayed lymphatic drainage,

inflammation of the meninges and a reduced concentration of

tight junctions between endothelial cells in the meningeal

lymphatics system (162). In mice overexpressing ɑ-synuclein, the
blocking of meningeal lymphatic drainage indeed exacerbated ɑ-
synuclein accumulation, inflammation, and dopaminergic

neurodegeneration, which heightened motor deficits (163). These

studies highlight a potentially crucial role for immune niches in

both the accumulation and clearance of ɑ-synuclein. Therefore,
targeting these sites during early-stage PD may be useful in

preventing the infiltration of pathology into the brain, whilst

similar intervention during the later stages could be harnessed to

slow disease progression by increasing the clearance of pathological

ɑ-synuclein.
3.3 Multiple sclerosis

MS is a progressive autoimmune demyelinating disorder

affecting approximately 36 per 100,000 people (164). Symptoms

include extreme fatigue, sensory and visual disturbances, ataxia, and

respiratory dysfunction (165). Initial diagnosis of MS is complex,

and often requires a thorough examination of the patient’s family

history, neurological exams, evoked potential tests, lumbar

punctures, and MRI for focal white matter lesions, as according

to the McDonald criteria (166). There are currently no ways to

prevent the progression of the disorder, and patients are expected to

relapse without warning. Corticosteroids are acute treatments that

hasten recovery from relapse, but long-term corticosteroid

treatment does not prevent further relapse (167), prompting the

need for better therapeutic alternatives. Typically, MS can be

classified into four categories depending on the manner of disease

progression: clinically isolated syndrome (CIS), which is diagnosed

when patients first experience neurological symptoms for over 24

hours; relapsing-remitting MS (RRMS), the most common

diagnosis of MS, characterised by alternating periods of active

and inactive disease progression; and the more active, aggressive

primary progressive MS (PPMS) and secondary progressive MS

(SPMS) subtypes.

The precise cause of MS is not known. However, it is believed

that polymorphisms within immune-related genes (168, 169), and

genes affecting myelin susceptibility to inflammatory insult (170),

along with environmental factors, may cohesively contribute to

aberrant lymphocyte activation underlying MS pathology (171,

172). A considerable proportion of MS-associated gene

polymorphisms are found within the human leukocyte antigen

(HLA-DR2) clusters, which reside within the highly polymorphic

MHC-II region. Other reported genes with reported risk alleles

include those encoding for interleukin receptor subunits, such as
Frontiers in Immunology 10
IL2RA and IL7RA (173, 174). Demyelination has also been

associated with macrophage and B cell activity, reactive gliosis,

altered oligodendrocyte progenitor cell (OPC) recruitment and

axonal damage (175).

Compelling evidence suggests that immune cells in the choroid

plexus play a role in the early pathogenesis of MS. In EAE mice, the

number of CD4+ T cells increases in the choroid plexus and remains

elevated throughout disease progression (176). Paracellular

diapedesis of CD4+ T-helper 17 (Th17) cells into the brain

parenchyma appears particularly crucial in the progression of MS

pathogenesis (177), and the infiltration of Th17 cells has been

shown to occur from the choroid plexus specifically. The expression

of the chemokine receptor CCR6 on Th17 cells is necessary for

adherence to CCL20+ choroid plexus epithelial cells, allowing T cells

to pass into the CSF (178). This process appears to be facilitated by

adenosine signalling; knockdown of adenosine A2A receptors in the

choroid plexus has been shown to attenuate diapedesis via

inhibition of the NFkB/STAT3 pathway, leading to reduced

CCL20 expression in the brain parenchyma (179). However, the

diapedesis of effector Th cells (including Th17 cells) in vitro appears

to be independent of CCR6-CCL20 signalling, suggesting that there

might be alternative interactions at play (176). For instance, IFN-

gR1 expressed within the choroid plexus has been shown to reduce

the local expression of adhesion molecules and chemokines,

preventing Th17 cells from infiltrating into the CNS (180). Given

the incomplete understanding of this niche, further research is

required to identify the precise mechanism facilitating Th17 cell

entry into the brain during the pathogenesis of MS.

In addition to the choroid plexus, recent evidence highlights the

significance of immune activity within the meninges in the

pathogenesis of MS. Lymphoid-like follicular structures,

predominantly composed of autoreactive B cells, are frequently

observed adjacent to subpial demyelinating cortical lesions within

the subarachnoid space of SPMS and PPMS patients (181). These

follicular structures tend to be concentrated around the deep cortical

sulci (181). Meningeal APCs have been identified as activators of

CD4+ T cells within these follicles (182). Furthermore, the depletion

of microglia and meningeal macrophages has been shown to reduce

MHC-II and CD80 co-stimulatorymolecule expressions, diminishing

T cell reactivation and proliferation, and consequently halt

demyelination events in EAE mice (183), implicating immune cell

activity at the meninges in MS pathology.

It has been suggested that glymphatic flow becomes impaired at

the perivascular spaces in MS patients. Dilation of the perivascular

spaces is observed in some MS patients, although its correlation to

severity of MS and the disease progression remains uncertain (184).

In a recent study using DTI to analyse fluid diffusion along the

perivascular spaces, a negative association between diffusivity index

(a proxy for glymphatic function) and disease duration was

observed at the onset of disease course, suggesting an early

impairment of glymphatic clearance in MS patients (185).

Another study has suggested that metabolic dysfunction in

perivascular astrocytes may result in the diffused expression of

AQP4 in astrocytic end feet, and its expression at lesion sites has
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been found to decrease in response to immune elements (186).

AQP4 is reported to be an integral component of the glymphatic

system and so its reduced expression is likely to lead to alterations in

glymphatic clearance (187). However, it is currently unknown if

impairment in glymphatic flow and perivascular space dilation are

causal factors in the pathology of MS, or consequences arising from

a physiological response to MS lesions. Consequently, further

investigation is required to determine how glymphatic flow

dysfunction contributes to MS pathology.

The CBM may be another brain-border niche that contributes

to MS pathogenesis. Indeed, PET scans using radioligands for TPSO

have revealed that inflammatory activity tends to be heightened at

the skull base in both EAE mice and MS patients (73). This could

potentially be explained by autoreactive CXCR4+ myelin-reactive T

cells migrating into the bone marrow through ossified skull

meningeal channels to augment myelopoiesis through the CCL5-

CCR5 axis (78). However, it is not currently known why the skull

base specifically is activated, and direct associations between

myeloid cells generated from the CBM and the lymphatics also

remain to be investigated.

Evidence has also implicated structural changes to the

lymphatic system in the pathology of MS. A recent study has

reported the occurrence of profound lymphangiogenesis in EAE

mice following the proliferation of lymphatic endothelial cells at the

nasal lymphatics near the cribriform plate (88). In this study, the

lymphatic endothelial cells were found to have proliferated as a

response to inflammation, and this proliferation has been shown to

depend on vascular endothelial growth factor (VEGF) C signalling

(88, 188, 189), although an alternative mechanism for this process

has been proposed that requires the transdifferentiation of activated

monocytes into lymphatic endothelial cells (190, 191). These

findings demonstrate the occurrence of lymphatic vessel

remodelling in EAE mice, suggesting a potential role for this

process in MS pathology. Indeed, i t i s feasible that

lymphangiogenesis in proximity to the brain could facilitate

greater immune cell infiltration into the brain; a known

contributor to MS progression (178, 192, 193). Other studies have

found evidence that immune activation at specific lymph nodes may

also underlie aspects of MS pathology. Lymph nodes are known as

‘collecting centres’ where APCs come into close contact for priming

T cells (194). The medial and lateral cervical lymph nodes receive

lymphatic fluids from the brain parenchyma and meninges, and

activation of T cells in these regions may contribute to humoral

activation during the early stages of MS pathogenesis (195).

Accordingly, activated cells from the cervical lymph nodes may

re-enter the brain through blood circulation into the dura,

perivascular spaces, or choroid plexus. Here they interact with or

secrete factors such as IFN-g to prompt secondary responses within

these niches, promoting disease progression (195). Excision of

cervical lymph nodes (196) and high-intensity focused ultrasound

in cervical lymph nodes for lymphocyte ablation (197), have both

been shown to significantly reduce relapse severity in EAE mice,

suggesting that this putative disease pathway may be a valid

therapeutic target. The contributions of brain-border immune

niches to the presentation of neurodegenerative diseases are

highlighted in Figure 4.
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4 Considerations in the study and
clinical use of brain-border immune
niches in neurodegenerative diseases

Neurodegenerative diseases are progressive disorders that can

be classified into stages depending on the severity of symptoms and

histological profiles. While current therapies hold some promise for

slowing disease advancement and improving symptoms in initial

stages, they have proved less effective for patients diagnosed in

intermediate and advanced stages. Moreover, the aetiologies of
A
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C
D

FIGURE 4

An overview of the contributions of the brain-border niches to
neurodegenerative diseases. The choroid plexus, cranial bone
marrow (CBM), perivascular spaces and meninges all appear to play
a role in neurodegenerative disease. (A) The choroid plexus serves
as the primary brain-cerebrospinal fluid barrier (BCSFB) and actively
responds to immune factors from both the CSF and the blood
stream. With advancing age and during the inflammatory response,
immune cell populations accumulate within the choroid plexus, and
the BCSFB becomes leakier due to the loss of tight junctions,
potentially facilitating greater peripheral immune cell activation and
infiltration into the brain. (B) In many age-associated
neurodegenerative diseases, high concentrations of inflammatory
factors appear to result in the accumulation of myeloid and
lymphoid cells in the dura, subarachnoid space, and even within the
deep sulci of the cortex, which may perpetuate neurodegeneration.
(C) The CBM is a brain-border niche containing haematopoietic
stem cells, which can differentiate to myeloid and lymphoid cells in
response to a range of immune factors. Evidence suggests that
immune activation in the CBM is associated with various
neurodegenerative diseases. (D) Cortical atrophy and gliosis
associated with neurodegenerative disease may lead to a leaky
blood-brain barrier (BBB), while inflammatory factors from the
parenchyma may induce increased immune cell localisation in
perivascular spaces. Furthermore, dysregulation of glymphatic flow
due to factors such as diminishing arterial pulsations may affect
clearance of metabolic waste and immune cells within the brain
parenchyma, leading to the build-up of neurotoxic molecules within
the brain. Figure created with Biorender.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1380063
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tan et al. 10.3389/fimmu.2024.1380063
these diseases remain elusive, meaning there are limited therapies

for preventing or curing them. In AD and PD, neurodegeneration is

putatively caused by the introduction of misfolded proteins within

the CNS that undergo uncontrolled prion-like propagation and

aberrant aggregation, triggering immune responses (198). Microglia

and astrocytes form a first-line defence against aggregates.

However, this initial neuroinflammatory response from within the

parenchyma may trigger a chain reaction in wider brain-border

niches, which may contribute to disease progression. Therefore, it is

possible that targeting these immune niches could prevent a

secondary immune response and slow disease progression in the

case of AD and PD. For MS, immunosuppression appears effective

as a disease-modifying therapy (DMT), particularly for RRMS and

SPMS (199). However, the precise mechanisms and aetiology of MS

remain unknown, and treatments are therefore limited, particularly

in the case of PPMS. As explained previously, recent findings report

the accumulation of immune cells at the brain-borders in MS,

which may later infiltrate and release immune factors into the CNS

parenchyma (178, 179, 192, 193). Therefore, controlling the

immune buildup at the brain-borders may be an efficient acute

therapy for MS.

Whilst current literature exploring the brain-border immune

system has provided valuable insights, the lack of tools available to

isolate the specific role of each brain-associated immune niche in

any given neurodegenerative disease poses a significant challenge

when attempting to understand their roles in the aetiologies of these

conditions. Moreover, although the targeting of immune niches for

the treatment of neurological diseases may seem like a promising

therapeutic approach, a similar lack of tools to deliver isolated

treatment delivery into specific immune niches makes this difficult

to achieve at present. Consequently, it is important to consider

caveats of current approaches to explore the roles of these immune

niches in health and disease, and how we may address these

limitations in future investigation and clinical application.
4.1 Challenges associated with the study of
immune niches in
neurodegenerative disease

To effectively target brain-border immune niches in the

treatment of neurodegenerative disease, it is important to

understand how these function in health. However, studying

these niches in humans is fraught with ethical limitations. Due to

the highly invasive nature of biopsies required to access the brain

and its bordering regions, investigation of these regions in humans

is typically limited to donated post-mortem samples (200, 201).

Although valuable, these likely do not represent a true cross-section

of healthy tissues across the population, as it is possible that the

manner of death may affect the cellular/molecular profile of

samples. Similarly, post-mortem diseased tissue is typically only

available from late-stage or terminal disease donors, neglecting the

dynamical nature of neurodegenerative diseases and the range of

immune states they inhabit during their progression. The relatively

small sample sizes this issue produces limits the power of findings

derived from post-mortem samples. These studies also require strict
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RNA, and protein contained within the brain. However, this can be

difficult to achieve due to pre-mortem events, such as hypoxia, and

post-mortem delays (202). Because of these difficulties regarding

access to and preservation of human tissue, a large proportion of

studies in this field rely on animal models, in which tissue is more

readily available and experimental conditions are less constrained.

However, these studies also come with significant drawbacks. The

most apparent limitation of animal models is the differences in

neurobiology between model species and humans (203–206).

Indeed, rodents, the primary models in this field, lack the full

complement of glial complexity seen in humans, and certain

vascular and immunological components are also absent (207).

Moreover, their short lifespans limit the development of progressive

diseases (208), potentially leading to the incomplete development of

molecular and cellular pathological hallmarks in brain-associated

immune niches. Perhaps because of these reasons, rodent models of

neurodegenerative disease are generally considered poor in terms of

their predictive validity (209). To utilise these models effectively in

the study of immune niche involvement in neurodegenerative

disease, it may be valuable to attempt further reverse-translational

studies using non-invasive neuroimaging methods, that are

currently used in humans, in rodent models (in which high

fidelity data is readily available for comparison) to validate their

use in humans.
4.2 Monitoring the activity of immune
niches through functional and
structural imaging

Imaging modalities used for the formulation of diagnoses and

prognoses of neurological diseases can provide detailed information

about structural or physiological brain changes; due to their non-

invasive nature, they are among the most utilised tools to conduct

clinical studies and evaluate neurological disease progression.

Anatomical imaging techniques such as computed tomography

(CT) or MRI may be combined with functional imaging using

PET or DTI, respectively, for acute visualisation of aberrant

physiological changes in patients. For example, MRI coupled with

DTI along the perivascular space (DTI-APS) showed that decreased

diffusivity index correlated with increased perivascular burden in

both AD and PD patients (161, 210), suggestive of reduced

glymphatic flow. On the other hand, the use of CT combined

with PET tracers specific to cells of the myeloid lineage is currently

being investigated in preclinical studies concerning AD and MS.

Examples of promising PET radiotracers include those binding to

TSPO (73, 211, 212), GPR84 (213), and triggering receptor

expressed on myeloid cells 1 (TREM1) receptor (214), while

lymphoid tracers include nanoparticle conjugated CD-19

monoclonal antibodies for B cells (215) and FAraG for T cells in

EAE models (216). However, despite their utility, these techniques

are not without their limitations. MRI/CT and PET lack the spatial

resolution to precisely measure single-cell changes and interactions

within these niches triggered by neuroinflammation (217, 218).

This makes it challenging to attribute inflammatory functions to
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specific cell types and their interactions within immune niches,

which likely form an important part of the aetiology of

neurodegenerative diseases. Furthermore, whilst PET scanning

may be able to provide valuable information about specific

disease-relevant cell populations or biomarkers over larger areas,

the utility of the tracers used is limited to our understanding of their

biology. For example, TSPO, which is one of the most widely

utilised PET markers in the study of neuroinflammation, is

known to be upregulated by astrocytes and microglia upon their

activation and by infiltrating macrophages (219), however, its

sources from the periphery are less well understood. This brings

into question the source and specificity of TSPO signal in the CNS,

in studies using radioligands for this marker (220, 221).

Consequently, the lack of specificity and our understanding of the

origins of these markers limits our ability to understand the roles

and interactions of immune-related molecules or immune cell types

in these niches. However, it is expected that with further

development of neuroimaging techniques and increased

understanding of relevant molecular biomarkers, studies in

humans will soon provide more reliable data as to the cellular

and molecular makeup of these niches in both disease and health,

facilitating their use in disease diagnosis, progression, and

clinical study.
4.3 Promoting glymphatic flow and
metabolic waste clearance

The obstruction of glymphatic pathways is a common hallmark

of neurodegenerative disease that results in failure to clear

metabolic waste, thus leading to the accumulation of immune

cells within the perivascular spaces. Therefore, it is hypothesised

that increasing glymphatic clearance may be a promising

therapeutic approach, as it would allow the removal of aggregates

and toxic metabolites from the brain parenchyma.

Studies have shown that stiffening of the arteries may lead to

impedance of glymphatic flow in a hypertensive rat model (222).

Controlling hypertension may therefore be an effective method for

treating individuals with glymphatic obstruction associated with

neurodegenerative disease, particularly in age-associated dementia,

as age is positively correlated with arterial stiffness (223). Non-

pharmacological interventions to control hypertension involve

lifestyle changes such as weight loss, increased cardiovascular

exercise, dietary changes, and reduced salt intake (224).

Pharmacological options for treating hypertension include

diuretics, angiotensin-II-receptor antagonists (sartans), beta-

blockers, and calcium-channel blockers (225).

Current studies have also revealed several other promising

agents that may aid in improving glymphatic flow. VEGFC is a

lymphangiogenic factor that has been shown to improve glymphatic

drainage (126, 226), and therefore potentially enable the clearance

of Ab from the brain parenchyma. Vasoconstrictors, such as a2-

adrenergic agonists, may be used to dilate the glymphatic channels

for intrathecal lumbar administration of medications (227),
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may otherwise not be able to cross the BBB or BCSFB.

In addition to using drugs or biologics, clearing obstructed

glymphatic channels has also been achieved in animal models using

mechanical methods such as focused ultrasound treatment in

combination with microbubbles (FUS-MB) (122), and non-

invasive neuronal stimulation techniques, such as transcranial

magnetic stimulation (TMS) or multisensory stimulation (228,

229). A recent study using the 5xFAD AD mouse model showed

that treatment with FUS-MB led to enhanced solute Ab clearance

from the brain, first into the CSF space and then into the deep

cervical lymph nodes, which correlated with improved memory

functions (122). These findings suggest that non-pharmacological

treatment methods, such as transcranial magnetic stimulations at

clinics, coupled with multisensory interventions at home, may also

be viable therapeutic approaches to promote impaired glymphatic

clearance and thus improve disease symptomology in AD patients.
4.4 Preventing immune cell infiltration into
the brain parenchyma

The infiltration of immune cells into the brain parenchyma is a

significant event associated with neuronal atrophy in numerous

neurodegenerative disorders (230, 231). Once within the brain

parenchyma, activated lymphocytes release inflammatory cytokines

that impair neuronal function, whilst invading myeloid cells are also

known to release various cytotoxic and neuroinflammatory factors.

Consequently, the specific mechanisms that modulate immune cell

invasion into, or egress out of, the brain parenchyma hold promise as

potential therapeutic targets.

Neutrophil migration into the brain parenchyma has been

observed using PET scans in transgenic AD models (232).

Neutrophil depletion or the inhibition of neutrophil trafficking

via lymphocyte function-associated antigen 1 (LFA-1) blockade

has been shown to reduce AD–like neuropathology and improve

memory in mice already showing cognitive dysfunction (124). This

indicates that the prevention of neutrophil trafficking to the brain

parenchyma may be a valid therapeutic approach for the treatment

of AD. Similar approaches, for example, the modulation of a4-
integrin-mediated trafficking, have shown promise in the treatment

of amyotrophic lateral sclerosis (ALS). a4-integrin is a

heterodimeric cell surface marker for leukocytes and is reported

to be important in facilitating the migration of leukocytes into the

brain parenchyma after neural inflammation or injury (233).

Studies have shown that intraperitoneal injection of natalizumab,

an anti-a4-integrin monoclonal antibody, is able to block the

infiltration of T cells and natural killer cells into the CNS of an

ALS mouse model, effectively preventing inflammation and

cytokine release in the brain parenchyma and preserving motor

function (231). Ultimately, more research is needed to determine

the potential of immune-trafficking-modulating therapies in the

treatment of human neurodegenerative disease, but initial findings

are promising.
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4.5 Modulating cranial bone marrow-
derived cell populations

In the context of treating neurodegenerative disorders, there

have been several significant findings regarding immune activity at

the CBM. For example, polymorphonuclear Ly6G+ monocytes and

neutrophils derived from the CBM have been observed to modulate

the function of other adaptive immune cells, thereby exhibiting an

immunoregulatory role, in contrast to infiltrating Ly6G+ cells

derived from the blood, which have been reported to display a

more inflammatory phenotype (76). These findings therefore

provide evidence for the existence, and thus potential

manipulation, of immunoregulatory cells from the CBM for

therapeutic purposes. What is more, in mice recovering from

EAE, Ly6G+ cells have been observed to become recruited to the

meninges, where they are converted to myeloid-derived suppressor

cells (MDSCs), ultimately suppressing CD138+ B cell accumulation

in the meninges (234). This recruitment and conversion process

points to the existence of an endogenous mechanism mitigating

neuroinflammation in the context of neurodegenerative disease.

Indeed, Ly6G+ cells are known to be converted to MDSCs through

the activation of the STAT3-dependent signalling pathway (234),

therefore providing a precise molecular target for therapeutic

intervention in this process. Furthermore, compounds such as

cannabidiol and IFN-b have been shown to promote the

localisation of MDSCs in the meninges (234), and improve their

suppressive functions (235). Furthermore, transcranial application

of CXCR4 antagonist AMD3100 into the CBM has been shown to

facilitate the migration of Ly6G+ cells into the dura mater

(76), indicating that manipulation of MDSCs at the CBM

may be a viable strategy for mitigating neuroinflammation in

neurodegenerative disorders.

However, specifically modulating CBM-derived cells effectively

and precisely may prove to be challenging due to the technical

difficulty of accessing the CBM and isolating and targeting specific

cell types or molecular targets within this niche. Additionally, the

exact routes by which CBM-derived cells are given access to the

brain parenchyma have not been fully elucidated, meaning it is

unclear how effective the delivery therapeutics via this channel

would be (or to precisely where in the brain they would be

delivered). Osseous channels have been suggested to display

heterogenous plasticity throughout life in a region-dependent

manner, although their expression and how this is changed

during ageing and neurological disease presentation has not been

well-characterised (128). A more comprehensive understanding of

these mechanisms is essential to facilitate therapeutic advances

associated with targeting of the CBM.
4.6 Directed and intranasal delivery of
drugs and biologics

Injections of drugs into the choroid plexus and ventricular

system to allow delivery into the brain parenchyma is a promising

way of bypassing the BBB, although therapeutic effects are reported
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to be limited by diffusion distance, particularly during the targeting

of deeper tissue regions (236, 237). Studies have suggested that

directed drug delivery into the meninges may exert more

widespread effects to brain parenchymal regions (123). However,

these findings have so far been restricted to rodent models, and it

remains to be seen whether their impact will be as effective in

human brain tissue (238). Additionally, the way in which CSF flow

is disrupted due to neurodegenerative disease is not

comprehensively understood, and factors that influence CSF flow

have not been fully described (237), therefore limiting the

advancement of therapeutics associated with drug delivery into

the choroid plexus and meninges.

In recent years, there has been a growing interest in

intranasal delivery, using agents such as adeno-associated viruses

(AAVs) and nanoparticles, as an alternative, non-invasive

method for administering therapeutics to the brain to address

neurodegenerative diseases. Notably, the olfactory mucosa in the

nasopharynx region serves as a highly accessible region for drug

penetrance (85). This approach provides numerous advantages for

brain-border-focused treatment: it is non-invasive, and the presence

of highly vascularised lymphatic vessels in the nasal mucosa allows

the administered agent to swiftly enter the lymphatic system.

Additionally, intranasal administration reduces first-pass

metabolism at the liver compared to intravenous delivery. Agents

administered intranasally can directly affect the lymphatic

endothelium and olfactory bulb by modulating the release of

inflammatory cytokines (239). Moreover, agents can travel

through the lymphatics to reach the cervical lymph nodes,

potentially targeting immune cells for gene therapy and precise

immunotherapy. In addition to targeting brain-border niches,

intranasal applications offer the benefits of either direct or

indirect delivery into the brain. Preclinical studies in mice have

shown that combining EGFP-AAV delivery with methods like FUS-

MB can effectively target specific brain regions with higher efficacy

compared to similar treatments via intravenous injections

(240, 241).

However, the effectiveness of intranasal delivery is hindered by

the rapid clearance of nasal passages due to mucociliary movement,

which reduces the bioavailability of administered treatments. To

circumvent this limitation, efforts have been made to coat particles

with mucoadhesive substances and/or to co-administer enzymes,

thus improving drug bioavailability (242, 243). Further research is

required to develop novel nanocarriers for improved intranasal

drug delivery, whilst ensuring that unintended adaptive responses

are not provoked by such techniques.
5 Conclusion

Over the last century, understanding of the barriers

surrounding the brain has advanced considerably, from initial

beliefs that the brain was encompassed by an absolute,

impermeable barrier, to more recent studies revealing the

presence of brain-border immune niches. Crucially, modern-day

studies have demonstrated a much greater degree of immune
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communication between the periphery and CNS than was

previously believed. Indeed, peripheral immune cells that

accumulate in brain-border regions appear to play an important

role in neuroinflammatory processes via the facilitation of immune

cell entry into the CNS. This has been reported to occur in several

brain-border immune niches, including the choroid plexus, the

meninges, and the perivascular spaces. Furthermore, the CBM is

also the subject of considerable interest due to the discovery that its

immune cells and immature progenitors can enter the brain via

ossified channels, whilst the nasal lymphatic system contributes to

the control of immune cell drainage from the brain parenchyma.

With these findings in mind, it is evident that brain-border immune

niches collectively play a significant role in neuroinflammatory

processes occurring in the CNS, as well as in the control of

neuroimmune interactions between the brain and periphery.

Given these significant findings, research into brain-border

immune niches appears to have the potential to advance our

understanding of the pathology of numerous brain conditions, in

particular neurodegenerative diseases, such as AD, PD and MS.

These have all been reported to present with alterations to the

inflammatory response in both the brain and periphery, and

pathological proteins have been observed to accumulate in brain-

border immune niches throughout disease progression. Therefore,

activity at the borders of the brain has been proposed to facilitate

the infiltration of immune cells into the brain, thereby driving the

neuroinflammatory response and thus, contributing to disease

progression. Consequently, developing a greater understanding of

these niches using both animal models and clinical studies may have

significant implications for the diagnosis, prognosis, and

development of novel therapeutics for neurodegenerative diseases,

which currently remain inadequate.

In the past, the development of drugs that can effectively target

the CNS has proven notoriously difficult due to the relative

impermeability of the BBB and BCSFB. However, with further

research, this may soon change. In the next decade, further

investigation into the brain-border niches is expected, with the

potential to shed light on the heterogeneity of each niche at single-

cell resolution or with spatial transcriptomics. These studies have

the potential to reveal the cellular players and immune factors that

contribute to the progression of these debilitative diseases, thereby

leading to the discovery of specific immune-related biomarkers

and potential therapeutic targets. Moreover, continuous

advancements in imaging resolution and the development of

novel PET radioligands are likely to enable earlier diagnosis of

neurodegenerative diseases and be effective in determining disease

classification and improving prognosis. Additionally, it is important

to note that brain-border niches themselves provide opportunities

for therapeutic intervention. Protection against disease-

exacerbating neuroinflammation may be achieved by preventing

immune cell infiltration from brain-border niches into the
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parenchyma, or by modulating the function of CBM-derived

suppressor cells. Alternatively, evidence also suggests that

promoting glymphatic flow may represent another therapeutic

avenue, aiding in the removal of pathological proteins from the

brain parenchyma and immune niches. Finally, the CBM and

nasopharyngeal lymphatic plexus may act as alternative access

routes for drugs to enter the brain, for example via intranasal

delivery, and thus are beginning to emerge as less-invasive routes of

delivery to the CNS for promising new therapeutics.
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mesothelium divides the subarachnoid space into functional compartments. Science.
(2023) 379:84–8. doi: 10.1126/science.adc8810
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205. Marıń-Moreno A, Canoyra S, Fernández-Borges N, Espinosa JC, Torres JM.
Transgenic mouse models for the study of neurodegenerative diseases. Front Biosci
Landmark Ed. (2023) 28:21. doi: 10.31083/j.fbl2801021

206. Yeo XY, Cunliffe G, Tang J, Gigg J, Li Z, Jung S. Preclinical Modeling of
Alzheimer’s disease - Success and Limitations. Alzheimer's Disease and Treatment
(2021). pp. 1–29.

207. Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity
distinguishes the human brain. Trends Neurosci. (2006) 29:547–53. doi: 10.1016/
j.tins.2006.08.004

208. Götz J, Bodea L-G, Goedert M. Rodent models for Alzheimer disease. Nat Rev
Neurosci. (2018) 19:583–98. doi: 10.1038/s41583–018-0054–8

209. Franco R, Cedazo-Minguez A. Successful therapies for Alzheimer’s disease: why
so many in animal models and none in humans? Front Pharmacol. (2014) 5:146.
doi: 10.3389/fphar.2014.00146

210. Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, Yasuno F, et al.
Evaluation of glymphatic system activity with the diffusion MR technique: diffusion
tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease
cases. Jpn J Radiol. (2017) 35:172–8. doi: 10.1007/s11604-017-0617-z

211. James ML, Fulton RR, Henderson DJ, Eberl S, Meikle SR, Thomson S, et al.
Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET
radioligand. Bioorg Med Chem. (2005) 13:6188–94. doi: 10.1016/j.bmc.2005.06.030

212. Boutin H, Chauveau F, Thominiaux C, Grégoire M-C, James ML, Trebossen R,
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