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Loss of TET2 increases B-1 cell
number and IgM production
while limiting CDR3 diversity
Emily Dennis1,2†, Maria Murach1,3†, Cassidy M.R. Blackburn1,
Melissa Marshall 1, Katherine Root1, Tanyaporn Pattarabanjird1,
Justine Deroissart4, Loren D. Erickson1,2, Christoph J. Binder4,
Stefan Bekiranov1,3 and Coleen A. McNamara1,5*

1Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville,
VA, United States, 2Department of Microbiology, Immunology, and Cancer Biology, University of
Virginia, Charlottesville, VA, United States, 3Department of Biochemistry and Molecular Genetics,
University of Virginia, Charlottesville, VA, United States, 4Department for Laboratory Medicine,
Medical University of Vienna, Vienna, Austria, 5Division of Cardiovascular Medicine, Department of
Medicine, University of Virginia, Charlottesville, VA, United States
Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2),

an epigenetic modulator, in regulating germinal center formation and plasma cell

differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely

unknown. Here, B-1 cell subset numbers, IgM production, and gene expression

were analyzed in mice with global knockout of TET2 compared to wildtype (WT)

controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and

B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone

marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but

not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk

RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced

expression of heavy and light chain immunoglobulin genes, predominantly in

B-1a cells from TET2-KO mice compared to WT controls. As expected, the

expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet,

only in B-1a cells there was a significant increase in the proportion of IgM

transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR

revealed an increased abundance of replicated CDR3 sequences in B-1 cells from

TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b

cells. V-D-J usage and circos plot analysis of V-J combinations showed

enhanced usage of VH11 and VH12 pairings. Taken together, our study is the

first to demonstrate that global loss of TET2 increases B-1 cell number and IgM

production and reduces CDR3 diversity, which could impact many biological

processes and disease states that are regulated by IgM.
KEYWORDS

innate B cells, B-1 cells, ten-eleven translocation-2 (TET2), natural antibodies (Nab),
immunoglobulin M (IgM), B cell receptor (BCR), complementarity-determining region-
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Introduction

B cells participate in both innate and adaptive immunity

through the secretion of antibodies. B cells are broadly divided

into B-1 and B-2 subtypes. B-2 cells are derived from hematopoietic

progenitor cells in the bone marrow (BM) and function

predominantly in T cell-dependent responses for antibody

production (1, 2). B-1 cells originate during early fetal life, are

long-lived, and self-renew (3–6). B-1 cells can be found

predominantly in serosal spaces such as the peritoneal cavity

(PerC) or the pleural cavity but can also be found in secondary

lymphoid organs such as the spleen, lymph nodes, and the BM (7).

B-1 cells are further subtyped into B-1a or B-1b cells depending on

the expression of CD5 (B-1a are CD5+). B-1 cells produce about

80% of circulating serum IgM (immunoglobulin M). A low level of

IgM is produced by B-1 cells in serosal cavities, and the majority of

circulating serum IgM is produced by B-1 cells in the spleen and

BM (8–10). IgM antibodies produced by B-1a cells are thought to be

naturally occurring (i.e., present at birth, in gnotobiotic mice and

without antigen exposure) (11–13). These natural antibodies

provide rapid protection from infections and maintain tissue

homeostasis through apoptotic cell clearance (10, 14). However,

recent evidence identified the VDJ region in B-1a cells as having N

additions (3, 15–18), an event due to the action of the DNA

polymerase TdT which is only expressed after birth. This suggests

more complexity to the regulation of the CDR3 in B-1a cells than

previously thought.

The TET family of proteins act enzymatically as a-
ketoglutarate-dependent cytosine dioxygenases that promote

DNA demethylation by oxidizing the methyl group of 5-

methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) (19–

21). The methylation status of DNA is important in recruiting

proteins for gene repression or inhibition of transcription factor

binding. Additionally, TET proteins enlist chromatin-modifying

proteins to histones, which can affect gene expression via physical

accessibility for transcription (22, 23). Thus, TET proteins are

potent epigenetic modulators. TET2 is involved in hematopoietic

cell development and differentiation (24–26). Dysfunction in TET2

is well characterized in hematological malignancies including acute

myeloid leukemia (AML) (27–30) and myelodysplastic syndrome

(MDS) (30–34). TET2 loss can affect inflammatory responses via

altered cytokine secretion (35, 36) and other biological processes in

myeloid cells (26, 30, 37–40). TET2 has also been implicated in B

cell lymphomas (22, 41–47). Most studies of TET2 in B cells

primarily focused on B-2 cells and suggested reduced production

of high-affinity IgG (42–44). Only one study to date has briefly

investigated TET2 loss in B-1 cells, and that was with a focus on

diffuse large B cell lymphoma and chronic lymphocytic leukemia

development (46). In contrast, our study focuses on B-1 cells in

young mice without evidence of tumor, allowing for the

identification of key homeostatic processes that may be altered by

loss of TET2. Our novel findings characterize the impact of global

loss of TET2 on B-1 cell biology at homeostasis, revealing that

global TET2 loss leads to increased B-1 cell number, IgM
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production, and the number of replicated complementarity-

determining region 3 (CDR3) sequences, which could impact

diseases that are modulated by IgM antibodies to specific antigens.
Materials and methods

Mice

All animal protocols were approved by the Animal Care and

Use Committee at the University of Virginia. TET2-KO mice (24)

were provided by Dr. Kenneth Walsh (University of Virginia). The

model was generated by Ko et al. and targeted the endogenous TET2

locus to create a conditional allele that enabled the deletion of exons

8, 9, and 10, the catalytic region of TET2 (24). Mice were

maintained on a 12-h light/dark schedule in a specific pathogen-

free animal facility and given food (standard chow diet, Tekland

7012) and water ad libitum. The number of mice included in each

study is indicated in the figures or the associated legends.
Sample preparations for flow cytometry
and live cell sorting

Bone marrow, spleen, and peritoneal cavity cells were processed

for flow cytometry as previously described (48). Briefly, following

sacrifice by CO2 overdose, peritoneal cells were harvested by flushing

the peritoneal cavity with 10 mL FACS buffer (PBS containing 1%

BSA, 0.05% NaN3). The spleen and one femur and tibia were

removed. Spleens and flushed bone marrow were filtered through a

70 mm cell strainer. Red blood cells were lysed from single-cell

suspensions of bone marrow and spleen using a lysis buffer

containing 155 mM NH4Cl, 10 mM KHCO3, and 0.1 mM EDTA.

Cell surface Fc receptors were blocked using anti-CD16/32 (clone:93,

4 eBioscience), then cells were stained with fluorescently conjugated

antibodies against cell surface markers. Cells were stained with fixable

Live/Dead Zombie NIR (Life Technologies) for dead cell

discrimination, then fixed in 2% PFA in PBS. For FAC sorting,

cells were resuspended in modified FACS buffer (PBS with 1% BSA)

and 4’,6-Diamidino-2-Phenylindole (DAPI) live/dead stain then

immediately taken to the University of Virginia Flow Cytometry

Core for sorting. B-1a and B-1b cells were sorted to better than 99%

purity from their parent gate. Clone and fluorophore information for

the flow cytometry antibodies used in murine experiments to

immunophenotype or FAC-sort B cell subsets are given in

Tables 1, 2 respectively. All flow cytometry was conducted at the

University of Virginia Flow Cytometry Core Facility.

Immunophenotyping was performed on an Aurora Borealis 5-laser

(Cytek) cytometer. FAC-sorting was performed on an Influx Cell

Sorter (Becton Dickinson). Data analysis and flow plots were

generated using OMIQ software (Dotmatics). Representative flow

plots were chosen based on the samples whose population

frequencies were closest to the mean for that group. Gates on flow

plots were set using fluorescence minus one (FMO) controls.
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ELISA for quantification of total IgM
in mice

Total IgM in mouse plasma was measured using colorimetric

ELISA as described previously (48). Briefly, EIA/RIA high-

binding microplates were coated with goat anti-mouse IgM,

capture antibody (Southern Biotech, 1020-01). Mouse IgM

standards (Southern Biotech, 0101-01), or plasma samples were

detected with alkaline phosphatase-conjugated goat anti-mouse
Frontiers in Immunology 03
IgM secondary antibody (Southern Biotech, 1020-04); and pNPP

substrate (Southern Biotech 0201-01). Absorbance measurements

were analyzed with a SpectraMAX 190 microplate reader

(Molecular Devices) at 405 nm. The standard curve was

determined using a 4-parameter function and concentration

measurements were extrapolated using Softmax Pro 3.1.2

software. Only samples with CV<15% and within the standard

curve were included in the analysis.
Sample preparation for bulk
RNA sequencing

Peritoneal B-1a, B-1b, and B-2 cells obtained from TET2-KO

and TET2-WT C57BL/6 mice were sort-purified directly into RLT

Plus Buffer (Qiagen). RNA and DNA were extracted using the

Qiagen AllPrep kit. The purified RNAs were stored at −80°C before

being sent to Novogene for sequencing. Total RNA was stored in

RNase-free water to directly synthesize first strand, followed by the

whole-length LD-PCR amplification. The amplified ds-cDNA

(double-stranded DNA) was purified with AMPure XP beads and

quantified with Qubit. The cDNA samples were sheared by the

Covaris system, and then the sheared fragments were end-repaired,

A-tailed, and ligated to sequencing adaptors. A size selection of

about 200 bp was performed before the PCR enrichment. Library

concentration was first quantified using a Qubit 2.0 fluorometer

(Life Technologies), and then diluted to 2 ng/µl before checking

insert size on an Agilent 2100 and quantifying to greater accuracy

by qPCR. Ultra-low input bulk RNA sequencing was performed on

the NovaSeq 6000 PE150 (Illumina).
DEG and pathway analysis

The quality trimming was performed using fastp (49) with

default settings. Mapping to the GRCm39 genome was performed

with STAR (50), followed by featureCounts (51) to count reads

mapped to genes. DESeq2 (52) was used for differential analysis,

followed by pathway analysis using clusterProfiler (53) with the

Gene Ontology (GO) (54) database.
BCR analysis

For BCR analysis, quality trimming was performed using fastp

(49) and TRUST4 (55) was subsequently used to identify BCR

repertoire in paired sequencing reads using the international

ImMunoGeneTics (IMGT) information system database as a

reference. Results were analyzed using R and circus plots were

made using circos Bioconductor package (56). The code developed

for these analyses will be available on the following Github page:

https://github.com/mariamurach/TET2 and https://github.com/

mariamurach/bcr_R.
TABLE 2 The FACS panel used for sorting B cell subsets from the
peritoneal cavity presented in Figure 2.

Marker Fluorophore Clone Vendor

IgD FITC 11-26 eBioscience

CD5 PE 53-7.3 eBioscience

CD23 PE-CY7 B3B4 eBioscience

B220 APC RA3-6B2 eBioscience

CD19 APC-EF780 1D3 eBioscience

DAPI Staining Solution Miltenyi Biotec
TABLE 1 The immunophenotyping panel used for flow cytometry results
presented in Figure 1.

Marker Fluorophore Clone Vendor

CD45 PerCP 30-F11 BD

B220 APC RA3-6B2 eBioscience

CD19 APCefl780 1D3 eBioscience

IgM PECF594 R6-60.2 BD

IgD efl450 11-26 eBioscience

CD8 BV510 53-6.7 BioLegend

CD4 PECy5.5 GK1.5 SouthernBiotech

CD44 BV785 IM7 BioLegend

CD62L BV570 MEL-14 BioLegend

CD25 BB515 PC61 BD

F4/80 PECy7 BM8 eBioscience

CD11b PerCPCy5.5 M1/70 BD

CD11c AF647 N418 BioLegend

CD138 PE 281-2 BD

Ly6c BV711 HK1.4 BioLegend

NK1.1 BV480 PK136 BD

CD5 BV605 53-7.3 BD

CD21 FITC 4E3 eBioscience

CD23 BUV737 B3B4 BD

Zombie NIR Fixable Viability Dye BioLegend
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Statistics

In Figures 1, 3D, 4C, comparisons were conducted between the

TET2-KO and WT strains using Prism 10.0 with unpaired, two-

tailed Mann-Whitney U-tests. Values shown are mean ± SD. In

Figures 3B, 4A Wilcoxon Rank Sum and Signed Rank Tests were

used to determine the significance of differences in proportions of

unique CDR3 sequences, isotypes, and usages of specific V, D, and J

chains between TET2-KO and WT groups. In Figure 5B, chi-

squared test was performed to assess the significance of the

association between the number of unique CDR3 amino acid

sequences in B-1a and B-1b cells from TET2-KO and WT mice.
Frontiers in Immunology 04
Results

Global loss of TET2 results in increased
numbers of all B cell subtypes in the
peritoneal cavity compared to WT

To determine the impact of the loss of TET2 on major immune

cell subtypes in the peritoneal cavity, BM, and spleen of TET2-KO

and littermate control mice, spectral flow cytometry was performed

(Figure 1). B cells were defined as CD45+ CD19+; T cells were

defined as CD45+ CD5+ CD19-; Macrophages (Macs) were defined

as CD45+ CD5- CD19- F4-80+ CD11b+; and NK cells were defined
B C

D E F

G H I

J K L

A

FIGURE 1

Immune subtypes in TET2-KO compared to WT mice. (A-L) Flow cytometry characterization of the number and frequency of immune cell types in the (A,
D) peritoneal cavity; (B, E) bone marrow; (C, F) spleen. Deeper gating into B cell subset frequency and number in the (G, J) peritoneal cavity; (H, K) bone
marrow; (I, L) spleen, respectively, from TET2-KO (n = 6) and WT (n = 6) mice. Blue and orange represent WT and TET2-KO mice, respectively. Data are
representative of four independent experiments. Significance was determined with two-tailed Mann-Whitney U-tests (*p < 0.05, **p < 0.01).
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as CD45+ CD5- CD19- NK1.1+ (Supplementary Figure 1).We found

that there was a higher B cell frequency and number in the peritoneal

cavity (Figures 1A, D), but not in the BM (Figures 1B, E) or spleen

(Figures 1C, F) of TET2-KO mice compared to controls. Numbers of

T cells (p-value = 0.0043), and NK cells (p-value = 0.0152) from

TET2-KO mice in the peritoneal cavity (Figure 1D) were also greater

than controls. There were no significant differences in immune cell

numbers from TET2-KOmice in the bone marrow (Figure 1E), while

in the spleen there was a trending increase in B cells (p-value =

0.0649) with a significant increase in T cells (p-value = 0.0260) and a

trending increase in NK cells (p-value = 0.0649) compared to WT

(Figure 1F). Upon examination of B cell subsets specifically, we found
Frontiers in Immunology 05
that in the peritoneal cavity, all B cell subsets were significantly

increased in frequency (B-1a p-value = 0.0152, B-1b p-value = 0.0411,

B-2 p-value = 0.0260) and in number (B-1a p-value = 0.0022, B-1b p-

value = 0.0043, B-2 p-value = 0.0022) in TET2-KOmice compared to

WT (Figures 1G, J). However, in the BM (Figures 1H, K) only the B-

1a cell subset frequency was significantly increased in TET2-KO

compared to WT mice (p-value = 0.0260). In the spleen (Figures 1I,

L) B-1b cells but not B-1a cells were elevated in both frequency and

number (B-1a p-value = 0.0173, B-1b p-value = 0.0043). There was

no difference in TET2-KO B-2 cell frequency in the spleen, although

the total number of B-2 cells was significantly increased (p-value

= 0.0260).
B

C D

A

FIGURE 2

RNASeq analysis of differentially expressed genes in peritoneal B-1a and B-1b cells from TET2-KO and WT mice. (A) Schematic of experimental design.
B-1a and B-1b cells from the peritoneal cavity of TET2-KO and WT mice were sort-purified and RNA-extracted for RNASeq. (B) Gating strategy for sort.
B-1a cells are CD19+, IgD-lo, CD23-lo, B220-lo, CD5+ while B-1b cells are CD19+, IgD-lo, CD23-lo, B220-lo, CD5-. (C, D) Differentially expressed
genes are visualized with volcano plots of the B-1a (C) and B-1b (D) cells from TET2-KO mice compared to WT. Color legend for volcano plots: Grey –

NS, Green: log2FC > 1, Blue: p-value < 0.05 and log2FC < 1, Red: p-value < 0.05 and log2FC > 1. n: B-1a: WT = 4, KO = 4, B-1b: WT = 4, KO = 3. All p-
values are False Discovery Rate (FDR)-adjusted. Figure schematic made with BioRender.
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Peritoneal B-1a cells from TET2-KO mice
have lower expression of immunoglobulin
genes compared to WT

To identify genes differentially expressed in B cell subtypes in

mice with TET2-KO compared to WT control, we performed RNA-

sequencing (RNASeq) on sort-purified peritoneal B-1a and B-1b

cells from TET2-KO and WT mice (Figures 2A, B; Supplementary

Figure 2). We utilized peritoneal B-1 cells due to their abundance in

this specific niche, as well as due to the phenotypic changes we
Frontiers in Immunology 06
observed in Figure 1. We found that the global knockout of TET2

had a more significant impact on gene expression within B-1a cells

compared to B-1b cells. Specifically, we observed a downregulation

in the expression of several immunoglobulin genes in B-1a cells

(and to a lesser extent in B-1b cells) from TET2-KO mice compared

to their WT counterparts (Figures 2C, D; Supplementary Figure 3).

Consistent with this finding, Gene Set Enrichment Analysis (GSEA)

revealed that TET2 loss markedly affects pathways linked to

immunoglobulin production and immune response activation,

primarily within B-1a cells (Figure 3A). Indeed, the expression of
B C D

A

FIGURE 3

Pathway and Gene Set Enrichment Analysis (GSEA) of peritoneal B-1a cells from TET2-KO mice. (A) Plot of enrichment scores from GSEA on
differentially expressed genes in B-1a cells from TET2-KO and WT mice. The axis represents the enrichment score (ES). Higher scores indicate
greater enrichment of the gene set at one end of the ranked list of genes. ES measure the degree to which a gene set is overrepresented at the
extremes of the entire ranked list. ES are colored based on FDR-adjusted p-values. (B) Scaled expression of genes involved in the production of
molecular mediators of immune response and immunoglobulin production pathways. Each row corresponds to a gene, and each column represents
a WT or TET2-KO sample. The expression was scaled for each gene (from -2 to 2) and is represented by the color red for high and blue for low
expression values. (C) Scaled expression of genes differentially expressed and found on the cell surface. Each row corresponds to a gene, and each
column represents a WT or TET2-KO sample. The expression was scaled for each gene (from -2 to 2) and is represented by the color red for high
and blue for low expression values. (D) Bar chart displaying Median Fluorescence Intensity (MFI) of CD62L (Sell) in peritoneal B-1a cells and B-1b
cells from TET2-KO and WT mice. Blue and orange represent WT (n = 6) and TET2-KO mice (n = 6), respectively. Significance was determined with
two-tailed Mann-Whitney U-tests (*p < 0.05). n: B-1a: WT = 4, KO = 4 for (A-C).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1380641
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dennis et al. 10.3389/fimmu.2024.1380641
numerous V genes (from both heavy and light chains) was

decreased in B-1a cells from TET2-KO mice (Figures 3B, C).

Similarly, the expression of genes involved in the activation of

molecular mediators of the immune response was also decreased in

these cells (Supplementary Figures 3, 5). Interestingly, significant

enrichment in neurotransmitter and synapse-related pathways was

seen in both B-1a and B-1b cells from the TET2-KO animals

compared to the control animals (Supplementary Figure 3B,

These GSEA results provide potential avenues for further

hypothesis-driven studies of the role of TET2 in sensory-neural

control of B cells, an emerging area of potential significance,

recently also connected to cardiovascular disease development via

other immune cells (57–59). Notably, while there are too many

differentially expressed genes (DEGs) to test all at the protein level,

one of the proteins encoded by our DEG, Sell, also known as

CD62L, was also in our flow panel, allowing us to determine if the

change in gene expression was also accompanied by changes in the

protein level. Indeed, consistent with the decrease in CD62L RNA,

we also saw a decrease in CD62L on the surface B-1a and B-1b cells

in TET2-KO mice (Figures 3C, D).
Frontiers in Immunology 07
Global loss of TET2 results in higher
expression of IgM antibody isotype in
peritoneal B-1a cells compared to WT

Using TRUST4, a tool for analyzing the B cell receptor (BCR)

using bulk RNASeq (57) and the IMGT (58) database, we were able to

identify Ig isotype transcripts present in sequencing data and their

distribution across B-1a and B-1b cells from TET2-KO andWTmice

(Figure 4A). We found that there was a statistically significant

increase in the expression of IgM in the B-1a cells from TET2-KO

mice, but we do not see that effect in B1-b cells which is in accordance

with the increase expression of AIDCA, a gene involved in class-

switch recombination (Figure 4B; Supplementary Figure 5). In

contrast, there was not a significant change in the distribution of

IgD, IgG, or IgA isotypes expressed by the different B-1 cells in TET2-

KO and WT mice (Figure 4A). Consistent with the increase in B-1

cells that we observed in niches that support antibody production,

such as the spleen and BM (Figures 1E, F), and the increase in the

IgM transcript in B-1a cells, circulating plasma IgM levels were higher

in the TET2-KO compared to WT mice (p-value = 0.0075)
B

C

A

FIGURE 4

Immunoglobulin isotype analysis in peritoneal B-1a and B-1b cells from TET2-KO and WT mice. (A) Bar chart showing the distribution of Ig isotypes
identified by TRUST4 in B-1a and B-1b cells from TET2-KO and WT mice. (B) Proportion of IgM expression in B-1a and B-1b cells from TET2-KO and
WT mice. (C) Enzyme-linked immunosorbent assay (ELISA) of total IgM (left) and IgG (right) from plasma of TET2-KO (n = 26) and WT (n = 26) mice.
Blue and orange represent WT and TET2-KO mice, respectively. Significance was calculated using Wilcoxon Rank Sum (*p < 0.05, **p < 0.01) for
panel (B) Significance was determined with two-tailed Mann-Whitney U-tests (*p < 0.05, **p < 0.01, ns, not significant) for (C) n: B-1a: WT = 4, KO =
4, B-1b: WT = 4, KO = 3 in (A, B).
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(Figure 4C). Marginal zone B-2 cells (MZB) are another source of

IgM and we did observe an increase in MZB cell number in TET2-

KOmice compared to controls, which could contribute to the overall

increase in circulating IgM (Supplementary Figure 6). We observed

no change in circulating IgG levels.
Global loss of TET2 results in a reduced
number of unique heavy chain CDR3
sequences and an increased number of
replicated heavy chain CDR3 sequences in
peritoneal cavity B-1a cells compared
to WT

To assess differences in the heavy chain BCR repertoire in B-1

cells from TET2-KO and WT mice, we performed an analysis of the

CDR3 sequences using our bulk RNASeq data and TRUST4 (57).

Results demonstrated that in both B-1a and B-1b cells from TET2-

KO mice, CDR3 diversity was reduced compared to WT mice

(Figure 5A). The reduction in CDR3 sequence diversity in the B-1a

cells from TET2-KO mice compared to WT was statistically

significant (p-value = 0.02857) (Figure 5A), while the reduction in

unique CDR3 sequences in TET2-KO B-1b cells compared to WT
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was trending (p-value = 0.05714) (Figure 5A). It is not feasible to

establish the presence of clonal expansion based on bulk RNASeq

data, due to the inability to determine the absolute number of cells

and their level of expression of each Ig transcript at a single-cell

resolution in a given B cell population. However, a high proportion of

replicated sequences suggests the presence of clonally dividing, or

self-renewing B-1a cells, as they are known to do. Here we define

replicated sequences as those whose frequency is greater than 1% of

all sequences. In B-1a cells from TET2-KO mice, we observed that

72% of the CDR3 sequences were replicated, compared to B-1a cells

from WT mice which only had 15% of the total CDR3 sequences

replicated (Figures 5B, 6A). Thirteen unique CDR3 sequences

covered 72% of all CDR3s in B-1a cells from TET2-KO mice, while

4972 CDR3 sequences made up the other 28% of the total number of

identified CDR3s (Figures 5B, 6A). In B-1b cells from TET2-KO

mice, 25% of all CDR3 sequences are made up of 12 unique CDR3

sequences, while 11107 CDR3 sequences made up the rest of the 75%

(Figures 5B, 6B). Differences in the number of replicated unique

CDR3 sequences were significant based on Chi-squared tests for B-1a

(p-value = 3.2x10-13) and B-1b cells (p-value = 3.1x10-6) from TET2-

KO mice compared to WT (Figure 5B). An analysis of the

commonality of replicated CDR3 sequences revealed that there was

minimal overlap in the CDR3 sequence between B-1a cells from
B

C

A

FIGURE 5

Heavy chain CDR3 sequence analysis reveals restricted BCR repertoire in peritoneal B-1a and B-1b cells from TET2-KO and WT mice. (A) The
number of unique CDR3 sequences identified by TRUST4 in B-1a and B-1b cells from TET2-KO and WT mice. (B) Contingency tables derived to
assess the association between the number of unique CDR3 amino acid sequences (left) and total number of CDR3 amino acid sequences (right)
with the mutant status of the mice (i.e., WT or TET2-KO) in B-1a (top) and B-1b cells (bottom). Chi-squared test was used to assess the significance
of these associations. Significance in (A) was calculated using Wilcoxon Rank Sum (*p < 0.05). (C) Venn diagrams that examine the shared repertoire
of unique CDR3 sequences in the different B cell subsets. Blue represents CDR3 AA sequences from B-1a cells from WT mice, orange from B-1a
cells from TET2-KO mice, red B-1b cells from WT mice, and green B-1b cells from TET2-KO mice, respectively. A shared sequence was defined as
one expressed at least once in each of the subsets being compared. The number of shared sequences is represented by the overlapping region in
each Venn diagram. Numbers and percentages of nonshared sequences of each cell subset in every comparison are indicated. For (B, C), sequences
were pooled from mice from the same cell type and condition (n: B-1a: WT = 4, KO = 4, B-1b: WT = 4, KO = 3).
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TET2-KO and WT mice or in B-1b cells from TET2-KO and WT

mice, respectively (Figure 5C). Interestingly, there was a greater

degree of commonality in the CDR3 sequence comparing B-1a and

B-1b cells from TET2-KO mice. We visualized the proportion of

replicated CDR3 sequences across B-1 cell subsets in TET2-KO and

WT mice using pie charts (Figures 6A, B). Consistent with our

findings in Figure 5C, the CDR3 sequences that were most

abundantly represented in B-1a cells from WT mice were

represented in B-1a cells from TET2-KO mice at different

proportions, and there were more similarities in replicated

CDR3 sequences between B-1a and B-1b cells from TET2-KO mice

(Figures 6C–D).

Since antigen binding specificity is not just determined by the

heavy chain CDR3, we performed an analysis of the light chain BCR

repertoire from our bulk RNASeq data with TRUST4. Results

demonstrated that in both B-1a and B-1b cells from TET2-KO

mice, CDR3 diversity was reduced compared to WT mice

(Supplementary Figure 7). The reduction in CDR3 sequence

diversity in the B-1a cells from TET2-KO mice compared to WT
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was statistically significant (p-value = 0.029) (Supplementary

Figure 7A). The reduction in CDR3 sequences in B-1b cells from

TET2-KO mice compared to WT was trending (p-value = 0.133)

(Supplementary Figure 7A). Similar to what we observed in the heavy

chain CDR3 sequences, the number of replicated light chain CDR3

sequences was over 2-fold greater in B-1a cells from TET2-KO

compared to WT mice (Supplementary Figures 7B-D). The

number of unique CDR3 sequences from the light chain accounted

for a similar percentage of total CDR3 sequences as seen in the heavy

chain results in B-1a cells from TET2-KO mice (Supplementary

Figures 7B-D). Differences in the number of replicated unique CDR3

sequences were significant based on Chi-squared tests for B-1a (p-

value = 0.01) and B-1b cells (p-value = 0.02) from TET2-KO mice

compared toWT. While the role of the light chain in antigen binding

and specificity remains less well-known compared to the heavy chain,

it still contributes to those functions (59). These results in the light

chain CDR3 provide additional support that B-1a cells are more

profoundly impacted by loss of TET2 than B-1b cells, and the

diversity of antigen-specific IgMs may be affected as a result.
B

C D

A

FIGURE 6

Heavy chain CDR3 sequence analysis reveals differences in most abundant CDR3 sequences in peritoneal B-1a and B-1b cells from TET2-KO and
WT mice. (A, B) Annotated pie charts depicting the proportion of CDR3 sequences that are unique and the sequence and proportion of the
replicated sequences in B-1a (A) and B-1b (B) cells from WT (top) and TET2-KO mice (bottom). (C) Bar chart comparing the proportion of the top-
most abundant CDR3 sequence in B-1a cells from WT mice from of all CDR3 sequences in B-1a and B-1b cells from TET2-KO and WT mice. (D) Bar
chart comparing the proportion of the second-most abundant CDR3 sequence in B-1a cells from WT mice from of all CDR3 sequences in B-1a and
B-1b cells from TET2-KO and WT mice. Blue and orange represent WT and TET2-KO mice, respectively. Sequences were pooled from mice from
the same cell type and condition (n: B-1a: WT = 4, KO = 4, B-1b: WT = 4, KO = 3).
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VH–DH–JH usage shows differences
between TET2-KO and WT BCR repertoires

Analysis of specific VH–DH–JH gene region usage in B-1a and B-

1b cells from TET2-KO and WT mice revealed high usage of VH1,

VH11, and VH12 in B-1 cells consistent with prior findings

(Supplementary Figure 8) (18, 60, 61). The B-1a cells from the

TET2-KO mouse appeared to have greater usage of these regions.

There were also several reductions in VH region usage in the B-1a

cells from the TET2-KO mice, but these were regions of minimal

usage and of unclear significance. We also analyzed differences in the

specific VK/L–JK/L gene regions of the light chain CDR3 sequence in

B-1a and B-1b cells from TET2-KO or WT mice (Supplementary

Figure 9) and similarly found differences in VK and JK usage

predominantly in B-1a compared to B-1b cells. An analysis of

kappa and lambda ratio revealed that there is more lambda light

chain utilization in B-1b cells from TET2-KO mice compared to WT

despite not reaching significance, while showing no difference in

kappa/lambda ratio in B-1a cells (Supplementary Figure 9E).

Circos plots (Figures 7A–H), measuring the relative frequency

of each V-J pairing revealed a greater abundance of VH1-J H1,

VH11-J H1, and VH12-J H4 in B-1a cells from TET2-KO mice

compared to control (Figure 7I), suggesting that TET2 has an

important role in specific V-J recombination of B-1a cells. These

specific recombination events could be important for creating the

over-representation of the specific CDR3s in B-1a cells from TET2-

KO mice. The increase in VH12-J H4 pairing in TET2-KO mice was

also seen in the B-1b cells but only constituted 5% of all pairings

compared to over 20% in the B-1a cells (Figures 7I–J). These data

are consistent with the loss of TET2 generating a more pronounced

effect on the BCR in B-1a cells compared to B-1b cells.
Discussion

Murine B cells can broadly be divided into B-2 cells, which are

derived from BM precursors and include conventional follicular

and marginal zone B cells, and B-1 cells, which are largely fetal

liver-derived and persist in adults through self-renewal (60, 62–65).

These B cell subtypes are developmentally, functionally, and

phenotypically distinct (7, 18, 66–70). Given their self-renewal

capacity, we hypothesized that B-1 cells may be regulated by TET2,

an epigenetic modulator that has been implicated in the clonal

expansion of hematopoietic cells leading to disorders such as

myelodysplastic syndromes (MDS) (30–34) and acute myeloid

leukemia (AML) (27–30). Indeed, the results of the present study

identified an important role for TET2 in regulating B cell numbers

in specific niches. However, further studies are needed to

determine if this is an effect intrinsic to the loss of TET2

specifically in B cells. Even if these findings are secondary to

TET2 loss in another cell type, they still have potential relevance

to diseases regulated by IgMs produced by B-1 cells such as

infection (71–77), atherosclerosis (78–84), and obesity-related

metabolic dysfunction (85, 86). Several human genetic variants

of TET2 with loss of function have been identified (87–89) and

these could have a broad impact similar to global TET2 deletion in
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mice, resulting directly or indirectly in modulating the anti-

inflammatory effects of IgM-producing B cells.

B-1 cells have been shown to have important roles in the first

line of defense against pathogens (71–77) and in mediating a

reduction of inflammation (8, 16, 60, 78, 85, 90). One of the

major mechanisms mediating this effect is their production of

IgM that can recognize pattern-associated molecular pattern

(PAMPs) and danger-associated molecular patterns (DAMPs)

such as phosphorylcholine on the cell wall of Streptococcus

pneumoniae (73, 77, 91) and oxidation-specific epitopes (OSEs)

on lipoproteins (92, 93). OSEs on lipoproteins and apoptotic cells

can fuel disease-associated inflammation (93, 94) and IgM to these

neoepitopes can inhibit their induction of inflammatory responses

(95, 96). Our study presents novel findings that the global loss of

TET2 increased B-1 cell number, circulating IgM level, and BCR

specificity, all factors that could affect the immune response against

PAMPs and DAMPs.

The first major phenotype we observed due to the global loss of

TET2 was an elevation in the frequency and number of all B cell

subtypes in the peritoneal cavity (Figures 1G, J). Yet, in the

specialized niches that promote B cell effector function, such as

antibody production, only the frequency of B-1a cells in the BM

(Figure 1H), and B-1b frequency and number in the spleen

(Figures 1I, L), were higher in the TET2-KO compared to WT

mice. The mechanism responsible for these subset and niche-

specific increases in cell number remains unclear and requires

further study to determine if proliferation, increased cell survival,

or migration are responsible. As B-1a cells self-renew like

hematopoietic stem cells (HSCs) (15, 63, 97–100), and this self-

renewal property is enhanced in HSCs with TET2-KO (24, 25, 30,

34, 101, 102), enhanced self-renewal of B-1a cells from TET2-KO

animals may explain the increase in B-1a cells in the

peritoneal cavity.

The genes and pathways that were different in B-1 cells from

TET2-KO mice compared to control, particularly in the B-1a cells,

were immunoglobulin-related and they were expressed at a lower

level (Figures 2C, 3). There was a predominance of kappa light

chain genes that were less expressed, in addition to several VH

genes, leading us to hypothesize that loss of TET2 may be limiting

the expression of certain variable region genes, which allows for

specific antigen recognition of foreign or neo-antigens (15, 103–

106). To further investigate those differences, we performed BCR

analysis using our RNASeq data.

Historically, BCR identification from sequencing was facilitated

by well-established algorithms like MiXCR (107) or BALDR (108)

using V-D-J enriched or single-cell RNASeq data. However, the

associated costs and impracticality of research studies focusing on

low-frequency cell populations were limiting factors for broader

application. The introduction of the TRUST4 algorithm by Song

et al. (57) enabled the accurate detection of BCR and TCR repertoire

from bulk RNASeq data. This innovation diminished the financial

burden of data generation and allowed for the re-utilization of

previously generated data, limiting redundancy and resources

required for BCR/TCR analysis and providing opportunities for

potential clinical applications. While the results are not at single-cell

resolution, they offer valuable insight into the diversity of immune
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cell receptor repertoire and specificity. To date, a limited number of

studies have performed an analogous analysis in bulk RNASeq data

(109–111).

The constant region of the BCR determines the effector

function of the antibody. There were no differences in the

transcript expression levels of antibody isotypes IgG, IgD, and

IgA (Figure 4A). However, there was a statistically significant

increase in transcript expression of IgM, the main isotype

produced by B-1 cells (10, 16, 90, 112), in the B-1a cells from

TET2-KO compared to WT mice suggesting that TET2 may

inhibit factors responsible for encoding the constant region

downstream of the V region on chromosome 14 that determines
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antibody isotype or TET2 may limit isotype switching in B-1a cells

(Figure 4B). These data are consistent with no changes observed in

the circulating IgG level while there was an increase in circulating

IgM in the TET2-KO mice compared to the control. We could not

conclude if the increase in total IgM was due to increased IgM

secretion on a per-cell basis or due to the increase in overall cell

number (Figure 4C). However, increased IgM levels could also be

due to the increase in B-1 numbers in the spleen and bone

marrow. Additionally, there was an increase in MZB cell

number in the spleens from TET2-KO mice compared to WT,

another potential source of IgM from TET2-KO and WT mice

(Supplementary Figure 6).
B C D
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FIGURE 7

V-J Gene Association analysis of B-1a and B-1b cells from TET2-KO and WT mice. (A-H) Circos plot of V-J gene associations of CDR3 sequences
identified by TRUST4 utilizing specific V-J gene segment pairs is displayed for B-1a cells from TET2-KO (B, D) and WT mice (A, C) from all CDR3
sequences (A, B) and replicated CDR3 sequences (C, D). Circos plot of V-J gene associations of CDR3 sequences identified by TRUST4 utilizing
specific V-J gene segment pairs is displayed for B-1b cells from TET2-KO (F, H) and WT mice (E, G) from all CDR3 sequences (E, F) and replicated
CDR3 sequences (G, H). Cables connect V and J gene segments that are observed together within the same CDR3 region, with the thickness of
each cable indicating the relative frequency of each V-J pairing. (I, J) The abundance of V-J gene connections identified in replicated CDR3s
presented as percent abundance of all CDR3 sequences in B-1a (I) and B-1b cells (J) from TET2-KO and WT mice. Each pair of bars represents the
count of V-J associations combined from all samples. Blue and orange represent WT and TET2-KO mice, respectively. Sequences were pooled from
mice from the same cell type and condition (n: B-1a: WT = 4, KO = 4, B-1b: WT = 4, KO = 3).
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While much more has been documented about the role of the

heavy chain variable region, specifically the CDR3 of the BCR, less is

known about the purpose of the light chain regarding its role in

binding antigens (59, 106, 113–118). A study by Lio et al. revealed

that double knockout of TET2 and TET3 in the early B cell stage

impaired rearrangement at the Igk locus (23). Our findings support

previous research by detecting the lower expression of many Igk
genes, and indeed, while not reaching significance, overall kappa

immunoglobulin usage is reduced in B-1b cells, but surprisingly not

B-1a cells from TET2-KO mice compared to WT (Supplementary

Figure 9E). There was also a significant reduction in the number of

unique CDR3 sequences in B-1a cells and a trending reduction in B-

1b cells from TET2-KO mice compared to WT (Figure 2;

Supplementary Figure 8). Consistent with the reduced variety of

CDR3 sequences, there is a higher number of replicated sequences

in the light chain observed in the B-1a cells from the TET2-KOmice

compared to WT, and the effect was also observed in B-1b cells to a

lesser extent (Supplementary Figure 8). These data suggest that the

BCR repertoire in the light chains of B-1a cells is more sensitive to

loss of TET2 than in B-1b cells.

B-1a cells from TET2-KO mice had significantly fewer unique

CDR3 sequences with 72% of the total CDR3 sequences
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representing replicates, suggesting that loss of TET2 impacts the

diversity of antigen specificity in B-1 cells, particularly B-1a cells

(Figure 5B). The more marked lack of antigen diversity in the B-1a

cells from TET2-KO mice is consistent with B-1a cells

predominantly originating from the fetal liver and persisting

through self-renewal, and a role for TET2 in promoting

expansion of rapidly self-renewing cells. While our study isolated

B cells from the global TET2-KO and WT mice, it must be

considered that the effects of loss of TET2 in other cells, such as

cytokine-secreting macrophages, could be playing a role in

influencing the selection of the B cell repertoire. Additionally, the

presence of IgM itself can influence the selection of the B cell

repertoire (119). In an analysis of VH–DH–JH gene regions of the

heavy chain, our data suggest that the restricted associations of VH–

DH–JH gene regions in the B-1a cells from TET2-KO mice could be

responsible for the reduction in the number of unique CDR3

sequences. A study by Wong et al. identified a pathway whereby

B-1a cells can bypass the need for a pre-BCR and generate a mature,

albeit somewhat self-reactive, BCR directly (120). The VH12/VK4

pairing is typical for binding phosphatidylcholine, a lipid present in

many bacteria membranes, and while VH12 frequency of use is

increased in B-1a cells from TET2-KOmice, VK4 frequency of use is
FIGURE 8

Graphical abstract of key findings. Peritoneal B cell number is increased, circulating IgM levels are elevated, and CDR3 sequence diversity is reduced
in mice null for TET2 compared to WT mice. Figure made with BioRender.
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fimmu.2024.1380641
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dennis et al. 10.3389/fimmu.2024.1380641
lower in B-1a cells from TET2-KO mice compared to WT

(Supplementary Figure 8, 9) (120). It should be noted that both

VH11 and JH1 are associated with early fetal characteristics, which

supports the potential enhancement of self-renewal that loss of

TET2 regulation may foster (18, 65, 69, 115). Our CDR3 and VDJ

association data from the heavy chain provide further evidence in

addition to the light chain data that B-1a cells are more profoundly

impacted by global loss of TET2 compared to B-1b cells. The reason

for this remains to be determined but may be due to the expression

of CD5 by B-1a cells, given that studies have shown many of the

malignant B cell samples with loss of TET2 express CD5 (101, 121,

122), but this connection requires further study.

Taken together, our data reveals that loss of TET2 influences

IgM level and BCR repertoire, particularly in B-1a cells, which are

key producers of natural IgM. Alteration to the antigen-specificity

or abundance of B-1a-produced IgM may have consequences in the

response to PAMPs and DAMPs and in regulating antigen-driven

inflammation. Our data demonstrating that loss of TET2 increased

B-1 cell subset numbers in antibody-producing niches and reduced

CDR3 diversity suggests that TET2 may regulate the pool of

antigen-specific IgM produced by B-1 cells (Figure 8) and

underscores the need for further study of the impact and

mechanisms whereby TET2 regulates B-1 cells, especially in the

context of infection and diseases involving chronic inflammation.
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